
18-500 Final Project Report: Ride-AR 5/6/2022

Ride-AR
Ethan Wang: Author, Chad Taylor: Author, and Fayyaz

Zaidi: Author

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract—A system capable of altering a city cyclist when there
is a potential danger approaching from their rear and blind sides.
This, as of, now includes both oncoming vehicles and pedestrians.
We did this through the use of a Lidar in tandem with a camera
implementing an object recognition algorithm. With the two
together, we would continuously run scannings about the space
around the biker and hope to allow ample time for the customer to
react accordingly..

Index Terms—Kinematics, Lidar, Object Detection

I. INTRODUCTION

In the US in 2019, there were over 40,000 bicycle
accidents with motor vehicles resulting in over 800 deaths. A
large number of bicycle accidents occur because they fail to
yield or see a bicyclist and end up colliding with them. While
there are many safety systems bicyclists use to improve their
visibility such as lights and reflectors, vehicles still cause
many accidents with bicyclists.

The goal of our system is to use a LIDAR and a camera to
detect cars approaching cyclists outside their field of vision to
improve their situational awareness. The system will use a
visual warning to alert bicyclists of a dangerous situation to
give them more time to avoid an accident.

First, we will use an object detection algorithm to identify
cars behind a biker in the image. Then, we will use the LIDAR
readings to determine the distances to the detected cars. This is
so we can selectively alert on approaching vehicles and we do
not accidentally detect inanimate objects such as trees and
mailboxes on the side of the road.

The most common biker safety systems are passive
systems such as lights and reflectors. While these systems
make bikers more visible to cars, they do not help bikers avoid
oncoming cars. Our system seeks to address these issues by
providing an active warning system.

There exist some commercial products similar to ours
which use radar to warn bikers of oncoming vehicles.
However, our use of a LIDAR and a camera will give our
system a much more accurate and granular level of detection
and we will be able to visually display information such as the
speed and direction of cars that are approaching. Additionally,
we will be able to use object detection to selectively alert on
cars approaching whereas radar sensors could be activated by
inanimate objects on the side of the road.

II. USE-CASE REQUIREMENTS

For our system to work effectively in detecting and warning
bikers from cars, there are a few requirements the system must
meet. Our system is mainly designed for bikers to use when
biking in more residential areas or urban environments when
the speed limit is 30mph or below.

A car traveling at 30mph travels 44ft per second so it is
imperative that our system can detect and alert bikers quickly
of oncoming vehicles.

Our system needs to be able to detect and locate cars within
a 120 degree field of view behind the biker to give the biker
effective situational awareness. We also want to be able to
detect cars up to 60m away, which would give a cyclist over
4.5 seconds to react to a car approaching at 30mph. For this
we would need a latency of <0.3s.

Additionally, we want to be able to correctly identify the
distance to the car within 1m. This is so we can accurately
display information about where a car is located relative to the
biker. Using this distance information, we can calculate the
speed of the car relative to the biker, and selectively warn the
biker based on speed.

For our object detection algorithm, we want to be able to
detect a car in the camera’s field of view with a <10% error
rate. This error rate implies the rate of false negatives which
means not classifying a car/pedestrian that is present in the
image. While we recognize that achieving 100% accuracy in
detecting cars is not always feasible, we want our system to be
as reliable as possible as it concerns human safety.

Our system needs to be portable and be able to be powered
without an external power source. As a result, our power
system needs to be able to power the system for at least 6
hours to last a day of biking.

Due to the physical profile of a bicycle, we want our entire
system to weigh less than 3 pounds and be able to be
contained in a module less than 0.5ft^3 so that it has a small
footprint on the bicycle. We don’t want the system to make
biking awkward or uncomfortable to the user.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

At the rear of the bicycle, we will mount the Slamtech
A1M8 LIDAR and the Microsoft LifeCam Studio camera.
This camera differed from the original Sainsmart camera as
we experienced issues with the CSI connector of the latter. We
pivoted and tried a new camera with a USB connection and
seemed to have better luck. The Slamtech LIDAR can detect
objects up to 12m away, sweeps at 5.5hz, and has a 360 degree
field of view. The Microsoft Lifecam Studio camera has a 75
degree field of view and supports 1080p @ 30fps and 720p @
60fps video recording. The camera will send the coordinates
of bounding boxes to a file that is read from a ROS node. This
ROS node will be published to a ROS topic that is also
interfacing with the LIDAR that collects the range
information. The integration of the ROS nodes interacting
with each other is also different from the original design
proposal. Using the data from the object detection algorithm
and the LIDAR, we developed a separate algorithm which
determines the location of detected cars and displays that

18-500 Final Project Report: Ride-AR 5/6/2022

information to the user. The information will be displayed on a
wearable display.

Figure (1). There are three main components in the design. The sensor module which will be mounted at the rear of the bicycle,
the computing and power module which takes input from the sensor module, and the display module which the biker will wear
which displays visual information regarding oncoming cars.

(Figure 2) SLAMTECH Lidar (Figure 3) Nvidia Jetson Nano

(Figure 4) Microsoft Lifecam Camera (Figure 5) Vufine Wearable Display

18-500 Final Project Report: Ride-AR 5/6/2022

(Figure 6) Battery Pack used for system

IV. DESIGN REQUIREMENTS

Based on our use-case requirement to detect and range cars
within a 120 degree field of view behind the biker, our camera
needs to have at least a 120 degree field of view and our
LIDAR sensor also needs to have at least a 120 degree field of
view.

We want to detect cars up to 60m (200ft) away to give
bikers 4.5 seconds to react to cars approaching at 30mph.

In our case, the average LIDAR with a sufficient field of
view within our budget has around 12m of range, or about 40
feet. For the sake of our project we will be implementing and
testing our system to detect cars using LIDAR within 12m as a
proof of concept, knowing that in an actual application we can
easily extend the system to detect cars at a farther distance
using a stronger LIDAR system which can detect up to 60m.

While our specific LIDAR is only limited to a 12m range,
we want our camera to be able to view cars clearly at 60m
away to give our object detection algorithm the best chance to
detect the car. The specific camera we chose is able to shoot
video at 1080p which is sufficient.

In addition to our sensors having sufficient range and field
of view, our sensors also need to sample at a sufficient rate.
Cars can move extremely quickly relative to bikers, so it is
imperative that our sensors have a fast sampling rate.
Therefore, we want our camera to capture frames at 30fps.
Taking frames at 30fps would allow us to see a car in the
image in 0.03s. This level of granularity is overkill for our
application, but most cameras by default capture in 30fps or
60fps, so this requirement is sufficient.

Our specific LIDAR is limited to 5.5hz (5.5 sweeps per
second) which is sufficient for our testing purposes but in a
practical application we would need a LIDAR with a faster
spin rate. The LIDAR does not need to capture at 30hz, but a
spin rate of closer to 10hz would allow us to detect changes in

distance every 0.1s, which equates to about 4.4 ft for a car
traveling 30mph and would be sufficient for our use case.

We want our warning system to be able to trigger within 0.3
seconds. This includes the object detection algorithm finding
the bounding boxes of cars and people, sending to the ROS
publisher node, the ROS node publishing to the topic, the
LIDAR node reading from the topic and using the coordinates
with the LIDAR measurements to draw rear view. The bulk of
the computation time is the object detection algorithm. We are
experimenting with different algorithms, but one algorithm we
are looking at is the lightweight YOLO v3 algorithm. We want
to optimize our system and algorithm for quick throughput and
little to no latency that will allow for cyclist

V. DESIGN TRADE STUDIES

A. Design Specification for object detection algorithm
The YOLO object detection algorithm is orders of

magnitude faster (45 frames per second) than other object
detection algorithms. This is because of how the YOLO
algorithm functions compared to other algorithms. The
limitation of the YOLO algorithm is that it struggles with
small objects within the image, for example it might have
difficulties in detecting a flock of birds. This is due to the
spatial constraints of the algorithm. This may have caused
some issues if a car is far behind but speeding towards the
cyclist, we would prefer to alert the cyclist as early as
possible in order to give the cyclist enough time to avoid a
potentially dangerous situation. This is why we are also
planning to experiment with the SSD algorithm as it detects
smaller objects with more accuracy than the YOLO algorithm.

The YOLO algorithm has multiple different versions for
different usage. Looking online, people who have
implemented the YOLO algorithm on the Jetson Nano seem to
struggle with frame rate. For example, with YOLO v3
implemented, many users were able to get 1-2 fps. However,
there is another version made specifically for this reason to
run more naturally for devices such as the Jetson Nano. This
version is called tiny-YOLO. Many people who implemented
this version were able to achieve speeds of 10-15 fps. There is
also an implementation already done for the Jetson Nano
called JetsonYolo which is an implementation of Yolov5. We
also implemented these versions ourselves for
experimentation.

18-500 Final Project Report: Ride-AR 5/6/2022

(Figure 7) Accuracy and detection speeds of different
Real-time detection algorithms

The image above contains detection and accuracy speeds of
different algorithms and versions on the famous COCO
dataset. As you can see Tiny-YOLO is much faster than the
other larger versions but is less accurate because of this. s.

We also tried the YOLO algorithm along with the TensorRT
package instead of darknet as this was recommended by many
employees at Nvidia which apparently can get you even more
fps on the Jetson Nano. We tested with both packages and see
which would be better for our use case in terms of accuracy
and speed. The main limitation for this design specification is
the processing power of the Jetson Nano to compute all the
detections in real-time.

After the implementation and testing of the aforementioned
cases, specifically the use of the YOLO v3.v4, v5, algorithms
with the Darknet or TensorRT packages, we found that
TensorRT packages were not working and that v3 was not as
accurate as we wanted to the system to be. Not only this, the
v5 algorithm was rather large and took up too much
computing time. From this, we decided to choose the YOLO
v4 algorithm with the Darknet packages as it allowed for good
accuracy, computing time, and compatibility.

B. Design Specification for Object Distance Mapping
Through our design process, we were trying to decide on

the best hardware pieces that could map out the surroundings
of the blind spot of the driver and provide accurate and precise
readings.. Through this discussion, we discussed the use of
Radar, Ultrasonic, and Lidar.

An ultrasonic sensor provides a cheap way of mapping out
the surroundings. It does not require a contact to travel to the
surface interface and back. They can be transmitted through
other mediums such as air. This, though, does not outweigh
the massive limitations that it presents. Ultrasonic needs
constant temperature as well as lack accuracy and precision.
The sound waves must be reflected in a straight line which
means the reflective surface must be flat. In our case, the
surface is constantly changing due to the motion of the cyclist.

Because of this, there is a clear indication that ultrasonic
mapping is not viable and will not allow for clear or accurate
readings.

Radar was the clear competitor against Lidar. Changes in
the density, acidity, or viscosity of the fluid (or air) do not
affect the accuracy of the measurements, as compared to the
Lidar that uses light waves as a medium and is easily affected
by the medium itself (such as temperature, humidity, and
moisture). The setbacks come with the accuracy and imaging.
LiDAR uses light signals that work in smaller wavelengths
that can allow for 3D imaging and more accurate and precise
mappings, which we need to ensure we do not receive a
significant amount of false positives.

As we wanted to ensure clear measurements and precision
in our design, we decided to spend a bit more on our system as
well as not care about different changes in the environment.
This is why we chose LIDAR in our implementation.

C. Design Specification for Alerts
We decided to use visual alerts with HUD glasses instead of

audio alerts with a speaker. This is because our use-case is
focused on city cyclists. In the city, it is typically noisier than
on the outskirts, hence, audio alerts can be misinterpreted for
other sounds from the surrounding environment. Therefore,
we decided to use visual alerts instead.

VI. SYSTEM IMPLEMENTATION

One aspect of our design that has changed since the design
report is that we had to use a different camera due to issues
integrating the SAINSMART camera. Instead, we used a
microsoft webcam which had 720p resolution and a 75 degree
field of view, instead of the +120 degree field of view we were
trying to achieve.

The Slamtech LIDAR and the Microsoft camera coupled
together serve as the peripheral of our project for detecting
cars and pedestrians and also the distance from them. The
object detection isn’t being done on the camera but instead
will be done on its output. The camera and LIDAR sensor
will be connected to the Jetson Nano via a USB connection.
With this we will be able to receive input from the camera and
begin processing.

As for the structure of how the camera and lidar sensor will
be paired, the lidar sensor will be placed as close to the camera
as possible right above it so as to line up the 0 degree (center)
of the lidar with the camera so they are both facing the exact
opposite of the front of the bicycle. The Jetson along with the
lidar sensor and camera was encased in a cardboard box. The
design can be seen below:

18-500 Final Project Report: Ride-AR 5/6/2022

(Figure 8) Rear View of the Ride-ar System

(Figure 9) Front View of Ride-ar System

Initially we had planned to 3d print the casing, however this
proved to be difficult because of the planned dimensions.
However, for the sake of proof of concept we improvised a
housing module out of a cardboard box that would be similar
to the actual housing.

The different components of our system will communicate
using ROS.

A. Object Detection Algorithm
For processing the images received from the camera, the

input will be processed with OpenCV where we can apply our
real-time detection algorithm. After testing different object
detection algorithms such as YOLOv4 and YOLOv3, we
ended up choosing the tiny YOLOv3 algorithm as it gave us
the highest fps given the limited hardware of the Nvidia
Jetson.

Both these algorithms are also able to detect multiple
objects, however, they can be configured when running these
software so as to only detect specific objects. To satisfy our
use-case requirements, these real-time detection algorithms
will only be focused on detecting cars and pedestrians.

We modified the code inside the YOLOv4 code to output the
bounding box coordinates of detected cars and pedestrians to a
file. This information will be used by the Kinematic
Algorithm to determine how far away the detected objects are.
A ROS publisher node periodically reads from the file and
publishes the bounding box coordinates on the “car_pos”
topic. Then the Kinematic Algorithm subscribes to this topic
to receive the bounding box coordinates.

B. Kinematic Algorithm
The LIDAR itself is already integrated with ROS. The

LIDAR publishes its range data to the “scan” topic which the
Kinematic Algorithm subscribes to to receive the data. A time
synchronizer is used which synchronizes the messages
containing the range data from the LIDAR and the bounding
box coordinates from YOLO.

The raw LIDAR data includes:
● minimum_angle (starting angle)
● angle_increment (difference in theta between

measurements)
● a list of ranges

To determine the range to an object at a specific angle theta
to the LIDAR, index into the range list by dividing theta by
the angle_increment and rounding to the nearest integer.

Since we know the camera has a horizontal field of view of
75 degrees, we can linearly map each pixel along the x axis in
the image to a specific angle. For example, a pixel that is 100
pixels away from the center of an image if the image size is
1000 is 100/1000 * 75 = 7.5 degrees from the center.

We use the coordinates of the bounding box of a detected
object to calculate the angle to the left side of the object and
the right side of the object. Then, using the angle
measurements, we check the slice of the range list in the
LIDAR between the left and right angles of the object. If any

18-500 Final Project Report: Ride-AR 5/6/2022

of those ranges are below a certain detection threshold, we
display them on the GUI.

The horizontal pixel coordinates of the bounding boxes
determine the x coordinates of where the warning indicator is
displayed, and the y coordinates are determined by the range
to the object by the LIDAR. The yellow circles represent
people, and the red squares represent cars detected.

(Figure 11): GUI displaying the cars and people detected in
frame

The GUI is then output via HDMI from the Nvidia Jetson to
the HUD glasses.

VII. TEST, VERIFICATION AND VALIDATION

A. Results for YOLO Algorithm Error Rate
For the accuracy of the predictions, we desired a <10%

error rate with which the error rate implies the rate at which
cars or persons are misclassified as something else. For our
tests, this was very simple to do with people as we set up the
camera in the lab and walked back and forth through the
camera’s view and printed the prediction in the terminal as
well as the accuracy of that prediction. We would also try
facing different angles such as, our back to the camera,
sideways and in front. We did 20 trials of this test and the
algorithm did very well with predicting people. It was able to
classify people correctly every time with an average accuracy
of 98%. This would mean a 0% error rate which would pass
our use-case requirement of <10% error rate.

For cars, we initially downloaded a Youtube video of a
highway traffic camera and ran the YOLO algorithm on this.
Cars that were closer to the camera had a higher accuracy than
cars that were farther away, however, even far away the
algorithm was still able to accurately predict that the object
was a car. Testing with a live feed proved to be more difficult
as our system was initially bound to the lab. For these tests,
we printed out large pictures of cars at different angles and
held them in front of the camera. We would move around and
bring the car closer to and further from the camera. Just as
before, as we brought the picture further the accuracy would
decrease, but it would still accurately predict the car as an

object. Out of 20 trials, the car was able to be predicted
correctly with an average accuracy of 80%. This would also
mean a 0% error rate which would pass our use-case
requirement of <10% error rate.

Also this error rate could be seen as after the different
subsystems were fully integrated, and the lidar data was also
used, the correct drawings would be made each for a person
and a car.

B. Results for Latency Use-case Requirement
We tested the latency of the entire system by first

calculating the latency of the YOLO subsystem. This was
done by using the value of the average FPS of the system
whilst predictions were being made on the camera feed. The
time taken for the predictions to be made on each frame was
calculated by doing 1/(Average FPS).

After this we found the latency of the GUI update by using
python timers within the script. We were able to find an
average of 20 times it takes to update the GUI being displayed
on the HUD glasses. This average was used as the latency of
the GUI update. For the lidar, there was negligible latency so
this was not considered in the calculations.

The total latency was calculated by adding up the latency
found above for each subsystem. The total latency of the
system was found to be 0.43 seconds. The majority of the
latency was from the YOLO algorithm itself as it was found to
be 0.4s. This exceeded our desired latency which was 0.3s,
however, because we were using a Jetson Nano, which has
much less processing power, this result was anticipated. For
example, if a Jetson Xavier was used, the YOLO algorithm
could have been run much faster to achieve much less latency.
Also because the latency was so high, we could see issues
while we were testing on cars driving by which will be
discussed next.

C. Results for Alert Design Specification
For the visual alerts, we tested this by having people walk

across the camera, closer to and further from the camera in the
lab. This worked really well as you could see the yellow
circles being drawn corresponding to the number of people in
range of the lidart and being predicted by the YOLO
algorithm. The only issue with this is sometimes, the YOLO
algorithm would draw 2 bounding boxes around a single
person, thinking the person is more than one, and because of
this on the GUI would draw two yellow circles almost
overlapping each other. Below is an example of people being
drawn on the GUI.

18-500 Final Project Report: Ride-AR 5/6/2022

(Figure 12) GUI with Prediction of a Person

For cars, we were able to get an external power supply that
could supply enough current to the system. With this, we took
the system outside and tested it on cars in the parking lot. We
tested it on cars driving by and parked cars. It was able to
accurately draw the red boxes we intended for cars, however,
because of the high latency, we would see problems where for
cars driving by quickly, it would go by really quickly on the
GUI and not show the box moving smoothly but instead flash
in and out at different spots. This was anticipated because of
the high latency discussed in the previous sub-section. Also,
the lidar we were using for this system was a lidar intended for
indoor use only, so we believe while using outside, the
sunlight was interfering with the lidar detection. Below is an
example of a car being drawn on the GUI.

(Figure 13) GUI with Prediction of a Car

D. Results for Power Use-case Requirement

With the battery used for our system which was able to
provide 5 V, 3 A is sufficient to keep the Jetson Nano powered
and running functionally. We tested this by letting the power
supply power the Jetson with both the YOLO algorithm and
Lidar script running from 100% to 1% and timed this. With
this power supply fully charged beforehand, it was able to
keep the entire system running for ~3 hours. This fails our
use-case requirement of 6 hours, however, there are definitely
batteries that could power the system for this long and even
longer. The power supply purchased for this project just about
fit the budget and hence why we chose it.

E. Results for Weight and Size Use-case Requirement

The entire system all together was weighed to be 2.89
pounds with a balance from a physics lab which is <3 pounds
and passes this use-case requirement. The dimensions of the
box were measured with a ruler to be 0.5ft x 1ft x 0.7ft. The
volume of the system would thus be calculated to be 0.35 ft^3.
This passes our use-case requirement of being <0.5ft^3 so as
to make a small footprint on the bicycle.

VIII. PROJECT MANAGEMENT

A. Schedule
This is a basic overview of our schedule. Please see the

Gannt chart below for a fully laid plan of our timeline. Our
project has several different phases that are dependent on one
another, the first being the initial/setup phase. Here, we are
working towards setting up the system and ensuring that all
parts are ordered and can function with one another. Phase two
involves implementing the core part of our design. We intend
here to implement the Kinematics algorithm, connect the Lidar
and camera to the Jetson, and develop the circuit that

18-500 Final Project Report: Ride-AR 5/6/2022

encompasses everything including the glasses. By the end of
phase two, we should have a basic MVP that meets the basic
framework of our guidelines. The last phase, phase 3, would
be our testing phase. Here we would iron any wrinkles without
design and ensure that all use requirements are met. We intend
this phase to be the most extensive as the majority of our
system can only be refined through a significant amount of
practice data.

B. Team Member Responsibilities
We intended to have the work and responsibilities of our team
members evenly split with one another. They are divided and
assigned mainly through the ECE area as well as playing to
each of our strengths and experiences. Each member is
responsible for two main tasks, roughly one for the first half
and second half of the project.

1) Fayyaz was responsible for integrating the camera
and Lidar together with jetson such that they can
speak to each other and other Jetson oriented tasks as
well as designing and implementing the circuit to
integrate glasses display when the algorithm
determines danger. He also designed the ROS node
and system such that the camera and LIDAR data
were able to retrieved in a central script that
effectively drew our the rear view

2) Ethan was responsible for designing an effective
module to cage the Jetson, Lidar, and Camera and
attach it to the bike. He will also be responsible for
configuring lidar sensors to ensure that we read
precise measurements. From this as well with the
data from the camera, he built the algorithm that drew
the respective figures on the canvas depending on
their bounding box coordinates and LIDAR
measurements.

3) Chad was responsible for installing and implementing
a computer vision algorithm to detect cars. This
entails detailed research on the benefits and trade
backs of different algorithms and testing several to
determine the best response and feedback. He also
worked with Fayyaz to design the ROS node and
system such that the camera and LIDAR data were
able to retrieved in a central script that effectively
drew our the rear view

C. Bill of Materials and Budget
Please see Figure 14 for a list of equipment we used and

their respective costs. We ended up using all the components
that we ordered.

What differed from the original Bill of Materials, as
indicative from our final implementation, is instead of using
the Sainsmart camera, we opted to use a Microsoft camera
provided for us by Professor Savvides. Not only this, but we
ordered the heads up display glasses. This was mentioned in
our initial design report but was not bought until later.

D. Risk Management
For our risk management, whilst testing the system, we

noticed that the lidar processing did not add much to the

systems performance and that it was mainly the YOLO
algorithm that would cause the entire system to heat up.
Instead of getting a cooling fan, we were able to overclock the
Jetson Nano by maxing the processing power that Cuda uses.
With this, we were able to assign more processing power for
the YOLO algorithm and the heat sync alone was enough to
dissipate the heat produced and keep the overall system
relatively cool.

IX. ETHICAL ISSUES

With any ethical issues, there is some at play in our project
as we are dealing with the idea of safety and having users
placing trust in our system to keep them safe and out of
danger. The most possible edge cases for our product and what
could cause any ethical issues is seen when there is a car or
person at a certain angle or speed that might not register on the
system. The cyclists using our system would be the ones
affected adversely by these edge cases. If the cyclist decided
to move in the way of the unseen obstruction, there could be a
highly dangerous accident that would be our fault. To mitigate
the risks of this obviously improving our system such that we
can catch these edge cases to ensure there are no cases where
the cyclist is not aware of what is behind them. The system
should also be ideally reviewed by professionals to ensure that
our timing is sufficient with standard cycling practices.

The other potential ethical issues arise with the use of our
camera. As we are using a camera to recognize persons and
cars, both of which are kept private by a number of the
population, there are issues where our system could be
maliciously attacked. As our Nano does have internet
capabilities and if someone decides to connect it to a network,
it could be tapped in to and an attacker can see the camera
feed. This could expose the privacy of the user or those
surrounding the user and where they are going and even where
they might live. To mitigate this, we should remove all
network capabilities within our system such that this could not
happen. We could also transition to a preinstalled software
system that does not require a Nano such that there is no
network presence at all.

Lastly, in relation to the first issue, there has been clear
research done in the field of recognition theory about the
individuals with darker complexion and how they are not as
easily identified when trained on certain datasets. We should
look into the datasets and conduct our own research to ensure
that this is not an issue and there is not a problem where
individuals like this are not being detected within our system.

X. RELATED WORK

Regarding other related works, there are quite a number of
projects that are similar to ours. The major differentiation
between our project and the others is our incorporation of both
Lidar and Object detection.

The majority of works only use Lidar systems. An example
of this is a work done by University of Michigan-Dearborn
professor Fred Feng, who developed an application for lidar
that uses a lidar to develop a 360 degree view of a biker’s
surroundings. A retail product that is somewhat related to ours

18-500 Final Project Report: Ride-AR 5/6/2022

is the Garmin Varia RTL515. It is a stationary one dimensional
radar that alerts cyclists up to objects up to 140 m away. The
benefit of both these products versus our own is through their
accuracy of readings and depth of what they could accomplish
considering their lack of other systems on board. What they
are missing is precision as they are the only system on board
and could potentially allow for false positives given no other
methods to check the details of their surroundings.

There are also other systems that try to lessen accidents for
bikers through other methods. NavTech has developed a birds
eye detection that maps out roads in real time using satellites.
Through this, they can indicate to bikers if there is a potential
danger coming towards them. Obviously, there is a clear
differential in resources available and we cannot achieve the
same kind of efficiency as this.

XI. SUMMARY

In summary, our project hopes to ensure a safer biking
experience for city cyclists. This is through a system that uses
object detection and Lidar implementation to develop a rear
view picture for the biker and dictate whether or not a danger
is approaching. Through this, we can reduce accidents and
maybe even save lives. Overall, we achieved what we wanted
to get done with the available resources and use-case
requirements we defined initially. We are limited to the
hardware that was available to us as If we had more time, we
would want to refine the algorithm such that there would be a
bit more precision on the shape of the object on the camera
view. If one would want to continue use in the future, with
more money and resources, much less latency could be
achieved with a better processor and a further range with a
better lidar. You could also achieve a better accuracy by using
the non-tiny version of the Yolo detection algorithm which has
much higher accuracy but less speed.

Throughout this process, there were a number of key
lessons learned. The first being that integration takes time. It
might be easy to believe that once you have all the
subcomponents working that bringing them together might be
relatively easier but this is not the case. As you are probably
working on something this unique for the first time, there are
always going to be some challenges regarding the interaction
between all of your parts. Putting time in your schedule to
learn about how your submodules work together would be
incredibly beneficial.

Another important lesson learned is to account for bugs and
errors. As projects can be ambitious and parts could not work
as intended, making sure to account for these allows for ease
of mind and not frantically trying to change your system and
causing more issues. In tandem with this, learning how to
pivot when something is not working or you are stuck is
incredibly helpful. Without us changing to the new camera, we
are certain that we would not have found the bug in time for
the demo.

Keeping these lessons in mind, you can ensure that your
team is not frantically scrambling to get your project working
and you have clear foresight on what you are able to do and
accomplish

GLOSSARY OF ACRONYMS

HUD - Heads Up Display
GUI - Graphical User Interface
ROS - Robot Operating System
YOLO - You Only Look Once (Algorithm)

REFERENCES

[1] there, S. C. H. (2021, March 8). Yolo v3 - install and run Yolo on Nvidia
Jetson Nano (with GPU). Pysource. Retrieved March 4, 2022, from
https://pysource.com/2019/08/29/yolo-v3-install-and-run-yolo-on-nvidia
-jetson-nano-with-gpu/

[2] Nishad, G. (2021, February 26). You only look once(yolo): Implementing
yolo in less than 30 lines of Python Code. Medium. Retrieved March 4,
2022, from
https://medium.com/analytics-vidhya/you-only-look-once-yolo-impleme
nting-yolo-in-less-than-30-lines-of-python-code-97fb9835bfd2

[3] Gandhi, R. (2018, July 9). R-CNN, fast R-CNN, Faster R-CNN, YOLO -
object detection algorithms. Medium. Retrieved March 4, 2022, from
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-
detection-algorithms-36d53571365e#:~:text=The%20bounding%20boxe
s%20having%20the,than%20other%20object%20detection%20algorith
ms.

[4] Lidar vs radar: Detection, tracking, and imaging. wevolver.com. (n.d.).
Retrieved March 4, 2022, from
https://www.wevolver.com/article/lidar-vs-radar-detection-tracking-and-i
maging

[5] Person. (2019, March 18). Power Supply Considerations for Jetson
Nano Developer Kit. NVIDIA Developer Forums. Retrieved March 4,
2022, from
https://forums.developer.nvidia.com/t/power-supply-considerations-for-j
etson-nano-developer-kit/71637

[6] Difference between Yolo and SSD. GeeksforGeeks. (2021, July 18).
Retrieved March 4, 2022, from
https://www.geeksforgeeks.org/difference-between-yolo-and-ssd/

[7] Getting started with Jetson Nano Developer Kit. NVIDIA Developer.
(2022, January 29). Retrieved March 4, 2022, from
https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-de
vkit

18-500 Final Project Report: Ride-AR 5/6/2022

(Figure 14) Schedule and Tasks

18-500 Final Project Report: Ride-AR 5/6/2022

(Figure 15) Bill of Materials

