
1
18-500 Final Project Report: Team B5 05/07/2022

KBBQ for KBBeginners
Joseph Jang, Jasper Lessiohadi, Raymond Ngo

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract—Korean Barbeque is a delicious dish, but can be
slightly daunting to people who have never experienced it before.
To aid beginners through this, we implemented a robotics system
that can help KBBQ beginners to properly cook meats. The
system uses OpenCV and yoloV5 to incorporate computer vision,
along with a robotic arm with precise inverse kinematics to scan
various meats and automatically cook them, leading to food that
is cooked well every time.

Index Terms—Computer vision, design, inverse kinematics,
robot

I. INTRODUCTION

Korean Barbeque (KBBQ) is a type of meal where people
grill their own meats on a grill in the middle of the table.
However, those who are new to Korean BBQ could have
difficulty properly cooking the different varieties of meats that
are served. Each ingredient has a different thickness and
required internal temperature, and beginners who have little
experience may not know the appropriate amount of time to
leave them on the grill. This could lead to burnt food or food
poisoning if the dishes are cooked improperly. To avoid this
situation, our group proposes a robotics system that can help
KBBQ beginners to properly cook meats. The system uses a
robotic arm with four degrees of freedom to handle putting the
meat on the grill, taking it off the grill, and flipping the pieces
to cook both sides. We also use computer vision to scan each
ingredient as we put it on the grill to determine how long a
certain dish has to be cooked, mainly based on thickness.
When the meat needs to be flipped or taken off the grill, the
system uses a robotic arm to do so. Meats are each placed in
four sections of the grill to avoid the possibility of them
overlapping. There is also an overhead camera feed of the grill
on a touchscreen connected to the system. Users are able to
tap on individual sections to signal to the arm that they would
like meat in that section to be flipped, if they so choose. By
using this product, users will eliminate the risk of overcooking
or undercooking their foods, resulting in perfectly cooked
meats every time. Some dishes we used for this project are
pork belly (sam-gyup-sal), marinated ribs (LA Galbi), thin
beef slices, and marinated beef (bulgogi).

The reason we chose these strategies in our solution is
because we felt that fully automating the cooking process was
the best way to ensure beginners have well-cooked food every
time without having to worry about a new, possibly
overwhelming experience. The advantage of primarily using
thickness, rather than the type of meat, to determine cooking
time is the fact that it is significantly easier to train our
algorithm. If we wanted to consistently identify meat type, we
would have to feed our algorithm much more data than we
have, making this strategy unfeasible. Additionally, since the

meats served in KBBQ are generally quite thin, the difference
in internal temperature required to be fully cooked between
beef and pork is less of a concern. Furthermore, we decided to
use a robotic arm with a ‘hand’ instead of something like a
spatula because we felt that it would be more precise. A
spatula would also be significantly worse at picking up the
raw ingredients, since they would likely be arranged as a pile
on a plate, rather than a single piece on a completely flat
surface. Overall, we felt that these choices were the best
solution to creating a smooth experience for the user.

II. USE-CASE REQUIREMENTS

To consider this a successful project, we have several
requirements. The first is that our computer vision algorithm
must be able to correctly identify the type of meat being
cooked within 5 seconds, 80% of the time. It must also be able
to identify the thickness of said meat within 1/16th of an inch
of error. Failing to do those two would mean that we are
feeding incorrect data to the cooking time algorithm, leading
to poorly cooked meat. Additionally, the robotic arm must be
able to touch points on the grill within 1/16th of an inch of
error. Having precise control of the arm is crucial to the
function of the system, since we need to reliably pick up
small, thin pieces of meat in a quick and efficient manner.
Next, the touchscreen UI must correctly display the camera
feed of the grill, and always register touches which signal that
the user wants the meat in the chosen section to be flipped or
removed from the grill. Finally, the algorithm to determine the
cooking time for a given piece of meat must have a failure rate
of less than 10%, where failure is either undercooking
(internal temperature is too low) or burning the meat. The
reason for this requirement is obvious: cooking the meat
incorrectly is the whole goal of our project.

The entire system needs to last the length of an average
dinner to be effective, which is to say it needs to last anywhere
from 20 to 45 minutes. The system needs to simultaneously
handle multiple pieces of meat at once to ensure enough food
is cooked for an enjoyable dining experience.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

The image on the next page shows the basic setup of our
operations. A metal heated grill exists. On the left side of the
grill, the user can place meats they desire to cook on a plate
designated as the raw meat plate. On the right side of the grill,
cooked meats are placed on a dish designated as the cooked
meats plate. In between the plates and in front of the grill, the
robotic arm is placed so that it can reach any part of the grill
with its claw. Not

2
18-500 Final Project Report: Team B5 05/07/2022

Figure 1: Robotic Arm system top down view. This displays the overall layout
of our product

shown in the image above is the top camera, which is placed
above the grill at a safe distance from the heat so that a bird’s
eye view of the grill is available. A side camera is placed at
the same level of the raw meat plate to find the thickness of

Figure 2: System architecture diagram.

the meat. This operation setup allows us to simplify some of

the implementations of the robot’s kinematics and allow the
cooking of KBBQ to be efficient and safe.

The KBBQ robotic system has have four main subsystems,
which are the Robotic Arm, Computer Vision, UI, and
Software Controller. In the diagram below, each box
represents one or more subsystems. The red and green boxes,
which are the 4 Degree-of-Freedom Robotic Arm and Power
Distribution wiring, respectively, make up the entire Robotic
Arm subsystem. The inverse kinematics algorithm within the
Jetson AGX Xavier (orange box) is also part of the Robotic
Arm Subsystem. The blue box that contains both cameras and
the software subsystem (rounded box) within the Jetson AGX
Xavier box that is labeled “CV Algorithm” represents the
Computer Vision Subsystem, which we are naming the CV
Algorithm subsystem. The Software controller box within the
orange software block is the final subsystem, which is purely
software.

As the key on the top right of the diagram, dotted lines
within a colored box represent connections between the
various software subsystems and algorithms. A solid line
within a colored box represents physical electrical wirings
within a subsystem. Blue lines are interconnections between
different parts to the Jetson AGX Xavier, which is responsible
for the software subsystems. Red Power lines represent
physical electrical power lines from the power distribution
block to the main subsystems. And finally, black solid lines

that go past the dashed box, which represents our robotic
system, are used to indicate inputs and outputs into and out of

3
18-500 Final Project Report: Team B5 05/07/2022

our system, such as vision and motion. The changes to our
System Architecture are shown above, with the replacement of
the lead acid battery with a more reliable AC-to-DC power
Supply, and we used two webcams for the CV.

I. SYSTEM STATES

Figure 3 is a system state diagram for cooking a single piece
of meat. Once an empty spot on the grill is found, the meat
must be picked up from the left of the grill. The robotic arm
holds the meat to the side camera to observe its thickness,
which is necessary to compute the cooking time. Next, the
meat is placed on the grill at the specific empty location to
cook. After time is kept track of for the first side of the meat,
and placed on the grill (about 3 to 5 minutes), it is picked up
from the grill, flipped, and placed back on the grill. After
enough time passes for the second side of the meat, the meat is
once picked up again and placed on the dish that is on the right
side of the robotic arm and grill. At this point, the system
state diagram ends for that single piece of meat.

Figure 3: State diagram of flipping and placing single item

Figure 4. State diagram of flipping and placing multiple pieces of meat.

The second state diagram (figure. 4) handle multiple pieces of
meat. It shows prioritization for flipping meats and.
placing them back on the grill or the cooked meat dish, away
from the grill, over placing meats on the grill. Hence, the

“Initial Placing of Meat on Grill” states will only occur if an
empty spot on the grill exists and uncooked meat exists on the
left dish and if no meats are ready to be flipped or pick up
from the grill (all meats on the grill are in the “Time the
cooking on grill” state in the individual state diagram). These
state diagrams are used to help develop and verify that our
robot is working as expected, first for one piece of meat on the
grill, and then for multiple pieces of meat. Our software
controller code very closely follows our system states plan.
The only change is we added a default position state for the
robotic arm.

IV. DESIGN REQUIREMENTS

The most important design requirement is being able to
properly cook the meat the user shows the robotic arm system.
The first main step in this process is proper identification of
the types of meats placed on the grill. We plan on having at
minimum 80% classification accuracy in our computer vision
systems. Highly trained networks are able to classify between

thousands of categories of objects with 99% accuracy,

however, as we are providing our own dataset, as well as our
lack of relative expertise compared to researchers, we lowered
our threshold for accuracy to 80%. Furthermore, this
recognition needs to be under 5 seconds, as studies have found
out humans are impatient and 75% of people give up within 5
seconds of no loading on a web page, which is a proxy for

4
18-500 Final Project Report: Team B5 05/07/2022

robotic arm onset movement time we have set.
Another important aspect of getting the proper cooking time

besides classification accuracy is meat thickness precision. As
some meats for Korean BBQ vary in thickness due to the
nature of their cuts, it is important to obtain thickness
measurements for certain cuts to obtain an accurate cooking
time estimation for the food. As the thinnest cut of meat we
plan on measuring is ⅛ of an inch thick, we expect the margin
of error to be a maximum of 1/16 inch.

One important aspect of the entire solution, of course, is
cooking. The cooking time is determined as a function of the
type of meat as well as the thickness of the meat in certain
scenarios. The function is not to rely on any input from the
camera to ease project overcomplexity. The cooked meat
should reach an internal temperature of at least 170 for beef
and 145 for pork, and should not be burnt or undercooked. Our
goal is to create an environment to lower the intimidation one
faces when encountering Korean BBQ for the first time, so
these requirements for internal temperature are necessary to
decrease the risk of any potential issues such as food borne
illnesses that decreases enjoyment factor.

The robotic arm must be able to reach a certain point with
an accuracy of within 1/16 of an inch of a given selected point.
It must have a maxim and minimum reach of at least 13” to 1”
if the robot arm is placed right next to the grill. The electrical
wires and components must be able to withstand grill
temperatures of up to 400 F at any given moment or for a
period of 1 minute. The robot must be able to complete a
single action, such as picking up a piece of meat and placing it
on the grill, within a 1 minute time frame. The robot must be
able to move at least 12 cm/s. Lastly, the robot must be able to
pick up pieces of meat that are at most 2 lbs. The battery
power of the arm and the entire robotic system must last for at
least 20 minutes to an hour.

V. DESIGN TRADE STUDIES

A. Processing Unit
The computer vision algorithm running many times a second

to detect objects necessitates a strong mobile computing
platform. The Raspberry Pi, without a dedicated GPU, is
excluded due to its lack of strength compared to a product in
the Jetson family of devices. However, the rapidity of the
detection, the variety of our computer vision algorithms, and
the strict time constraints required for computation mean the
Jetson Nano might not contain the computing power necessary
for our desired application. The Jetson Xavier, while
potentially containing much more power than we need,
provides more computing power and gives us breathing room
should any operation require more computing power than we
expect. Furthermore, the ability to loan devices instead of
acquiring it with our funds frees our budget as part of our risk
mitigation plan in the case where one of our components fails.
As a result, price was not a factor in our comparison.

Jetson
Xavier

Jetson Nano Raspberry Pi
4

CPU 8 Core
Nvidia
Carmel
Cores (1.37
Ghz)

Quad Core
A57 (1.4
Ghz)

Quad Core
A53
(1.5Ghz)

GPU 512 core
Volta GPU
with 64
Tensor Units

128 core
Maxwell
GPU

None

Memory 16GB (136
GB/s)

4GB(26
GB/s)

2GB

Connectivity 3x USB 3 (2
of them
USB-C)

4x USB 3 2x USB 2
2x USB 3

The result of this selection we made was that the Xavier
was a better option despite the downside in fewer USB-A
ports. We were able to overcome this weakness by using
USB-C hubs to connect to the peripherals. Xavier had pin
connectivity to make controlling the robotic arm easier. On
many CPU bound functions, the Xavier performed similarly to
our laptops, which made predicting performance on the Xavier
easy in times where access to the Xavier was limited. The
Xavier also made processing the YOLOv5 algorithm on
pytorch much faster due to the speedup from its CUDA cores.

B. Computer Vision Algorithm
For the edge detection algorithm, the Canny edge detector[1]
in the OpenCV[2] library showed itself best for our purposes.
It accurately detects edges and has manipulable parameters. In
addition, the use of built in functions allows us to avoid
having to spend time creating edge detection algorithms from
scratch using gradients.

For the object detection algorithm, the simpleblobdetector
function presented similar benefits for the Canny edge
detection in its simplicity compared to its competitors. One
alternative we considered was using the classification
algorithm to also detect the presence of objects, however that
was ruled out due to the need to train for such a scenario.
After brief preliminary testing, it would seem some form of
image manipulation would need to be made to accommodate
such a function. We plan to isolate red elements of the image
to improve accuracy in object presence detection.

We needed a way to classify our images, and we had a
selection of choices. Selecting a neural network was not
among our top choices due to the size of the data set needed.
However, many other methods we looked at that involved
feature extraction requires fine tuning of parameters, and that
is extremely difficult when classifying images that have
extremely similar characteristics, such as, for instance, color
and shape. As a result, we came to the conclusion that a neural
network that learns the features could, despite the tradeoff in
dataset size, ease the process in feature selection. Initially, in

5
18-500 Final Project Report: Team B5 05/07/2022

our detailed design, we limited ourselves to using a
classification algorithm to classify images. We decided against
that, and decided instead to use an object recognition
algorithm called YOLOv5[3] instead. The reason is that object
recognition projects and libraries are much more easily
accessible. The other reason is that the had a few cases (meat)
where we want to properly classify, and a whole bunch of
instances (empty plate, arm over plate, claw over plate, etc
etc) that we would classify as ‘other’. Having object
recognition prevents networks from simply classifying as
much stuff as possible as the ‘other’ category.

C. Software Controller Operations

For the cooking mechanism, we settled on a function that
takes in the type of meat and its thickness and outputs out
cooking time, which is fed to the robotic arm queue. Flipping
time occurs halfway into the output cooking time. One key
assumption made is the grill maintains temperatures around
500F. This is a key assumption made because KBBQ grills
usually exist around that temperature range. Furthermore,
temperature sensors from our research of different options
max out their operating temperatures at or below 500F, which
makes a grill that exceeds that temperature extremely
dangerous for the sensor, which unfortunately rules out most
sensors that fit within our desired budget. A computer vision
algorithm to detect burning and meat doneness based on color
was discussed, however such a solution would take time to
train or tune. Most importantly, external meat color does not
correlate with meat doneness. Meat can appear burnt but still
not have a safe internal temperature.

This suspicion was confirmed during testing. If we used a
computer vision implementation, the meat would’ve been
marked as “done” right after being flipped, because the
cooked side of the meat would’ve looked done, even though
the other side of the meat was still clearly raw.

VI. SYSTEM IMPLEMENTATION

Our project is arranged such that the robotic arm is on one
side of the grill, a plate with raw meat is on its left, and a plate
for cooked meats is on its right side. A side view camera exists
next to the raw meat so that we can use blob detection to see
how thick the meat is when the robotic arm picks it up. A third
camera was placed above the grill for use to be funneled to the
user interface. While it worked during a last minute test, we
removed it to make repairing and moving the overall system
easier. All of the processing involved is done using a Jetson
Xavier, which is more than enough processing power for our
needs.

A. Computer Vision Algorithm
The computer vision algorithms we used involve an edge

detection algorithm, an blob detection algorithm, and an object
classification algorithm. The edge detection algorithm uses a
bounding rectangle around the dimensions of the meat to
determine the pixel width, and by extension, the thickness of
the object. Because the robot holds the meat up for the
detection, the variance of the meat’s distance away from the

camera is bounded by the width of the meat where the robotic
arm can grab.

The blob detection algorithm comes from openCV. Before
the activation of the blob detection algorithm, the input
image’s color space is converted to HSV, then filtered to only
highlight red portions of the image. After dilation and
floodfill, any object with a red outline (in this case white),
would be white, and every other object in the image would be
black. This makes the job easier for the object detection
algorithm by specifically highlighting red objects, which in
this case would be meat.

The classification algorithm would try to find out which
type of meat was placed in front of the camera. The
classification is composed of a neural network and the dataset
is created by ourselves. Our original plan was for images to be
flattened and downscaled before being placed into the neural
network. However, throughout the course of the project, we
realized creating a network by ourselves instead of using a
pre-existing algorithm was much more work than we
expected. As a result, we switch to using a Pytorch algorithm
called YOLOv5. The great advantage of yolov5 specifically
was its speed and its extremely active support community. To
get the proper classification label, we run YOLOv5 on the
image and take the label with the highest confidence. One of
three classifications would emerge as a result, as shown in the
figure.

The YOLOv5 weights were trained ourselves and involved
creating a database of both images found online and images
we captured ourselves. Due to the difficulty in finding niche
categories of images, this meant collecting data had to be
found manually; there was no pre-made training set of images
of raw Korean Barbecue meat. The dataset was rather small,
comprising 40 images augmented to 120 images for the
training set and a validation set of 20 images.

On the side camera, the object detection algorithm loops to
detect if the user has placed meat in front of the camera. On
detection of the meat, the classification algorithm takes an
image from the camera and classifies the meat into several
categories highlighted in Fig _. On classification, if the meat is
classified as short rib or any type of meat where thickness is a
necessary factor in cooking, the robotic arm lifts the meat
vertically in front of the camera for the edge detection
algorithm to detect the thickness of the meat.

Fig. 5. Computer Vision algorithm flowchart. Note only one

6
18-500 Final Project Report: Team B5 05/07/2022

classification of meat requires checking for thickness.

B. Robotic Arm
The robotic arm has 4 Degrees of Freedom. Therefore, it has
3 links and 4 joints. The first DOF is the base joint. This is the
yaw movement, and is capable of freely rotating (360). The
robot has two elbow joints, which accounts for the Pitch
movement of the robotic arm. Each joint is capable of 270 of
movement. Finally, the wrist of the robot, or the joint where
the last link 3 is connected to the robotic claw, is the Roll (4th
DOF), and is able to rotate 360. Link 1, 2, and 3 stand at a
height of 3, 11, and 9 inches respectively. The claw is 4 in.
long and can open 180 degrees. The CAD models of each link
have been created in Solidworks in millimeter format. These
links can now be 3D printed in Techspark using a Dremel
3D40 or F170 Printers. We used an infill of 20% and a
precision of 0.01mm to print the 3 parts.

Figure 6: CAD model of robot arm.

The assembly of the physical robot was not difficult. The base
was created using pieces of scrap wood from Techspark. We
created a sort of box where the lazy susan bearings, stepper
motor, and link 1 is attached to. However, the bearing was
actually inhibiting the movement of the stepper motor, so it
was removed, and instead the link 1 rests secured directly to
the shaft of the stepper motor. Then, the 35kg-cm servo motor
is bolted onto the four holes provided in link 1 using four 8/32
by 2 in. bolts and nuts. These same bolts are used to secure
the 25kg-cm servo motor to link 2, and the MG996R 10kg-cm
servo motor to link 3. A 25-teeth aluminum servo horn metal
steering arm connects the ends with the smaller grooves of
link 2 and 3 to the 2 strong servo motors. A 25-teeth disc horn

then connects the MG996R servo on link 3 to the claw, which
is powered by a MG996R servo motor.

For the electrical wiring of our robotic arm, a 12V 7Ah
Lead acid battery was used to power our system. But due the
limited current draw of the battery and it quickly depleting
power in a few hours, it was replaced with an AC-to-DC
Power supply, capable of supplying 12V and a maximum of
25A. An electrical power terminal block that can handle 30
Amps and 18 AWG wires is used to power various
components of the system. A wall-plug in power supply
powers the Jetson AGX Xavier. One boost converter powers
the DM542T stepper driver and motor (needs around 20-50V).
A buck converter is used to power the I2C servo motor
controller, which requires a voltage of around 7 V and
supports 16 servo motors (we only use four of these triple
pins). All signal wires from the servo motor controller and the
stepper driver are connected to the 40 pins of the Jetson AGX
Xavier. The two cameras are connected to this computer.
ATC fuses and fuse holders are used to protect electrical
components. A heat sleeve, which is usually used to protect
wires in car engines that could reach temperatures as high as
1000F, are used to cover all servo motors and wires so that no
melting or electrical damage can occur. An Arduino Uno
controls the stepper motor. An updated electrical diagram is
provided at the end of this document.

The robotic arm stepper and servo motors can all be
controlled using PWM and I2C. For the stepper motor, we
used an Arduino Uno to accurately control the base of the
robot, but the servo motors were controlled using the I2C
servo motor controller we bought. As for the camera that was
mounted on the robot, it was mainly used for depth perception
when the robotic claw must pick, place, or flip a piece of meat.

Inverse Kinematics is when given a point in 3D space and
the lengths of each link, the inverse kinematics algorithm can
calculate the appropriate angle each joint must be at so that the
robotic arm can properly move its end effector to that point in
space. With the dimensions of each link and the claw, the
robotic arm is able to have a maximum reach of at most 24 in.
and a minimum reach of at least 4 in around itself (think of a
circle with a radius of 4 in. and 24 in.). This is plenty of
range, because the KBBQ grill is a circle with a diameter of 13
in. If we place the grill and plates 4 inches in front of the
robotic carm, the robot should have no problems with the
range of motion possible. To solve this inverse kinematic
problem, there are many available resources. We have looked
in ROS, Matlab, and Python libraries that have inverse
kinematics solvers. We tried using the Robotics Systems
Toolbox in Matlab, but we were not getting the desired angles
so easily and consistently. We tried changing to ROs, with
little luck, and even tried some Python libraries, such as IK
Fast, IKPy, and tinyik. In the end, we decided to implement
the IK algorithm ourselves. The robotic arm has four joints.

7
18-500 Final Project Report: Team B5 05/07/2022

One is the base, and the other is the wrist, which can be
separately controlled. That leaves us with two revolute joints.
I then realized that oru inverse kinematic algorithm can simply
be an RR robotic arm algorithm, which is a solved and easy
problem. Hence, after some programming, the robotic arm
could accurately move to the proper position with the
appropriate angles. To help constrain the environment the
robotic arm would work in, we decided on the (x,y,z) origin
point of the robot to be the second joint, or the first joint
where the first servo motor is, which is also directly above the
first joint, which is the stepper motor. This origin point is
labeled in the pictures below and next to this text. This origin
point allowed the environment to be split into 2 coordinate
planes (xy and yz). If the meat pieces have a maximum
dimension of 2 in by 5 in, and the grill height is 13.5 cm, the 2
coordinate planes would be the xy plane (horizontal, parallel
to floor), and a yz plane (vertical, parallel to wall). The plates
(diameter of 9in) are at 0 and 180 degrees (directly left and
right) of the base of the robotic arm.

Figure 7: Overhead view of grill, arm and plates

Figure 8: Side view of the robot arm

C. User Interface
Our UI involves a touch screen which displays an overhead

camera feed of the grill, along with some other information.
The camera feed is split into four sections, and the user can tap
on any section to manually signal to the robot to either flip or
remove the meat on that section, depending on which action
needs to be done. Information regarding the remaining amount
of cooking time is also displayed so that the user knows how
long they have to wait until their food is ready.

We used PySimpleGUI for most of the components of the
interface, along with openCV for the camera feed. We did
have some difficulty integrating this part of our system, since
the camera feed here along with the computer vision
subsystem had to be run on the same thread. Because of this,
we had to take out the camera feed on the UI subsystem in
order to keep the essential information that we wanted to
deliver to the user while still enabling the computer vision to
do its job.

s

Figure 9: Layout of UI design. The mentioned camera feed is on the right,
while information on the newest meat to be put on the grill is on the left.

8
18-500 Final Project Report: Team B5 05/07/2022

D. Software Controller
This subsystem is the main subsystem to integrate all the

other subsystems - CV, Robotic Arm, and UI. It takes in
information from the CV Algorithm, and displays CV data to
the UI. It needs to keep track of multiple meats on the grill
and display their cooking times. It needs to calculate
information for each meat and make decisions for each meat.
The software controller must also be able to make decisions,
such as providing a desired action and position to the inverse
kinematics algorithm. The controller prioritizes flipping and
getting meats off the grill at the appropriate time over putting
meats on the grill. It uses two queue implementations. One
queue holds events related to robotic arm actions meat on the
grill, while the other holds events related to robotic arm
actions related to meat about to be added to the grill. The
queues are separate to ensure actions relating to meat already
on the grill take priority over meat yet to be cooked. The
controller understands that the dish of uncooked meats that
need to be grilled is at the left of the robotic arm and grill,
while cooked meats are placed on a dish at the right of the
robotic arm and grill. In essence, the software controller is
truly the brains of our entire robotic subsystem. It is where all
the other subsystems integrate with one another and must also
work with one another. Below is an image of the software
hierarchy of our robotic system. The
SoftwareControllerXYZ.py was our main controller, and
arrows indicate what module (start of arrow) gave instruction,
or called, to which module (end of arrow).

During implementation, there were challenges in integrating
the User Interface and the other elements of the system, due to
the User Interface’s need to see everything at all times. A
workaround we used was attempting to have the user interface
in a separate thread, but the issue was the updating of the meat
thickness display relies on information from the thread with
the CV and robotic arm functions working, in essence
bottlenecking performance. As a result, the user interface only
displays camera information. Due to this reduced
functionality, we decided not to showcase it for demo day,
preferring instead to dedicate the limited amount of table
space for more crucial parts of the arm.

VII. TEST, VERIFICATION AND VALIDATION

A. Results for computer vision subsystem
The computer vision system had several tests for its

multiple components. To test the classification strength of the
object, as well as its ability to predict in real time, meat would
be placed in front of the camera, and the network’s prediction
class and its prediction time would be outputted. Using this
method of testing, a desired accuracy of 80% and a desired
processing time of under 5 seconds would need to be obtained.

Blob detection was meant to be slotted in at twice a second.
Instead, a Python performance test pegged it at .025 seconds,
which made it much faster than even our goal. This timing
was consistent over many runs, therefore, there is no results
chart as with the other tests.

To test the accuracy of the measuring system, a section of a
table was marked, a person (or a hanging clip) held the meat
vertically in front of the camera. The distance the meat is from
the camera does not matter so long as the clip or hand remain
the same distance from the camera between tests. The
predicted measurement result is compared against the actual
measured thickness.

For the neural network, our confusion matrix yielded an
accuracy of 77%, which is slightly lower than the benchmark
we set for ourselves. The reason seems to be that there are
instances where the different types of meat appear really
similar and may have tricked the network, which could
possibly be because of the small dataset. Due to the difficulty
in obtaining images, we only had a dataset of 40 images
augmented to a train set of 120. Speed greatly surpassed our
goal of 5 seconds, recording a .05 second time. Despite this,
the blob detector was still twice as fast as the network.

For the edge detector, the thickness bounds was 1/10th of an
inch. As we continued our project, we discovered 1/16th of an
inch margin of error was possibly too wide considering
lighting conditions and a limited resolution of the camera. We
tested by measuring the width (not thickness) of the piece of
meat in front of the camera, held 4 inches away. We measured
width because we did not know how big the error bound was
before testing, and in the cases where the bound was 1/8th of
an inch, ⅛-⅛ is 0.

Fig. _. Compilation of test results for the object detection

9
18-500 Final Project Report: Team B5 05/07/2022
Fig. 10. Compilation of test results for thickness recognition

B. Results for Cooking Time algorithm
In this test, the cooking time function was called with a

specific meat type and thickness as the manual input, as
opposed to the final system where the computer vision
algorithm provides the function inputs. We then cook the meat
on the grill in accordance with the time output from the
function, flipping at the exact halfway point. The test was
conducted inside a group member’s kitchen. While the
original test had a meat thermometer to test the doneness of
the meat, we did not purchase the item, preferring to spend the
budget on other items more relevant to the robotic arm.
Instead, we used the eye test to see if meat was done. This test
was actually done a lot less and a lot more sparingly than we
would have liked, mainly because we recognized at the end of
the semester that grilling meats during the demo causes more
problems than we would have liked. This suspicion of ours
was backed up when the servo motor began overheating after
testing the arm on the grill, and we suspect the residual heat
from the gas burner may have made the servo motor’s
overheating problems worse. Overall, 0% of the meat was
undercooked (defined as pink in the meat), and 15% were
slightly charred but not burnt. No marinade was used, it was
just the meat on a pan.

Fig. 11. Data for the cooked meat results

C. Results for Robotic Arm and Software Controller
The first test we conducted using the robotic arm was motor

tuning. Using a protractor and a measuring tape, specific
(x,y,z) points in space were decided upon, and once that point
was put through the IK algorithm, the specific angles were
measured. I mainly used 0, 45, 90, 135, and 180 degrees input
into the motors, and measured whether these angle errors were
within 5 degrees of accuracy using a protractor. This testing
phase was probably the longest, taking several days to
properly tune each motor. This was also part of the design and
implementation phase of the inverse kinematics algorithm.
After each servo motor was tuned, the stepper motor was
tuned.

Next, after all motors could accurately and precisely move
to certain angles and positions, the three behaviors of the robot
were tested. For the pick up, flipping, and drop tests, they
were conducted primarily on pieces of beef jerky instead of
raw meat. The robot had to pick up raw meats and place
them on the grill, flip those meats, and also pick the meats
from the grill and place them on the plate in the correct order

specified in our system states diagram. Out of 10 tries, the
robot could properly pick up meat from the raw meat plate and
place it on the grill 8 out of 10 times. Flipping the meat was
more difficult, so the robot could flip the meat on a grill
successfully 6 out of 10 times. But the robot could properly
pick up meat from the done meat plate and place it on the grill
9 out of 10 times.

Each robot task was also timed. The raw meat task could be
handled in about 30 seconds, flipping a meat was handled in
about 25 seconds, and the done meat task was handled in
about 30 seconds. All these tasks were initially under 20
seconds to complete, but we discovered making tasks that
quickly lead to more mechanical motor errors, current draw
issues, and position inaccuracies.

VIII. PROJECT MANAGEMENT

A. Schedule
The end of the final report shows the actual schedule. We

had to push back integration well into finals week, and even
into the day before the demo. All of the individual component
testing had been done well before integration. The reason for
the delay compared to the original goal was because inverse
kinematics took a lot more time due to difficulties involving
potential libraries and required us to switch between entirely
different programming languages.

B. Team Member Responsibilities
During the design phase of the project, the workload

balance was designated as Joseph doing the robotics and the
inverse kinematics, Raymond implementing the computer
vision, and Jasper implementing the UI and cooking time
functionality. All members involved would work on the
integration and the controller together. In the course of the
project, several issues popped up that necessitated changes in
this workload balance. Unfortunately, Jasper was ill with a
COVID-related illness during the integration phase, which
removed him from most of the integration operations. The
process of integration of systems came down to Raymond and
Joseph, with Joseph primarily responsible for integrating the
CV into the robotic arm functionality and Raymond
coordinating all other aspects of the integration, which
included making potential modifications (such as making
libraries available offline) needed to make the system suitable
for the demo area.

C. Bill of Materials and Budget
Please refer to the bill of materials table below for the

materials. Note that during the process of development, we
retired the lead acid battery from service for a DC power
supply that plugs into a wall outlet, primarily because of
current draw issues from the battery and a recognition that
there would be power in the demo space.

D. Risk Management
For risk management, we mainly had multiple parts we

borrowed to use in case of a breakdown. The only risk

10
18-500 Final Project Report: Team B5 05/07/2022

management for our software was just having a GitHub
repository of our work.

For the power supply, our initial risk was potential failure
using those components. Current draw from the lead acid
battery was lower than we would have liked, and as a result
we had to switch to a different DC power supply. The one that
was bought was the AC-to-DC power supply mentioned
before, and it worked wonders.

For the risks defined in the risk mitigation of the detailed
design writeup, several of them popped up in the operation
and construction of the robotic arm. The robotic arm once
chipped while the servo motors were not controlled properly
and hit the arm against the desk. We had to use a soldering
iron and some leftover PLA plastic to essentially reform the
shipped parts so that the servo motor could be secured
properly back onto the plastic link of the robotic arm.

It would be remiss not to mention the issues with reliability
of several parts. Servo motors, stepper motors, drivers, and
Arduinos all broke at some point or another during the course
of the project. The broken Arduino could not manage global
variables correctly, which was a bug that took about 9 hours to
figure out. And on the day of the demo, a broken motor on
the day of the demo itself caused much headache. We
diagnosed the problem as excessive heat, which damaged the
motor and the stepper driver. Due to their integral part of the
design of the robotic arm, there were no substitutes except
replacement of the part with an identical but functioning part.
Perhaps with a higher budget a chance to obtain more reliable
parts could have happened.

For the cooking time risks, the detailed design writeup
mentions the risk involved in the potential inaccuracy of the
meat cooking algorithm. Fortunately, that has not been the
case. Had the function not worked, we could have tweaked the
function to be better at preparing the cooking time.

Despite us wanting the focus of this project to not be
mechanical, but more electrical and software, mechanical risks
took the longest to debug, mitigate, and fix. However, our risk
management plan prevailed in the end, and we were able to fix
most if not all issues we encountered.

IX. ETHICAL ISSUES

One of the primary potential ethical issues we encountered
is its potential unfriendliness to people with children. Our
concern was that children would get their arms stuck in the
robotic arm and get dragged to the grill. Our intention was
never to cause any bodily harm or injury to the users, to help
create a more fun experience for those involved. Our solution
involved tweaking some aspects of the design. For instance,
the computer vision algorithm was trained in such a way that it
avoids recognizing human arms as meat. The idea behind this
is to be sure that the arm grabbing a human in an accident is
not the cause of the software malfunctioning. Our next
challenge involved the robotic arm assembly itself. Children
are nosy creatures and have a tendency to grab things even if
they are dangerous. Potential pain points include the hot arm
claw and the exposed robotic arm body. We solved this by
covering most of the arm in a sleeve that removes most of the
potential danger areas for a child to touch. We also designed

the arm in such a way to operate over a hot surface of a grill
without malfunctioning, and the arm claw should not reach
dangerous temperatures.

Unfortunately, there are not a lot of ways to relieve a
situation where a claw accidentally grabs someone’s arms. The
claws have a necessarily strong grip to counteract the softness
and slipperiness of the meat, and the forceful opening of the
claws breaks the servo motors. Furthermore, there is no
override while the arm is in the middle of an action. However,
we consider this to be an inevitable part of the pitfalls of
cooking in this fashion. In the same way you can’t prevent
children from doing dangerous things such as touching a
barbeque grill during a cookout, we have to accept there are
limits to how much we can child-proof our devices without
compromising on functionality. That is the tradeoff we had to
make regarding ethics. Therefore, we advise placing meat on
the plate using tongs, and to avoid having children near the
robotic arm.

X. RELATED WORK

As mentioned in the design review, the main point of
comparison for a similar project is Hot Pot Bot. Both projects
involved making the process of cooking a dish meant to be
eaten communally from an East Asian cuisine using the use of
computer vision to help identify food and the use of a
mechanical apparatus to aid in cooking.. This similarity
persists even into the completion of the project.

XI. SUMMARY

Overall, our project aims to assist those who would like to
try delicious KBBQ, but may get overwhelmed by such a new
and different experience. To do this, we have designed a
system to automate the cooking process so that users can
enjoy the company of those they are eating with, rather than
stress about how long to leave ingredients on the grill. A robot
arm handles flipping the meat, along with moving it on and off
the grill. Using CV, we were able to reliably determine the
correct amount of time to cook the ingredients presented. In
the case that the time is calculated incorrectly, though, users
had the option to use the touchscreen UI with a camera feed of
the grill to manually tell the system to flip or remove a
specific piece of meat. In this way, we gave users an efficient
and streamlined way to enjoy KBBQ.

In the process of implementing our design, though, we ran
into several challenges. Having IK for the robot arm and blob
detection for our CV that are precise enough to fulfill our
design requirements was not easy; however, in the future with
more testing, we are confident that we will be able to find
ways to make them work at a satisfactory level. In terms of the
cooking time algorithm, we will need to perform a lot of time
consuming testing to make sure that we do not serve
undercooked or burnt meat. Despite these challenges, though,
we know we can produce an effective system that will help
anyone who would like a more stress-free experience with
KBBQ.

For the robotic arm itself, the biggest issue was mechanical

11
18-500 Final Project Report: Team B5 05/07/2022

and then electrical. Because not wanting the focus of this
project to be a mechanical design of a robotic arm, the
implementation of the physical robotic arm was done rather
quickly. However, multiple issues that took hours and days to
debug appeared because of motor issues, especially because of
the overheating of the stepper motor. In the future, I would
definitely want to take a much closer look into the mechanical
constraints of a robotic arm and the realities of implementing
an arm, which would help with the ideal mechanical version of
a robotic arm I understood and learned about heading into this
project.

Over the course of the semester, we learned that allocating
more time to integrating all of our subsystems and
communication are necessary because it was more difficult
and time consuming than we initially expected. We also
learned the importance of communication between team
members and establishing a shared goal for the duration of the
project.

GLOSSARY OF ACRONYMS

CV - Computer Vision
DOF - Degrees of Freedom
IK - Inverse Kinematics
KBBQ - Korean Barbeque
UI - User Interface

REFERENCES

[1] J. Canny, "A Computational Approach to Edge Detection," in IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
PAMI-8, no. 6, pp. 679-698, Nov. 1986, doi:
10.1109/TPAMI.1986.4767851.

[2] OpenCV. url: https://opencv.org/.
[3] YOLOv5. url: https://github.com/ultralytics/yolov5

https://opencv.org/

12
18-500 Final Project Report: Team B5 05/07/2022

ELECTRICAL SYSTEM DESIGN

13
18-500 Final Project Report: Team B5 05/07/2022

SCHEDULE

14
18-500 Final Project Report: Team B5 05/07/2022

BILL OF MATERIALS

Part Name Quantity Status Cost

Stepper Driver
DM542T

1 Borrowed -

NEMA 17 Stepper
Motor

1 Borrowed -

Lazy Susan
Bearing

1 Owned -

Wood, Nuts, Bolts Several Borrowed -

Stepper Motor
Mounting
Connector

1 Owned -

Servo Motor 35kg 1 Buy $32.99

Servo Motor 25kg 1 Buy $18.99

25T Disc Horns 1 (pack
of 5)

Buy $6.99

Robotic Claw 1 Buy $27.99

KBBQ Grill 1 Buy $29.98

Jetson AGX
Xavier

1 Borrowed -

Camera 1
USB HD Webcam

from ejfete

1 Borrowed -

Camera 2
USB HD Webcam

from ejfete

1 Bought 24.99

Power Terminal
Block

1 Owned -

12V 25A
AC-to-DC Power

Supply

1 Owned -

12V 7Ah Lead
Acid Battery

1 Buy $24.14

Boost Converter 2 Buy $14.29

Buck Converter 1 Buy $15.88

Heat Sleeve 1 Buy $10.99

3D Prints Cost:
~$50-
$100

Total ~$238.
21

