
18-500 Final Report: Team B3 FreshEyes - May 7, 2022 Page 1 of 12

FreshEyes
Authors: Alex Strasser, Oliver Li, Samuel Leong

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—FreshEyes is a smart fridge attachment
and interface system that tracks fresh produce using
computer vision and AI. Our user-friendly and inte-
grated system can be placed on the door of any fridge,
and users simply scan fruits and vegetables by placing
it in front of our smart camera system. Our intel-
ligent interface additionally prompts the user about
potentially-expiring produce, and will even suggest
some recipes that utilize expiring foods.

Index Terms—Computer Vision, Databases, Inven-
tory Tracking, Mobile App, Neural Networks, Smart
Fridge

1 INTRODUCTION

According to the Environmental Protection Agency [1],
the United States alone wastes approximately 40 million
tons of food per year (approximately 219lbs per person).
Based on the weighted median of fruit and vegetables per
pound calculated by the US Department of Agriculture [2],
this amounts to approximately 219 × $1.50 = $328.50 of
money wasted per person per year! In households, most
food is thrown away because they are forgotten and left
to rot or expire in fridges. We aim to address this is-
sue with our solution, FreshEyes, targeted at households
who shop for fresh produce (such as eggs, milk, fruits, veg-
etables etc.). Our proposed user-friendly and integrated
system can be placed on the door of any fridge, and com-
bines computer vision with an intuitive user-interface sys-
tem to non-intrusively track fresh produce going in and out
of the fridge. The intelligent system prompts the user about
potentially-expiring produce via in-app and email notifica-
tions, and will even suggest some recipes that utilize said
foods.

2 USE-CASE REQUIREMENTS

Given the problem of households discarding expired
produce, we aim to reduce the amount of food waste per
person by 1 fruit and vegetable a week. This would result
in approximately $1.50 saved per week (the approximate
cost of a produce item), and approximately 25 pounds of
food waste per year.

To this end, assuming a person buys 7 items in a week,
we want to only misdetect, on average, one of those items.
This means we need an 85% scanning accuracy. We also
want to be able to differentiate at least 10 items, since this
will, at bare minimum, cover the common items you would
buy over a couple weeks (more than 7). We want each

scan to take 2 seconds on average to show up in the user
interface (UI), and each UI interaction to take 2 seconds
on average. This results in a total of 28 seconds per week
spent scanning.

Additionally, since this product is meant to be a modu-
lar system that can be added onto your existing fridge, we
want it to be easy to install and uninstall. We do not want
to require any permanent modifications to the fridge for in-
stallation, and both installation and uninstallation should
take under 2 hours. In order to be time effective for the
user, we will also require less than an hour per year (on
average) spent maintaining the system (including changing
batteries, untangling cables, etc) so that the interaction
with the system is hassle and frustration free.

Figure 1 below summarizes the cost and time justifica-
tion of our use-case requirements: Using the above met-
rics, we calculated an estimated cost of 30 seconds for 7
items (2 seconds each for scanning and UI interactions) and
saving an average of $1.50 per week. However, because
the median salary of workers in Pennsylvania is approxi-
mately $0.50/min [3], we have an estimated user savings of
a $1.25 per week. While this might not seem like much, this
amounts to $65 a year, and also helps save the environment
by reducing food wastage!

Figure 1: Visual Summary of Use-Case Justification

3 ARCHITECTURE AND PRIN-
CIPLE OF OPERATION

Our architecture consists of 4 primary components or
subsystems, whose relationships are briefly summarized in
Figure 2 below, and in greater detail in Figure 10.

1. Computer Vision System (CV)

2. Database System (Back-End)

3. User Interface (Front-End)

4. Integrated Fridge-Attachment System

18-500 Final Report: Team B3 FreshEyes - May 7, 2022 Page 2 of 12

Figure 2: Summary of Architecture. Detailed diagram in
Figure 10 below. Big rectangles represent key subsystems.
Smaller, colored rounded rectangles represent key actions
or components, with the uncolored rectangles above them

being the implementations or hardware used.

3.1 Computer Vision System (CV)

The computer vision (CV) system’s main job is to cap-
ture, detect and classify the items presented to it by the
user. Because we want a seamless scanning experience that
minimizes button presses, our CV algorithm consists of a
Finite-State Machine (FSM) that uses white-background
and motion detection to detect the current state of opera-
tion (e.g. “waiting for item”, “item on platform”, “waiting
for removal of item”). Notably, this FSM is what allows
the user to simply place a fruit or vegetable on the platform
and have the system automatically detect and predict its
type — no button presses are needed to initiate prediction.
Once the user removes fruit of the platform, the system
goes back into BACKGROUND state and awaits the next item.
Crucially, various robustness checks are in place to ensure
that our FSM does not enter a limbo state because of
unexpected behaviour. For example, even if the user re-
moves items one by one from the platform (instead of all at
once), the FSM will continue to stay in the POST PREDICT

state until all the items are removed from the platform.
Similarly, the algorithm is robust against lighting changes
and hand swipes (for example to play with the tablet). A
detailed diagram of the FSM is shown in Figure 3 below.

The main workhorse of the CV system is the quantity
detection and neural-network-based classifier, which is trig-
gered once the FSM enters the DO PREDICT state. Here, our
algorithm will classify the image of the fruit and vegetable
using the Convolutional Neural Network (CNN) outlined
in Section 6.2 below. In parallel, the CV system performs
quantity detection, where the number of items on the plat-
form is detected using background thresholding, morphol-
ogy operations and floodfill. The CNN will then spit out a
set of top 5 predictions, which is then sent over, along with
the detected quantity, to the Database System (Back-End)
via our self-defined Application Peripheral Interface (API).

changeDetected (Δ)
Computer Vision

FSM
mostlyWhite (WH) =

(# obj. detected == 0)

BACKGROUND
!WH || Δ

ROBUST_CHK_1

cnt--

Δ

!Δ &&
cnt == 0

R

WH

doPredict()

doPredict()

!WH

POST_PREDICT

AWAIT_STABLE

_PRED

cnt=2

AWAIT_STABLE

_POST_PRED

cnt=2

ROBUST_CHK_2

cnt--

Δ
Δ

WH

!Δ &&
cnt == 0

!WH

Figure 3: Detailed architectural diagram for Finite State
Machine (FSM) of Computer Vision (CV) System

3.2 Database System (Back-End)

The database system is the backbone of our entire sys-
tem, processing the requests from the Computer Vision
System (CV) and the User Interface (Front-End), and send-
ing relevant information over to the User Interface (Front-
End) where it is presented in a user-friendly way. Con-
versely, user input such as manual quantity adjustments
are sent from the User Interface (Front-End) to the back-
end, where it is processed and stored. The back-end is
responsible not just for data retrieval and storage between
the database, but is also responsible for processing the data
before sending it over the User Interface (Front-End). In
other words, the User Interface (Front-End) should not
need to do any further calculations before the data can
be displayed. All interactions between the back-end and
the other aspects of the system will be implemented as an
API endpoint, allowing for maximum modularity and even
allowing for alternative implementations altogether.

3.3 User Interface (Front-End)

The user-interface (UI) serves 2 primary purposes: al-
low the user to interact with the scanning system, and
providing value to the user by sending them reminders of
expiring items and potential recipes making use of said
produce. In order to do this, it communicates with the
database back-end primarily via Websockets, sending in-
puts by the user and retrieving processed information from
the Database System (Back-End). Specifically, the scan-
ning user-interface allows users to add/remove items from
the fridge, and confirm/modify results of a CV scan; the
calendar and reminder app interface allows the user to
view their expiring produce and any intelligently-suggested
recipes utilizing them.

18-500 Final Report: Team B3 FreshEyes - May 7, 2022 Page 3 of 12

3.4 Integrated Fridge-Attachment System

We then incorporate all of the crucial software and hard-
ware components detailed above onto a large integrated
board, which holds our webcam and tablet, as well as a
foldable platform for the user to place their items for scan-
ning. Using low-cost 3M Velcro Command StripsTM, Our
integrated board allows for the user to easily install (or
uninstall) our system as a module on any fridge door —
all in less than 5 minutes! Notably, we should not for-
get that the server back-end and the user’s mobile device
(if they so choose to use our application on it) is part of
the larger integrated system as well; both hardware and
software are integrated together seamlessly for an optimal
user-experience. An annotated image of our physical inte-
grated system is depicted in Figure 4 below.

Figure 4: Annotated Picture of our Integrated
Fridge-Attachment Module

More details on the implementation of said architecture
can be found in Section 6 below.

4 DESIGN REQUIREMENTS

Most of the justification for the design requirements is
found in Section 2.

As noted in Section 2, We need our CV segmentation
and classification system to detect and classify objects with
more than 85% accuracy, if we are to achieve the desired 6
out of 7 item matches. This classification time, plus pro-
cessing time on the database should take under 2 seconds.

In order to support the CV system effectively, which
requires a 100× 100 RGB image as an input to the neural
network, we need an RGB camera that has a minimum res-
olution of 400× 400, with a picture fetching time of under
250ms to adequately satisfy timing constraints.

The back-end/database system must be very robust so
that it does not require any human interaction. It must
be able to handle up to 3 clients simultaneously with no
performance degradation. It should not lose track of any
data.

The user interface needs to be very responsive. It should
have a response time of under 200ms for all simple oper-
ations (changing the mode or quantity) and under 750ms
for complex operations (submitting a modified scan to the
backend). This 750ms response time is also a requirement
for the backend.

Additionally, to facilitate ease-of-use, we would like our
integrated system to be installed and uninstalled within
half-an-hour (i.e. 30 mins).

As we present in Section 7 below, we comfortably meet
our requirements, and even exceeded some of our expecta-
tions, such as the quick installation time.

5 DESIGN TRADE-OFF STUD-
IES

5.1 Barcode Scanner

One of our initial ideas was to use a barcode scanner
to scan items, as this makes detection a lot easier. This
is, after all, how object detection is done in grocery stores.
However, this requires a large barcode database and gen-
erally works very poorly for the produce items we want to
generally track. Bunches of cilantro, for example, very fre-
quently do not have a barcode and rely on a product code
at the grocery store.

Additionally, this can be very difficult for the end user.
It takes time to find the barcode and orient the item such
that the barcode can be read. This would not be able to
meet the 2 second average scan time, even though it would
pass the accuracy requirement.

5.2 BLE / NFC tags

This design would also make the detection and track-
ing of items much easier. One of the main issues with
the tracking system was detecting when items would leave
and return to the fridge, instead of a new item just be-
ing bought. However, this requires associating tags with
produce items and offloads all the classification processing
to the user. This ends up being a lot more work for the
user and would likely meet the 2 second average scan time,

18-500 Final Report: Team B3 FreshEyes - May 7, 2022 Page 4 of 12

but would require enough set up and pre-scan work that it
would be ineffective.

Additionally, the tags themselves are not very reusable
and the cost ends up being prohibitively expensive. At
around $0.50 per tag, and 7 items per week, we would spend
$3.50 on tags and only save $1.50 on groceries. Tags could
theoretically be reused, but the stickiness won’t last and
the tags would not be able to track items being returned
vs purchased (determining whether the tag is on a new item
or old item).

5.3 Cameras Inside the Fridge

Our current solution involves an external scanning-
based approach where the user manually scan the items
with a camera mounted outside the fridge. An alternative
solution that we considered was to have cameras inside the
fridge that would detect and classify the items placed inside
the fridge. This would have been an ideal solution for user-
intuitiveness because it does not disrupt the normal work-
flow of one’s normal loading/unloading of groceries. How-
ever, this solution suffers from 2 major issues: firstly, oc-
clusions are almost unavoidable since people tend to stack
items in the fridge, constantly rearrange items within the
fridge, and there is no camera angle for which all items
can be seen properly; secondly, cameras and other sensors
do not usually perform well in constant cold, and having
a modular system would either need external wiring that
would affect insulation, or battery-operated systems that
would need constant recharging or replacing. To resolve
Problem 1, one could use multiple cameras, but this would
increase complexity (since we would need to detect which
objects are seen in both cameras) and still does not resolve
issues regarding occlusions from stacking or objects hidden
inside plastic bags. Problem 2 can potentially be resolved
or mitigated if modularity was no longer a requirement: the
cameras could be custom-made to withstand cold temper-
atures, and wiring integrated as part of the fridge design
itself, but this might be a prohibitively expensive thing to
do, and would require users to buy an entirely new smart
fridge. This is wasteful design and would be counterpro-
ductive with our goal of saving cost and reducing environ-
mental impact.

5.4 Fully Local System

We also considered implementing a fully local, non-
Internet facing version of our proposed system. Such a
system will bring the computer vision system, front-end,
the back-end, and the database into one local monolith.
While such a system will be significantly less complex and
also avoids the round-trip time latency between the CV
system, back-end, and the front-end, it also means fewer
possible features and less room for future expansion.

This project was built with the ability to access the
front-end from any Internet connected device in mind. For
example, a user will want to look up their fridge inventory

while they are doing their grocery shopping. A fully local
system will mean that such accesses will not be possible.

Furthermore, we also designed the project with a view
towards future expansion and stretch goals. One such fea-
ture we envisioned is a shopping list that can be shared
among family members, where each family member can
view what is available in the refrigerator from any Internet
connected device, and add their own items to a shopping
list. Such features are only viable in an Internet connected
system, with a front-end built upon HTML and other stan-
dard web technologies, and a separate back-end.

5.5 Heuristic-based CV Algorithms

Specific for the CV system, we considered using a
heuristic-based detector and classifier instead of a CNN-
based segmentation and classification system. In particu-
lar, we considered using a classical ORB + Bag of Words
method for detection and classification respectively. This
would allow us to potentially get rid of our white platform
setup, and make for a more intuitive experience with a ba-
sic front-facing camera that the user can hold a fruit or
vegetable up to. However, it is likely that such classical
might suffer in terms accuracy, which would then negate
any intuitiveness from the scanning process by adding on
the inconvenience of having to continually correct the al-
gorithm’s predictions. Moreover, given the advances in
learning-based CV methods, we decided that the increased
robustness and accuracy that such systems would provide
would be a better trade-off. This was also affirmed with
our initial tests on the classifier which provided us with
98% testing accuracy. As mentioned above, the only issue
is that our classifier is being trained on data with a white
background, and therefore an accurate segmentation algo-
rithm is required. However, our white platform setup (see
Figure 4) will effectively mitigate this problem, and also
allow us to use a simple heuristic-based algorithms (pixel
comparisons, thresholding, floodfill) for detection and seg-
mentation.

6 SYSTEM IMPLEMENTATION

6.1 Integrated Fridge-Attachment System

With reference to Figure 4 above, the integrated attach-
ment system has a backing made out of a piece of 6′′ × 15′′

of solid plywood, onto which our tablet and webcam setup
were mounted on. The plywood backing is designed to be
installed onto any fridge door using simple 3M Velcro Com-
mand StripTM mounting tape.

Notably, our webcam setup involves a web camera
pointing downwards towards a square platform that is made
out of 12′′× 12′′ of plywood, and spray painted white. The
white platform is necessary for the proper working of the
Computer Vision System, with more details in that section.
The placement of the web-camera and platform is crucial
for the unobtrusive use of the scanner; if we were to have

18-500 Final Report: Team B3 FreshEyes - May 7, 2022 Page 5 of 12

the camera face forward with a vertical platform (as orig-
inally designed), our users would have to awkwardly place
the fruit from above, which would be quite very obtrusive.

The plywood backing and white platforms are screwed
onto metallic folding shelf brackets which secures the two
separate pieces together. We specifically chose folding shelf
brackets because they allow the platform to be folded down
when not in use, thus allowing for a non-obstrusive design.

6.2 Computer Vision System

The computer vision system first obtains a 800 × 600
image using the webcam video feed, taking frames every
200ms. This image is then center-cropped to a size of
450× 450 to ensure a high-visibility square image that the
classifier requires. Notably, as shown in Figure 4, the web-
cam is setup such that it is pointing down towards a white
platform. Thus, we exploit this “whiteness” of the back-
ground state and use simple thresholding on the lightness
channel of the Hue-Saturation-Lightness representation of
the image in order to detect whether we are looking at the
white platform, or a potential item to be scanned. This
“white background check” (variable WH, see Figure 3 above)
is crucial for the inner working of the FSM and is an im-
portant part of the robustness checking process.

Additionally, this thresholding is used for quantity de-
tection, i.e. to detect how many objects there are on the
platform. To do this, after thresholding, we perform mor-
phology operations (erosion and dilation) on the binary im-
age, followed by floodfill segmentation, to obtain the num-
ber of objects on the platform. An example of this is shown
in Figure 5 below.

Figure 5: Visualization of Segmentation Process

However, checking for the “whiteness” of the input im-
age alone is insufficient for robust detection of an item for
the DO PREDICT state. For example, consider the case of a
hand moving into the camera’s view to place an apple (or
other item) down onto the platform; the camera is likely to
capture the hand movement instead of the apple, and will
result in inaccurate classification by the CNN. To overcome
this issue, we enforce a “stability check” in the FSM (vari-
able ∆), see Figure 3 above), where we detect motion, or

lack thereof, by checking significant changes in pixels be-
tween consecutive frames. Using this motion detection, the
FSM only triggers the DO PREDICT state if it detects motion
and the background is not white after stability (i.e. when
no more motion is detected). This should only occur when
the user places an item on the platform.

In the DO PREDICT state, the captured image is resized
to a 100 × 100 image and is sent through a ResNet50-
based [4] convolutional neural network (CNN), which will
output a set of probabilities. The top 5 probabilities and
detected quantity are then sent to the back-end via a
JSON request as part of our self-defined API, using the
https://github.com/jpbarrette/curlppcURLpp library.
The information will subsequently be displayed to the user
via the User Interface (Front-End) for confirmation (de-
fault) or correction (if any), thus allowing for an intelligent,
semi-automatic tracking process. Notably, we trained the
CNN ourselves using PyTorch [5] on a combination of the
Fruits Recognition “Silver Tray” dataset [6] and our own
self-collected data, which has a total of 16 classes of fruits
and vegetables. They including common produce like ap-
ples, oranges, tomatoes and bell peppers. The data was
collected under and augmented for different backgrounds,
lighting conditions and rotations, which allowed the algo-
rithm to very robust against different illumination condi-
tions.

Figure 6: Algorithm in DO PREDICT state. Notably,
console shows the stability checks, top 5 probabilities,
quantity detection and JSON request to our API.

After completing the scan/confirmation, the user will
then remove the fruit from the platform, and in doing so,
trigger another motion change in the CV FSM system.
Similar to the predict state, the FSM will only return to
the BACKGROUND state if a white background is detected.
This is very important because the user could be removing
items one at a time from the platform, and we do not want
the FSM to return to the BACKGROUND state prematurely

https://github.com/jpbarrette/curlpp

18-500 Final Report: Team B3 FreshEyes - May 7, 2022 Page 6 of 12

and trigger a false detection.
For maximum efficiency, all image processing al-

gorithms, including the neural network, are imple-
mented in fast, optimized C++ code using the https://

docs.opencv.org/OpenCV and https://pytorch.org/

cppdocs/TorchLib libraries. The CV system also runs on
the Jetson Nano, which is specialized for running CNNs.

This completes the verbal explanation of the entire
scanning process, and how our CV system is able to ro-
bustly detect, and react accordingly to, every possible state
of this process. Notably, the scanning process is very sim-
ilar to checking produce out at a self-checkout kiosk at
a grocery store, and is thus extremely intuitive to users.
However, unlike many other systems, we do not rely on
barcodes or RFID tags but instead use a universal vision-
based classification system. Indeed, one might notice how
seamless the entire process is for the user – they only need
to perform confirmation via clicks on a conveniently posi-
tioned tablet (see Figure 4), and our algorithm takes care
of the rest!

6.3 Database System (Back-End)

The core of the back-end was built upon Node.js, Ex-
press, and TypeScript. These are widely used, industry
standard technologies with significant amounts of avail-
able documentation and have also been well-optimized for
speed. The choice of TypeScript over vanilla ECMA Script
(also known as JavaScript) helps catch bugs in develop-
ment, even before testing, as TypeScript is a type-safe lan-
guage that enforces strict type-checking even during devel-
opment. The specific API endpoints, database schema, and
architecture of the back-end API are shown in the relevant
back-end sections of the block diagram at Figure 10.

The database schema is defined as code (see Figure 7)
in a JSON-like format which is ingested by an ORM, specif-
ically Prisma, which creates and even updates the SQL ta-
bles based on the definition. This means that the schema
and object relations are checked into and tracked by our
version control system (Git), just like any other piece of
code. Furthermore, using the ORM, we are also easily
switching the underlying database system between SQLite
on development instances and PostgreSQL on production
systems, all while keeping the differences transparent to us
as developers. Additionally, the database schema definition
also includes the types of each field, allowing database reads
through Prisma to have type information as well, enforcing
type-safety throughout the back-end.

An API request from a client is first routed to an Ng-
inx web server, which is responsible for negotiating an SS-
L/TLS connection, and serving any static assets. This is
because web servers like Nginx are well optimized for such
tasks, allowing for fast response times and easy configura-
tion, lowering the load on the Node.js server. Nginx then
forwards any API requests to the Node.js server, where
the Express router first routes the request to a API se-
cret key validation middleware, which validates the secret
key supplied with the request, dropping any requests with

an invalid key. After passing the validation, the request is
then routed to the middleware specific to the API endpoint,
which queries the database, runs any needed computations,
and returns the results to the clients.

This back-end is deployed on Oliver’s server. This
server is a virtual machine running on a physical host, with
1 vCPU and 4GB of RAM. As we are serving a maximum
of only 3 clients, this is enough hardware for all back-end
components, as they can be scaled to their minimum pos-
sible sizes. For example, the V8 engine powering Node.js
can be scaled down to have a maximum memory footprint
of just 256MB.

6.4 User Interface (Front-End)

The user interface system will be a web-based interface
hosted on the Jetson Nano, as this is our main computer
for the project. It will also allow for easy communication
to the back-end. which is hosted in the same place. As
mentioned in the Database System, the interface client will
communicate to the backend via HTTP endpoints and web
sockets.

The interface will primarily run on a 10” Android tablet
as the client. The tablet will be affixed to the fridge as
described in Section 6.1. We selected the MAGCH M101
tablet since it is fast, has a nice screen size, and has enough
processing power/camera resolution that some computer
vision could theoretically be run on it in the future.

Figure 8 below shows the UI hosted on Alex’s server
(https://capstone.astrasser.com:2096/). Notably, we have
designed our scanning interface (see Figure 8b) for maxi-
mal intuitiveness and minimal navigation. To this end, we
show the top 5 most probable predictions as determined by
the CV system, so that the user can make any changes with
minimal taps. Selection of multiple quantities can be done
with a quick tap, since it would be inefficient to scan a bag
of, say, 8 oranges one-by-one. Our Computer Vision System
also helps to detect small quantities of items (about 2 to 4)
to further reduce the number of clicks necessary. Addition-
ally, we have designed the calendar view to be as intuitive
and aesthetically pleasing as possible, shown in Figure 8a.
In addition, users can easily view the list of items in their
fridge from any Internet-enabled device, shown in Figure 8c
below, by visiting the website and clicking the “List” but-
ton on the navigation bar. By clicking on the item in list
mode, they are also able to view its nutritional information,
shown in 8d below.

Our initial prototype involved a dropdown menu that
made the user select whether they want to be in ”Add”,
”Remove” or ”Return” mode. However, user studies re-
vealed that this was extremely unintuitive and was prone
to error. Users often forgot to select the correct mode be-
fore a scan, and were unable to change the mode they were
in after the scan. To solve this problem, we changed from
the dropdown menu into a set of 3 buttons, corresponding
to each respective mode, on the scan confirmation dialog in-
stead, shown in Figure 8b. Subsequent user studies showed
a 100% increased preference for this design.

https://docs.opencv.org/
https://docs.opencv.org/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://capstone.astrasser.com:2096/

18-500 Final Report: Team B3 FreshEyes - May 7, 2022 Page 7 of 12

1 model Item {

2 id Int @id @default(autoincrement ())

3 name String

4 shelfLife Int // Number of days item can be stored

5 unit String

6 transactions TransactionsOnItems []

7 }

8

9 model Transaction {

10 id Int @id @default(autoincrement ())

11 createdAt DateTime @default(now())

12 updatedAt DateTime @updatedAt

13 items TransactionsOnItems []

14 quantity Int

15 type Int // 0 = addition to fridge from store , 1 = removal , 2 = return to fridge

16 }

Figure 7: Sample of database schema defined in code, with relations explicitly defined

(a) Calendar View (b) Scan Interface

(c) List View (d) Nutritional information displayed after clicking “Banana” in
Figure 8c

Figure 8: User Interface (Front-End) as displayed on tablet

18-500 Final Report: Team B3 FreshEyes - May 7, 2022 Page 8 of 12

7 TEST & VALIDATION

7.1 Results for CV Design Specification

We ran a couple of tests for the speed and accuracy of
the computer vision design specification. First, we tested
the accuracy of the CV system by running 20 scans among
randomized fruit selection in varied lighting conditions. Of
the 20 tests, 18 of the fruits were detected correctly and
were the first recommendation, 1 fruit was the second rec-
ommendation, and 1 fruit was the third recommendation.
This means that all 20 fruits came up successfully on the
display, and we got 90% fully successful scan rate, greater
than our 85% target in difficult conditions.

Additionally, we tested the scan speed in time from fruit
placement to UI prompt. This used the same random fruit
selection and randomized lighting as the previous tests. On
an average over 10 trials, we got an 1.67 seconds in time,
beating our target 2 seconds by a third of a second.

7.2 Back-end Testing Results

For the back-end, we wrote a suite of automated tests
on Postman, an API client and development environment.
Some of the tests covered the response correctness of the
back-end, e.g. ensuring that creating and confirming a new
addition transaction resulted in an increase in the number
of fruits of that type. Using Postman, we could also moni-
tor the response latency, ensuring it fell within the bounds
of the design specification.

These tests and checks were then deployed onto the
cloud, where they ran automatically on a set schedule. This
strategy ensured constant monitoring of the back-end, as
well as timely alerts if any code deployments or updates
broke the correctness of the back-end, or significantly af-
fected the response latency. This allowed us to quickly iso-
late any breaking changes, identify the offending code and
fixing the bug before the problem snowballs into something
that required significant amounts of effort to troubleshoot
and debug.

Naturally, we kept the back-end such that all API end-
points passed all the correctness tests. As for the latency,
the p99 value measured once every 15 minutes over 24 hours
was 246ms. In other words, within this timeframe, 99% of
the automated test API requests had a round-trip time of
246ms, significantly lower than the latency of 750ms spec-
ified in our use case requirements.

7.3 User Studies for Front-end

We tested the user interface prompt with 3 individu-
als over 5 tests each to get the user response time for the
popup. Our design specifications placed this at less than
2 seconds. Despite some some variability in response time,
we achieved an average of 1.52 seconds per prompt, beating
our target by nearly half a second. In addition, we also col-
lected qualitative comments about the experience from our

participants, which resulted in some important improve-
ments to the interface, such as the change from dropdown
menus to buttons for mode selection (see Section 6.4), and
the inclusion of email notifications (see Section 6.3).

7.4 Integrated Pipeline Robustness Test

Because we emphasize a smooth, seamless and robust
user experience, we put our entire pipeline through multi-
ple stress tests. To this end, we kept adding, returning and
removing items from the fridge, by an arbitrary number
of times and in arbitrary order, and intentionally includ-
ing a non-exhaustive list of various edge cases which could
potentially break the system:

Table 1: Examples of test cases for system robustness

Test Testing for...

Turning lights on and off Different lighting
conditions

Swipes across platform False detections

Consecutive large amounts of sin-
gle item

Overflow errors

Remove more items than are
present

Negative quantity

Add/remove multiple items one
by one

CV robustness
check

This extensive stress test allowed us to find bugs and
make our system more robust.

8 PROJECT MANAGEMENT

8.1 Schedule

The project’s Gantt chart as at May 6, 2022, is shown
in Fig. 11. All tasks prior to the final report has been fully
completed on schedule. Our project did not actually re-
quire much changes to the schedule, as slack and leeway
was built into the schedule at every milestone. For exam-
ple, in the design phase, 1 week of slack was built into the
schedule to allow for any needed design revisions. As none
was needed, this actually resulted in an additional week
of development time for the development phase. However,
some of the slack time in other phases were indeed utilized.
The development phase also had 1 week of slack time for
any needed CV revisions. As can be seen from the Gantt
chart, this time was then allocated for further dataset col-
lection and training in order to build an even more robust
model. Thanks to good planning in the initial phases of
the project, no changes were needed to the schedule in any
phase of the project, with the slack time more than cover-
ing for any unanticipated work required - in other words,

18-500 Final Report: Team B3 FreshEyes - May 7, 2022 Page 9 of 12

the known unknowns were well accounted for from the very
beginning.

The major milestones for the project were:

• Research + Discovery: Ideation, coming up with an
use case, and defining the goals of the project

• Design: Defining the architecture, subsystems, and
APIs used in the project, building front-end mock-
ups, culminating in a design document

• Development: Implementing the design, training the
CV model, building an MVP, and further enhance-
ments beyond the MVP stage

• Testing + Revision: Performing end-to-end testing,
bug fixing, and doing any needed revisions

• Wrap-Up: Final presentations, videos, demo, etc

8.2 Team Member Responsibilities

Each member contributed equally to the project, spe-
cializing in a specific subsystem that corresponded with the
individual’s prior experience. Each member also occasion-
ally helped with another member’s part. These responsi-
bilities are summarized in Table 2 below.

Table 2: Summary of Team Member Responsibilities

Member Specialization Helped With...

Alex Front-End, Hardware API, CV

Oliver Back-End, API Admin

Samuel Computer Vision Hardware

8.3 Bill of Materials and Budget

A break down of the materials bought and used in our
project can be found in Table 3 below.

8.4 Server Usage

For this project, we had the benefit of members who had
self-hosted servers and did not have to rely on services such
as AWS for paid hosting. We were able to host the UI in-
terface on Alex’s server and the API on Oliver’s server. We
were additionally able to train the neural network on Alex’s
server. In a professional deployment, the server hosting for
the web interface could be either condensed onto the API
server, or offloaded to a free static site host/CDN such as
GitHub Pages.

To further decentralize, the API could run locally on the
Nvidia Jetson. This solves several issues for both us and
consumers but comes at a price. The benefits include no
reliance on external internet connection for the consumer
(though this would still be necessary if external access was
wanted), user control over their own data, and decreased
server hosting cost for the producers of the product. How-
ever, in decreasing the centralization, it makes it much

more difficult to push security patches and add features.
Due to these trade offs, development was much easier to
do in a centralized manner, and further research and devel-
opment is necessary to determine whether a centralized or
decentralized approach is more beneficial for our product.

8.5 Risk Management

This project, like all other projects, was not without its
risks. The largest risk at the beginning of the project is the
performance of the CV classifier, specifically the risk that
the classifier is not robust or accurate. To mitigate this risk
during our project, we were selective with the type of fruits
we trained our model on. We also had backups of our mod-
els in case we wanted to revert to them, or perform transfer
learning on them. Occasionally, after the model was trained
on a new type of fruits, the overall accuracy of the model
fell drastically. In these cases, we made judgement calls,
by leaving out fruits that easily confused the classifier (e.g.
orange vs grapefruit) and selecting only the most common
types of fruits to be included in the model, ensuring that
all common fruits are still covered in the process.

After we had a robust classification algorithm, the
largest risk then involved the object detection recognition
and segmentation algorithms. To minimize this risk, we
used a white platform to make the segmentation a simple
color thresholding problem. This not only saved us devel-
opment time for the computer vision algorithm, but also
allowed for a more robust algorithm, mitigating two risks
for us at the same time.

Another risk that we had to address is the possibility
of the back-end API suffering from degraded performance,
bugs, or an outage altogether. Some of these possibilities,
such as degraded performance and outages, may be caused
by server availability and its network performance instead
of the quality of our code or other factors under our con-
trol. To mitigate this risk, continuous uptime monitoring
as described in Section 7.2 were adopted, to provide us
with real time alerts as these incidents occur. Similarly,
the suite of tests run by the continuous uptime monitoring
service also gives us more assurance on the correctness of
the code. Bugs are also prevented from entering the mas-
ter branch altogether by enforcing strict type-checking and
linting standards.

A similar approach with type checking (TypeScript)
and linting for the front-end has also significantly decreased
the number of bugs, as well as eliminating a large portion of
time spent debugging. Since both the front-end and back-
end were written in TypeScript, type definitions for data
moving between these two systems (e.g. WebSockets) were
shared, ensuring that both systems were sharing the same
type definition, preventing bugs from “mis-typing” from
occurring. This is an additional way of protecting the reli-
ability of the system in production and during interaction
as many hidden bugs can be prevented from being pushed
to master altogether, eliminating them before they have the
opportunity to cause any issues.

One other important risk mitigation factor adopted at

18-500 Final Report: Team B3 FreshEyes - May 7, 2022 Page 10 of 12

Table 3: Bill of materials

Description Model Manufacturer Cost

Main Computer Jetson Nano Developer Kit Nvidia $63.50
Tablet M101 MAGCH $149.99

Webcam Webcam HD 1080P HZQDLN $21.90
Wood Craft Wood Amazon $10.99
Paint White spray paint Rust-Oleum $13.47

$235.39

the beginning of the project was adopting a version-control
system that would allow us to revert to an older version or
retrieve code in the event of a local data loss. In particular,
all parts of our project were constantly synced on a private
GitHub repository, and we made use of git tags to mark
major milestones.

9 ETHICAL ISSUES

By design, FreshEyes is meant to target an ethical issue
of food waste, aiming to reduce food waste at the slight
cost of user inconvenience (i.e. constantly having to scan
items in and out of the fridge) and perhaps electricity usage
(since powering the tablet and Jetson still requires a low
electricity cost). However, we believe that the benefits of
our system outweighs the cost for several reasons. Firstly,
our design aims to minimize user inconvenience by making
the scanning process seamless, thus reducing cost of user
inconvenience significantly. Secondly, the tablet and Jet-
son (≈ 0.03kWh [7]) draws negligible power compared to
the fridge that is being used (≈ 1.5kWh [8]). Thirdly, food
waste is a globally growing problem [1], and our product is
estimated to help save approximately 25 lbs of food waste
per year, per person (see Section 2 above). Therefore, we
believe that our product’s benefits greatly outweigh the
cost in ethically combating food wastage.

Most of the other major ethical issues we considered
were related to security, in particular to what happens if
our databases are hacked and information is leaked. To this
end, our databases were intentionally built with security in
mind, with features such as authentication using API keys,
with details in Section 6.3 above. Even in the worst case
scenario with a complete data breach, as no personal infor-
mation is being stored, the only data that an attacker is
able to obtain is the list of items in one’s fridge and what
kinds of food the person likes to buy. This is not inher-
ently sensitive information, and cannot be used to identify
anyone. Moreover, since all image processing is localized
on the Jetson by design (i.e. not sent over the web), no
images of the user’s face or house can possibly be leaked
without physical access to the hardware.

However, during the ethical discussion forums, it was
raised that serious ethical problems would actually come
from the commercialization of our product rather than the

security end. This concern is valid since our product was
designed and intended for commercial use. For example,
suppose that FreshEyes hits the market and becomes pop-
ular. Then, fruit companies like Driscoll or Del Monte are
likely to offer huge amounts of money for targeted adver-
tising to, say, users of our system that like buying straw-
berries and bananas. We would then be effectively “selling
out” our users’ data to third parties without their consent,
which is unethical. Even if we did obtain their consent
through “Terms and Conditions”, we still believe that in
doing so, we would be deviating from our initial goal of
reducing food waste, and instead unethically re-intending
our product as a money-making machine. Of course, the
large amount of money will still be tempting, and will be
hard to turn it down. Even if we resolve against explicitly
selling away users’ data, we might implicitly do so by sell-
ing our product to a company that might want to use it for
said purpose. We believe that the best way to address this
issue is to enforce strong data protection policies within
the company, and open-sourcing all the code, including the
backend. This way, anyone can host the service completely
independently, thereby serving as a “poison pill” against
capture by such corporate interests.

We start entering gray areas if the data is instead used
for a “good cause”. For example, health organizations
and the government might become interested in our users’
food consumption patterns to aid the creation of better
programs and interventions that improve the population’s
overall health and nutrition. In this case, we are still devi-
ating from our initial sole purpose of reducing food waste,
but are also potentially contributing to healthy lifestyles for
entire populations. In this case, it is probably justifiable to
sell or “donate” the users’ data for positive and ethical re-
search purposes; however, this must notably be done with
users’ explicit consent.

10 RELATED WORK

10.1 SmolKat

SmolKat is a smart fridge system that can detect and
track produce inside one’s mini-fridge and display where
the produce is on the shelf. It was a project completed by
Team D3 in Spring 2021. However, unlike our outward-
facing camera system, SmolKat used cameras mounted in-

https://github.com/arstrasser/ece-capstone
 http://course.ece.cmu.edu/~ece500/projects/s21-teamd3/

18-500 Final Report: Team B3 FreshEyes - May 7, 2022 Page 11 of 12

side the mini-fridge. Their setup had the advantage of not
disrupting their ordinary workflow of loading and unload-
ing groceries out of the fridge, and even included a neat
feature where an LED would light up to indicate the ex-
act position of an item inside the fridge. These are features
that we would be unable to achieve with our current system
design. However, for reasons detailed in 5.3, this design suf-
fers from some major flaws, including insulation problems
with wiring, cost-integration concerns and occlusions. In-
deed, in their final demo, we can see that their wiring was
a complete mess, and would definitely have affected the in-
sulation of the fridge as the door would not have been able
to close properly. Moreover, their product seems to work
only with mini-fridges consisting of a single layer, likely be-
cause they could not overcome the occlusion problem. On
the other hand, our system will be an integrated, modular
add-on that can be used for any normal fridge. It will be
able to track a large variety and number of fresh produce,
without being limited by fridge size.

10.2 Cozzo

Cozzo is a commercial fridge and pantry management
application targeted at households who would like to track
their groceries. Similar to our system, it offers reminders
about expiring produce and suggests smart recipes to users.
They offer many impressive features, with notable ones be-
ing the ability to scan receipts and barcodes of pantry pro-
duce. However, as noted in Section 5.1 above, the scanning
of barcodes does not really apply to our use-case because
most fresh produce (eg. fruits and vegetables) do not have
barcodes and are handled manually at the store. That be-
ing said, their receipt scanning is a great idea, although
most of the user input required is still fairly manual: Users
still need to review each item on their scanned receipt in-
dividually, and need to manually update each time an item
is used, changed or thrown away. On the contrary, our
system allows users to scan produce before loading or un-
loading them into the fridge, which provides an intuitive
way of tracking produce going in and out of the fridge; the
ability to track produce being used is a unique feature of
our design, and will allow us to also give the user a sum-
mary of their food (and possibly nutrition) consumption.

11 SUMMARY

FreshEyes aims to provide a modular, intuitive and low-
latency experience to aid individuals and households in
tracking their fresh groceries. To do this, we provide an
integrated modular system that can be easily mounted on
any fridge within 5 minutes, and that uses a vision-based
scanning system that is non-obstructive, accurate and fast.
It also boasts an easy-to-use UI optimized for efficiency and
intuitiveness that is accessible from any Internet-connected
device. Our back-end is designed to be low-latency, secure
and stable, thus providing our users with a smooth and
enjoyable experience. Finally, we further add value to the

user, by not only tracking their produce going in and out
of the fridge, but also remind them of expiring produce via
email notifications, and providing them with nutritional in-
formation of the fruits and vegetables they have consumed.

11.1 Future work

Currently, our system supports only one user. Ideally,
we want multiple users, where each user has an individual
inventory. In and of itself, implementing this feature would
not be difficult due to the inherent scalability of the ORM
Schema on the back-end. However, we were approaching
the tail-end of our project timeline with a fully-working
system that demonstrated all the important features well;
thus, to mitigate risk, we decided that the potential bugs
associated with adding this feature without adequate time
for testing was not worth it. That being said, if given more
time we would definitely add, and robustly test, this feature
of multiple user accounts.

Our CV system assumes that all items placed on the
platform are of the same single type, and is trained for
such. For example, the CV algorithm accepts 3 oranges,
but not 1 apple and 1 orange. This is inefficient as the user
could have otherwise scanned, say, 4 types of fruit at once.
However, we noticed something interesting about our clas-
sification algorithm, as shown in Figure 9 below. Despite
bring trained to only classify one type of fruit/vegetable in
a given image, it was able to predict 3 different classes of
fruit (in this case, apple, banana and starfruit) as the top
3 probabilities.

Figure 9: CV Classifier predicting 3 different classes as
the top 3 probabilities despite being trained to output

only 1 class at a time.

This experiment was repeated with different combina-
tions of fruits, and we obtained mostly the same results,
sometimes with one of the items being 4th or 5th on the
list, but the top 5 would always contain every item.

https://cozzo.app/#features

18-500 Final Report: Team B3 FreshEyes - May 7, 2022 Page 12 of 12

One of the solutions we thought of implementing was
making the top 5 predictions on the UI being checkboxes
(multiple selections) instead of radio buttons (single select).
However, our algorithm would then have problems trying
to associate quantity with the individually-selected classes.
One workaround is to have the row of quantity selections
to be different for each item, which would require a major
overhaul of the front-end. However, if given enough time
to implement and test, it is definitely a feasible solution,
and would greatly improve the user experience.

One major roadblock that we faced in the project was
with setting up the project on the Jetson Nano. While the
Jetson is theoretically optimized for running machine learn-
ing code, Samuel’s personal computer was able to run a sin-
gle classification in and average of 35 ms compared to the
Jetson’s 150 ms. This is a 5 × reduction in latency, and was
barely acceptable for our design requirements. In addition,
we realized that the “initialization” (i.e. first prediction)
always took a full 3 minutes to run on the Jetson. The prob-
lem came down to not having enough RAM (only 2 GB),
resulting in the Jetson Nano having to move data between
RAM and swap when loading our model and performing
the first prediction. However, once the Jetson “learned”
how to juggle between RAM and swap, future predictions
wereo h much faster, albeit still at a slower 150ms com-
pared to that of 35 ms on Samuel’s laptop boasting 16
GB RAM. Thus, for future work, we would want to get a
beefier hardware system, such as the Jetson Xavier which
has much larger RAM (4GB vs 8GB), memory (2MB vs
6MB L2 cache size) and GPU (128-core Maxwell vs 384
CUDA cores) capacities.

11.2 Lessons Learned

We were able to accomplish most of what we had envi-
sioned at the start of our project, since we had some general
experience in each sub-area of our project. This allowed us
to correctly allocate and schedule time at the beginning.
However, we wish there was more time to polish the project
even further through improving the user experience, since
it can feel a little unintuitive at times with the platform,
scanning, and placing in the fridge. Overall, we were able to
learn a lot about developing real-world, production, user-
facing applications and were able to produce a complete,
useful product.

As for specific implementation lessons, we learned that
it’s a lot easier to get better equipment for quicker develop-
ment, and then make performance improvements to make
your code run better. The Jetson Nano was the right tool
in the long run, but getting the code to run took many
extra hours of work just to get something both working in
general AND working on the Jetson, instead of working on
getting something working roughly first.

Additionally, it was incredibly important to start early.
We were able to experiment with the machine learning a lot
and tune it to work well for this project. We ended up com-
pletely scrapping our original dataset and machine learning
model, and although retraining took a decent amount of

time, it wasn’t an issue since we had started with plenty of
time to spare and stuck to our schedule.

Glossary of Acronyms

• API - Application programming interface

• BLE - Bluetooth low energy

• CDN - Content Delivery Network

• CNN – Convolutional Neural Network

• CV – Computer Vision

• FSM - Finite-State Machine

• ORM - Object-Relational Mapping

• NFC - Near-field communication

• RAM - Random access memory

• UI – User Interface

• vCPU - Virtual Central Processing Unit

References

[1] EPA, “Facts and figures about materials waste and re-
cycling,” 2018.

[2] USDA, “Fruit and vegetable prices,” Aug 2019.

[3] E. A. Shrider, M. Kollar, F. Chen, and J. Semega, “In-
come and poverty in the united states: 2020,” Oct 2021.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, pp. 770–778, 2016.

[5] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Brad-
bury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imper-
ative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems 32
(H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, eds.), pp. 8024–8035, Cur-
ran Associates, Inc., 2019.

[6] I. Hussain, Q. He, Z. Chen, and W. Xie, “Fruit recog-
nition dataset,” 07 2018.

[7] “Guide to technology power consumption: Compare the
market,” 2020.

[8] R. McCarthy, “How much power a fridge uses - in watts,
cost and kwh,” Nov 2019.

18-500 Final Report: Team B3 FreshEyes - May 7, 2022 Page 13 of 12

Ba
ck

en
d

N
gi

nx
 W

eb
se

rv
er

St
at

ic
 A

ss
et

s

H
TM

L

Im
ag

es
 /

St
yl

es
he

et
s

/
Sc

rip
ts

C
on

fig
ur

at
io

ns

SS
L

C
er

tif
ic

at
es

N
gi

nx
 S

ite
C

on
fig

ur
at

io
n

R
ev

er
se

 P
ro

xy

to
 A

PI

In
co

m
in

g
H

TT
PS

R
eq

ue
st

Ex
pr

es
s

AP
I o

n
N

od
e.

js

Ite
m

 A
PI

Vi
ew

 q
ua

nt
iti

es
 a

nd
 e

xp
iry

da
te

s Sy
st

em
 S

ta
te

 A
PI

s

- G
et

 c
ur

re
nt

 m
od

e
- C

ha
ng

e
m

od
e

Tr
an

sa
ct

io
ns

 A
PI

- C
re

at
e

ne
w

 tr
an

sa
ct

io
n

- S
en

d
co

nf
irm

at
io

n
in

fo
- C

on
fir

m
 tr

an
sa

ct
io

n

AP
I S

ec
re

t K
ey

 G
ua

rd

Ve
rif

ie
s

su
pp

lie
d

cr
ed

en
tia

ls

Po
st

gr
eS

Q
L

D
at

ab
as

e

It
em

PK
id na

m
e

sh
el

fL
ife

un

it

Tr
an

sa
ct

io
ns

O
nI

te
m

s

FK

1
ite

m
Id

FK

2
tr

an
sa

ct
io

nI
d

ra
nk

co

nf
ir
m

ed

as
si

gn
ed

At

up
da

te
dA

t

Sy
st

em
S
ta

te
PK

id cr
ea

te
dA

t

up

da
te

dA
t

do
or

O
pe

n

m

od
e

se
cr

et
Ke

y

Tr
an

sa
ct

io
n

PK
id

qu

an
tit

y

ty

pe

cr
ea

te
dA

t

up

da
te

dA
t

U
se

r I
nt

er
fa

ce

C
lie

nt
 (A

nd
ro

id
 ta

bl
et

 o
r o

th
er

)

M
ak

e
H

TT
PS

R
eq

ue
st

s
to

 lo
ad

w

eb
 in

te
rfa

ce

AP
I R

eq
ue

st
s

W
eb

so
ck

et
s

(P
ub

/S
ub

)

H
TT

PS
 R

eq
ue

st
s

W
eb

 In
te

rfa
ce

U
se

r

Sc
an

 P
op

up

C
al

en
da

r

R
ec

ip
e

R
ec

om
m

en
da

tio
n

Ex
pi

ra
tio

n
R

em
in

de
r

Sc
an

 M
od

e

Ite
m

Sc

an

Ite
m

W

ill
Ex

pi
re

Fr
es

h
Ey

es
 A

rc
hi

te
ct

ur
e

JS
O

N
Pa

ck
et

C
om

pu
te

r V
is

io
n

N
vi

di
a

Je
ts

on
 N

an
o

C
la

ss
ifi

ca
tio

n

R
es

iz
e

R
G

B

10

0
x

10
0

R
es

N
et

50
C

N
N

 C
la

ss
ifi

er

To
p

5

D
et

ec
tio

n

W
eb

C
am

R
G

B
Im

ag
e

80
0

x
60

0

Pi
xe

l-T
hr

es
ho

ld
C

ha
ng

e
D

et
ec

tio
n

Pr
ob

ab
ilit

ie
s

C
ro

p
C

ha
ng

e

 D
et

ec
te

d?
R

G
B

45
0

x
45

0

Se
gm

en
ta

tio
n

Li
gh

tn
es

s

45

0
x

45
0

R
G

B

to
 H

SL
Bi

na
ry

Th
re

sh
ol

di
ng

Fl
oo

df
ill

Se
gm

en
ta

tio
n

Er
os

io
n,

D
ila

tio
n

of

 o
bj

ec
ts

de
te

ct
ed

R
G

B

45

0
x

45
0

d
o
P
r
e
d
i
c
t
(
)

Fi
ni

te
 S

ta
te

M
ac

hi
ne

(F
SM

)

Q
ty

 P
re

di
ct

io
n

Ty
pe

 P
re

di
ct

io
ns

R
G

B

45

0
x

45
0

c
h
a
n
g
e
D
e
t
e
c
t
e
d

(
Δ
)

C
om

pu
te

r V
is

io
n

FS
M

m
o
s
t
l
y
W
h
i
t
e

(
W
H
)

=

(
#

o
b
j
.

d
e
t
e
c
t
e
d

=
=

0
)

B
A
C
K
G
R
O
U
N
D

!
W
H

|
|

Δ

R
O
B
U
S
T
_
C
H
K
_
1

c
n
t
-
-

Δ

!
Δ

&
&

c
n
t

=
=

0

R

W
H

d
o
P
r
e
d
i
c
t
(
)

d
o
P
r
e
d
i
c
t
(
)

!
W
H

P
O
S
T
_
P
R
E
D
I
C
T

A
W
A
I
T
_
S
T
A
B
L
E

_
P
R
E
D

c
n
t
=
2

A
W
A
I
T
_
S
T
A
B
L
E

_
P
O
S
T
_
P
R
E
D

c
n
t
=
2

R
O
B
U
S
T
_
C
H
K
_
2

c
n
t
-
-

Δ
Δ

W
H

!
Δ

&
&

c
n
t

=
=

0

!
W
H

F
ig
u
re

10
:
A

h
ig
h
-r
es
ol
u
ti
o
n
fu
ll
-p
a
g
e
v
er
si
o
n
o
f
th
e
o
u
r
sy
st
em

b
lo
ck

d
ia
g
ra
m

ex
p
la
in
ed

in
S
ec
ti
o
n
3

18-500 Final Report: Team B3 FreshEyes - May 7, 2022 Page 14 of 12

F
ig
u
re

1
1
:
C
u
rr
en
t
p
ro
je
ct

G
a
n
tt

ch
a
rt

a
s
a
t
M
ay

6
,
2
02
2

	INTRODUCTION
	USE-CASE REQUIREMENTS
	ARCHITECTURE AND PRINCIPLE OF OPERATION
	Computer Vision System (CV)
	Database System (Back-End)
	User Interface (Front-End)
	Integrated Fridge-Attachment System

	DESIGN REQUIREMENTS
	DESIGN TRADE-OFF STUDIES
	Barcode Scanner
	BLE / NFC tags
	Cameras Inside the Fridge
	Fully Local System
	Heuristic-based CV Algorithms

	SYSTEM IMPLEMENTATION
	Integrated Fridge-Attachment System
	Computer Vision System
	Database System (Back-End)
	User Interface (Front-End)

	TEST & VALIDATION
	Results for CV Design Specification
	Back-end Testing Results
	User Studies for Front-end
	Integrated Pipeline Robustness Test

	PROJECT MANAGEMENT
	Schedule
	Team Member Responsibilities
	Bill of Materials and Budget
	Server Usage
	Risk Management

	ETHICAL ISSUES
	RELATED WORK
	SmolKat
	Cozzo

	SUMMARY
	Future work
	Lessons Learned

