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Abstract—FreshEyes is a smart fridge attachment
and interface system that tracks fresh produce using
computer vision and AI. Our user-friendly and inte-
grated system can be placed on the door of any fridge,
and users simply scan fruits and vegetables by placing
it in front of our smart camera system. Our intel-
ligent interface additionally prompts the user about
potentially-expiring produce, and sends them a weekly
summary what they have consumed. It will even sug-
gest some recipes that utilize expiring foods.

Index Terms—Computer Vision, Databases, Inven-
tory Tracking, Mobile App, Smart Fridge

1 INTRODUCTION

According to the Environmental Protection Agency [1],
the United States alone wastes approximately 40 million
tons of food per year (approximately 219lbs per person).
Based on the weighted median of fruit and vegetables per
pound calculated by the US Department of Agriculture [2],
this amounts to approximately 219 × $1.50 = $328.50 of
money wasted per person per year! In households, most
food is thrown away because they are forgotten and left
to rot or expire in fridges. We aim to address this is-
sue with our solution, FreshEyes, targeted at households
who shop for fresh produce (such as eggs, milk, fruits, veg-
etables etc.). Our proposed user-friendly and integrated
system can be placed on the door of any fridge, and com-
bines computer vision with an intuitive user-interface sys-
tem to non-intrusively track fresh produce going in and
out of the fridge. The intelligent system prompts the user
about potentially-expiring produce, and will even suggest
some recipes that utilize said foods.

2 USE-CASE REQUIREMENTS

Given the problem of households discarding expired
produce, we aim to reduce the amount of food waste per
person by 1 fruit and vegetables a week. This would result
in approximately $1.50 saved per week (the approximate
cost of a produce item), and approximate 25 pounds of
food waste per year.

To this end, assuming a person buys 7 items in a week,
we want to only misdetect, on average, one of those items.
This means we need an 85% scanning accuracy. We also
want to be able to differentiate at least 10 items, since this
will, at bare minimum, cover the common items you would
buy over a couple weeks (more than 7). We want each
scan to take 2 seconds on average to show up in the user

interface (UI), and each UI interaction to take 2 seconds
on average. This results in a total of 28 seconds per week
spent scanning.

Additionally, since this product is meant to be a modu-
lar system that can be added onto your existing fridge, we
want it to be easy to install and uninstall. We do not want
to require any permanent modifications to the fridge for in-
stallation, and both installation and uninstallation should
take under 2 hours. In order to be time effective for the
user, we will also require less than an hour per year (on
average) spent maintaining the system (including changing
batteries, untangling cables, etc) so that the interaction
with the system is hassle and frustration free.

Figure 1 below summarizes the cost and time justifica-
tion of our use-case requirements: Using the above met-
rics, we calculated an estimated cost of 30 seconds for 7
items (2 seconds each for scanning and UI interactions) and
saving an average of $1.50 per week. However, because
the median salary of workers in Pennsylvania is approxi-
mately $0.50/min [3], we have an estimated user savings of
a $1.25 per week. While this might not seem like much, this
amounts to $65 a year, and also helps save the environment
by reducing food wastage!

Figure 1: Visual Summary of Use-Case Justification

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

Our architecture consists of 4 primary components/-
subsystems, whose relationships are briefly summarized in
Figure 2 below, and in greater detail in Figure 6.

1. Computer Vision System (CV)

2. Database System (Back-End)

3. User Interface (Front-End)

4. Integrated Fridge-Attachment System
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Figure 2: Summary of Architecture. Detailed diagram in
Figure 6 below. Big rectangles represent key subsystems.
Smaller, colored rounded rectangles represent key actions
or components, with the uncolored rectangles above them
being the implementations or hardware used.

3.1 Computer Vision System (CV)

The computer vision (CV) system’s job is to capture,
detect and classify the items presented to it by the user.
It will first capture the item (eg. a fruit or vegetable) us-
ing a webcam; the image is then passed on to our Jetson
Nano, which will then detect the item and classify it us-
ing the image processing algorithms outlined in Section 6.2
below. The image processing algorithm will then spit out
a set of top 4 predictions, which it then sends over to the
Database System (Back-End) via our self-defined Applica-
tion Peripheral Interface (API).

3.2 Database System (Back-End)

The database system is the backbone of our entire sys-
tem, processing the requests from the Computer Vision
System (CV) and the User Interface (Front-End), and send-
ing relevant information over to the User Interface (Front-
End) where it is presented in a user-friendly way. Con-
versely, user input such as manual quantity adjustments
are sent from the User Interface (Front-End) to the back-
end, where it is processed and stored. The back-end is
responsible not just for data retrieval and storage between
the database, but is also responsible for processing the data
before sending it over the User Interface (Front-End). In
other words, the User Interface (Front-End) should not
need to do any further calculations before the data can
be displayed. All interactions between the back-end and
the other aspects of the system will be implemented as an
API endpoint, allowing for maximum modularity and even
allowing for alternative implementations altogether.

3.3 User Interface (Front-End)

The user-interface (UI) serves 2 primary purposes: al-
low the user to interact with the scanning system, and
providing value to the user by sending them reminders of
expiring items and potential recipes making use of said

produce. In order to do this, it communicates with the
database back-end primarily via Websockets, sending in-
puts by the user and retrieving processed information from
the Database System (Back-End). Specifically, the scan-
ning user-interface will allow users to add/remove items
from the fridge, and confirm/modify results of a CV scan;
the calendar and reminder app interface allows the user to
view their expiring produce and any intelligently-suggested
recipes utilizing them.

3.4 Integrated Fridge-Attachment System

We then incorporate all of the crucial software and hard-
ware components detailed above onto a large integrated
board, which holds our webcam and tablet, as well as a
little (foldable) platform for the user to place their items
for scanning. There is also a door sensor (in the form of
a limit switch) that tells the back-end when the door is
being opened or closed, facilitating more efficient tracking
of produce. Our integrated board allows for the user to
easily install (or uninstall) our system as a module on any
fridge door. Notably, we should not forget that the server
back-end and the user’s mobile device (if they so choose to
use our application on it) is part of the larger integrated
system as well; both hardware and software are integrated
together seamlessly for an optimal user-experience. A di-
agram of how the physical integrated system will look like
is depicted in Figure 3 below.

Figure 3: Front and Side View of Attachment System

More details on the implementation of said architecture
can be found in Section 6 below.

4 DESIGN REQUIREMENTS

Most of the justification for the design requirements is
found in Section 2.

As noted in Section 2, We need our CV segmentation
and classification system to detect and classify objects with
more than 85% accuracy, if we are to achieve the desired 6
out of 7 item matches. This classification time, plus pro-
cessing time on the database should take under 2 seconds.

In order to support the CV system effectively, which
requires a 100x100 RGB image as an input to the neural
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network, we need an RGB camera that has a minimum res-
olution of 500x500, with a picture fetching time of under
250ms to adequately satisfy timing constraints.

The back-end/database system must be very robust so
that it does not require any human interaction. It must
be able to handle up to 3 clients simultaneously with no
performance degradation. It should not lose track of any
data.

The user interface needs to be very responsive. It should
have a response time of under 200ms for all simple oper-
ations (changing the mode or quantity) and under 750ms
for complex operations (submitting a modified scan to the
backend). This 750ms response time is also a requirement
for the backend.

5 DESIGN TRADE STUDIES

5.1 Barcode Scanner

One of our initial ideas was to use a barcode scanner
to scan items, as this makes detection a lot easier. This
is, after all, how object detection is done in grocery stores.
However, this requires a large barcode database and gen-
erally works very poorly for the produce items we want to
generally track. Bunches of cilantro, for example, very fre-
quently do not have a barcode and rely on a product code
at the grocery store.

Additionally, this can be very difficult for the end user.
It takes time to find the barcode and orient the item such
that the barcode can be read. This would not be able to
meet the 2 second average scan time, even though it would
pass the accuracy requirement.

5.2 BLE / NFC tags

This design would also make the detection and track-
ing of items much easier. One of the main issues with
the tracking system was detecting when items would leave
and return to the fridge, instead of a new item just be-
ing bought. However, this requires associating tags with
produce items and offloads all the classification processing
to the user. This ends up being a lot more work for the
user and would likely meet the 2 second average scan time,
but would require enough set up and pre-scan work that it
would be ineffective.

Additionally, the tags themselves are not very reusable
and the cost ends up being prohibitively expensive. At
around $0.50 per tag, and 7 items per week, we would spend
$3.50 on tags and only save $1.50 on groceries. Tags could
theoretically be reused, but the stickiness won’t last and
the tags would not be able to track items being returned
vs purchased (determining whether the tag is on a new item
or old item).

5.3 Cameras Inside the Fridge

Our current solution involves an external scanning-
based approach where the user manually scan the items

with a camera mounted outside the fridge. An alternative
solution that we considered was to have cameras inside the
fridge that would detect and classify the items placed inside
the fridge. This would have been an ideal solution for user-
intuitiveness because it does not disrupt the normal work-
flow of one’s normal loading/unloading of groceries. How-
ever, this solution suffers from 2 major issues: firstly, oc-
clusions are almost unavoidable since people tend to stack
items in the fridge, constantly rearrange items within the
fridge, and there is no camera angle for which all items
can be seen properly; secondly, cameras and other sensors
do not usually perform well in constant cold, and having
a modular system would either need external wiring that
would affect insulation, or battery-operated systems that
would need constant recharging or replacing. To resolve
Problem 1, one could use multiple cameras, but this would
increase complexity (since we would need to detect which
objects are seen in both cameras) and still does not resolve
issues regarding occlusions from stacking or objects hidden
inside plastic bags. Problem 2 can potentially be resolved
or mitigated if modularity was no longer a requirement: the
cameras could be custom-made to withstand cold temper-
atures, and wiring integrated as part of the fridge design
itself, but this might be a prohibitively expensive thing to
do, and would require users to buy an entirely new smart
fridge. This is wasteful design and would be counterpro-
ductive with our goal of saving cost and reducing environ-
mental impact.

5.4 Fully Local System

We also considered implementing a fully local, non-
Internet facing version of our proposed system. Such a
system will bring the computer vision system, front-end,
the back-end, and the database into one local monolith.
While such a system will be significantly less complex and
also avoids the round-trip time latency between the CV
system, back-end, and the front-end, it also means fewer
possible features and less room for future expansion.

This project was built with the ability to access the
front-end from any Internet connected device in mind. For
example, a user will want to look up their fridge inventory
while they are doing their grocery shopping. A fully local
system will mean that such accesses will not be possible.

Furthermore, we also designed the project with a view
towards future expansion and stretch goals. One such fea-
ture we envisioned is a shopping list that can be shared
among family members, where each family member can
view what is available in the refrigerator from any Internet
connected device, and add their own items to a shopping
list. Such features are only viable in an Internet connected
system, with a front-end built upon HTML and other stan-
dard web technologies, and a separate back-end.

5.5 Heuristic-based CV Algorithms

Specific for the CV system, we considered using a
heuristic-based detector and classifier instead of a CNN-
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based segmentation and classification system. In particu-
lar, we considered using a classical ORB + Bag of Words
method for detection and classification respectively. This
would allow us to potentially get rid of our white platform
setup, and make for a more intuitive experience with a ba-
sic front-facing camera that the user can hold a fruit or
vegetable up to. However, it is likely that such classical
might suffer in terms accuracy, which would then negate
any intuitiveness from the scanning process by adding on
the inconvenience of having to continually correct the al-
gorithm’s predictions. Moreover, given the advances in
learning-based CV methods, we decided that the increased
robustness and accuracy that such systems would provide
would be a better trade-off. This was also affirmed with
our initial tests on the classifier which provided us with
98% testing accuracy. As mentioned above, the only issue
is that our classifier is being trained on data with a white
background, and therefore an accurate segmentation algo-
rithm is required. However, our white platform setup (see
Figure 3) will effectively mitigate this problem, and also
allow us to use a simple heuristic-based algorithms (pixel
comparisons, thresholding, floodfill) for detection and seg-
mentation.

6 SYSTEM IMPLEMENTATION

6.1 Integrated Fridge-Attachment System

With reference to Figure 3 above, the integrated attach-
ment system will have base made out of a piece of 15cm
× 30cm (approx 6′′ × 20′′) of solid plywood, onto which
our tablet and webcam setup will be stuck. The plywood
backing is then intended to be installed on the front of a
fridge door with simple 3M mounting tape.

Notably, our webcam setup involves a web camera
pointing downwards towards a white platform. The white
platform is necessary for the proper working of the Com-
puter Vision System, with more details in that section. The
placement of the web-camera and platform is crucial for
the unobtrusive use of the scanner; if we were to have the
camera face forward with a vertical platform (as originally
designed), our users would have to awkwardly place the
fruit from above, which would be quite very obtrusive.

6.2 Computer Vision System

The computer vision system will first obtain an image
using the webcam. Notably, as shown in Figure 3, the web-
cam is setup such that it is pointing down towards a white
platform, resulting in the received image being a simple off-
white image when idle. Therefore, by simply checking for
significant changes in pixels, we can quickly tell whether a
fruit is put on the platform for scanning. A simple floodfill-
based segmentation algorithm will then be used to segment
the item from the white background. The preprocessed
image will then resized appropriately and sent through a
ResNet18-based [4] convolutional neural network (CNN),

which will output a set of probabilities. The top 4 prob-
abilities are then sent to the back-end via our self-defined
API, and will subsequently be displayed to the user for con-
firmation (default) or correction (if any), thus allowing for
an intelligent, semi-automatic tracking process.

Notably, we will be training the CNN ourselves using
PyTorch [5] on the Fruits360 dataset [6], which has a to-
tal of 131 classes. If necessary, we will collect our own
data from our setup to additionally train our network with.
However, all image processing algorithms, including the
neural network, will be written in optimized C++ code,
and will be running on a Jetson Nano for maximum effi-
ciency.

6.3 Database System (Back-End)

The core of the back-end will be built upon Node.js,
Express, and TypeScript. These are widely used, indus-
try standard technologies with significant amounts of avail-
able documentation and have also been well-optimized for
speed. The choice of TypeScript over vanilla ECMA Script
(also known as JavaScript) helps catch bugs in develop-
ment, even before testing, and TypeScript is a type-safe
language that enforces strict type-checking even during de-
velopment. The specific API endpoints, database schema,
and architecture of the back-end API is shown in the rele-
vant back-end sections of the block diagram at Figure 6.

The database schema is defined as code (see Figure 4)
in a JSON-like format which is ingested by an ORM, specif-
ically Prisma, which creates the tables based on the defini-
tion. This allows the schema to be checked into and tracked
by our version control system (Git), just like any other piece
of code. Furthermore, this also allows us to easily switch
out the underlying database system easily between SQLite
on development instances and PostgreSQL on production
systems. Additionally, the database schema definition also
includes the types of each field, allowing database reads
through Prisma to have type information as well, enforcing
type-safety throughout the back-end.

An API request from a client is first routed to an Ng-
inx web server, which is responsible for negotiating an SS-
L/TLS connection, and serving any static assets. This is
because web servers like Nginx are well optimized for such
tasks, allowing for fast response times and easy configura-
tion, lowering the load on the Node.js server. Nginx then
forwards any API requests to the Node.js server, where
the Express router first routes the request to a API se-
cret key validation middleware, which validates the secret
key supplied with the request, dropping any requests with
an invalid key. After passing the validation, the request is
then routed to the middleware specific to the API endpoint,
which queries the database, runs any needed computations,
and returns the results to the clients.

This back-end will be deployed on an Internet connected
server. This server is a virtual machine running on a physi-
cal host, with 1 vCPU and 4GB of RAM. As we are serving
a maximum of only 3 clients, this is enough hardware for all
back-end components, as they can be scaled to their mini-
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1 model Item {

2 id Int @id @default(autoincrement ())

3 name String

4 shelfLife Int // Number of days item can be stored

5 unit String

6 transactions Transaction []

7 }

8

9 model Transaction {

10 id Int @id @default(autoincrement ())

11 createdAt DateTime @default(now())

12 updatedAt DateTime @updatedAt

13 item Item @relation(fields: [itemId], references: [id])

14 itemId Int

15 quantity Int

16 type Int // 0 = addition to fridge from store , 1 = removal , 2 = addition to fridge (without

change to exp date)

17 }

Figure 4: Sample of database schema defined in code, with relations explicitly defined

mum possible sizes. For example, the V8 engine powering
Node.js can be scaled down to have a maximum memory
footprint of just 256MB.

6.4 User Interface (Front-End)

The user interface system will be a web-based interface
hosted on the Jetson Nano, as this is our main computer
for the project. It will also allow for easy communication
to the back-end. which is hosted in the same place. As
mentioned in the Database System, the interface client will
communicate to the backend via HTTP endpoints and web
sockets.

The interface will primarily run on a 10” Android tablet
as the client. The tablet will be affixed to the fridge as
described in Section 6.1. We selected the MAGCH M101
tablet since it is fast, has a nice screen size, and has enough
processing power/camera resolution that some computer
vision could theoretically be run on it in the future.

Figure 5 below shows an initial prototype of the UI,
also hosted on Alex’s server here. Notably, we have de-
signed our scanning interface (see Figure 5b) for maximal
intuitiveness and minimal navigation. To this end, we show
the top 4 most probable predictions as determined by the
CV system, so that the user can make any changes with
minimal taps. Selection of multiple quantities can be done
with a quick tap, since it would be inefficient to scan a bag
of, say, 8 oranges one-by-one. We have also designed the
calendar view to be as intuitive and aesthetically pleasing
as possible, shown in Figure 5a.

7 TEST & VALIDATION

7.1 Tests for Computer Vision System

The computer vision system needs to be satisfy an ac-
curacy of 85% (1 in 7 items), and less than 2 seconds of
latency (i.e. from item being placed for scan, to prediction
popping up on the screen). Our first accuracy test will be

that of the automated testing accuracy from training the
neural network. This is done by splitting the Fruits360
dataset [6] into a training and testing set of images. How-
ever, we will aim for a testing accuracy of 95% because
we expect our system to perform worse in real life, as the
network is not trained on our system-specific data.

Our second accuracy test will be that of a ”sanity-
check” accuracy test where we will obtain a set of 21 images
of common fruits and vegetables (3 each of: apples, oranges,
bananas, pears, carrots, lettuce and potatoes). This test is
very important to check the generalizability of the neural
network. In fact, we were initially ahead of schedule af-
ter having trained a network found online. However, we
quickly found that the 98% testing accuracy reported by
the neural network completely failed at this testing stage.
Upon consultation with our professor’s PhD student, we re-
alized that the network had severe flaws, and are therefore
going to be training our own ResNet18-based [4] network
instead.

Finally, we will perform a full-scale speed and accuracy
test, where we will purchase a bunch of commonly used
fruits and vegetables from the store (apples, oranges, ba-
nanas, pears, carrots, lettuce, potatoes, and maybe more),
and scan them on our real system with the proper web-
cam and white platform setup as shown in Figure 3 above.
Notably, because of the way our system is designed to be
modular, this ”real system” will not necessarily involve a
real fridge; instead, we will simply test it on our webcam-
platform setup on the attachment board. A stop watch will
be used to time taken between the fruit being placed on
the platform for scanning to when the prediction appears
on the screen. The number of correct and false predictions
will also be taken down to calculate the overall accuracy
later. This experiment will be repeated twice (with the
average taken) to ensure reliability.

https://capstone.astrasser.com:2096/
https://jovian.ai/arnabbhakta956/final-project-assignment
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(a) Calendar View (b) Scan Interface

Figure 5: Initial Prototype of UI

7.2 Tests for API Endpoints

The correctness of API endpoints can be tested during
development by sending test API calls using an API testing
tool such as Postman. For example, we can set up Post-
man to first send an API request that gets the number of
bananas, followed by a request that adds a banana to the
fridge, and finally another request that gets the number
of bananas. The number of bananas from the second call
should be exactly 1 more than the first call. This checks for
the correctness of both the endpoint that gets the quantity
of items in the fridge and the endpoint that adds items to
the fridge.

Postman also allows for such API calls to be saved and
replayed, and even integrated into a testing script that
Postman can run automatically from the cloud. This means
that we can continuously monitor the uptime of our API,
and receive real time alerts when it goes down or returns
faulty results, allowing for a high degree of assurance for
the correctness of the API as changes are pushed and de-
ployed.

Additionally, this testing process is also how we vali-
date that our metrics such as a maximum latency of 750ms
has been achieved. Together with the continuous uptime
monitoring, we can view a graph of these metrics from a
single dashboard and receive alerts when our metrics are
not being met, and even view statistical results such as the
tail p99 latency.

8 PROJECT MANAGEMENT

8.1 Schedule

Currently, our project is on schedule and no adjust-
ments are needed to our initial timeline. Our Gantt Chart
with the current completion status of each task is shown in
Fig. 7. With the submission of this design document, we
will have completed our design phase and will be able to
fully commit towards the development phase. Some tasks
originally scheduled for the development phase, such as
hardware ordering, API implementation, and CV training,
have already been started even in the design phase.

The planned schedule also includes generous amounts
of slack, in the form of time allocated for refinements and
revisions. In total, that adds up to about 2 weeks of ex-
tra time, significantly mitigating the risks of development
overruns from any single part of the project.

8.2 Team Member Responsibilities

All of our members have rough experience in all the sub-
systems of the project, with some individuals being more
specialized than others. Therefore, each of us will be in
charge of a specialization, but will also be helping others
in their respective sub-tasks. Our team responsibilities are
summarized in Table 1 below.

Table 1: Summary of Team Member Responsibilities

Member Specialization Helps With...

Alex Front-End Back-end, CV

Oliver Back-End, API Hardware, Admin

Samuel Computer Vision Front-End, Hardware
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Table 2: Bill of materials

Description Model Manufacturer Cost

Main Computer Jetson Nano Developer Kit Nvidia $63.50
Tablet M101 MAGCH $149.99

Webcam Webcam HD 1080P HZQDLN $21.90

$235.39

8.3 Bill of Materials and Budget

A break down of the materials bought and used in our
project can be found in Table 2 below.

8.4 Risk Mitigation Plans

Since we have a robust classification algorithm, we are
more worried about the object detection recognition and
segmentation algorithms. To minimize this risk, we are us-
ing a white platform to make the segmentation a simple
color thresholding problem. This will not only save us de-
velopment time for the computer vision algorithm, but will
also allow for a more robust algorithm, decreasing two risks
for us.

Another risk that we have considered is the possibility
of the back-end API suffering from degraded performance,
bugs, or an outage altogether. Some of these possibilities,
such as degraded performance and outages, may be caused
by server availability and its network performance instead
of the quality of our code or other factors under our control.
To mitigate this risk, continuous uptime monitoring as de-
scribed in section 7.2 were adopted, to provide us with real
time alerts as these incidents occur. Similarly, the suite
of tests run by the continuous uptime monitoring service
also gives us more assurance on the correctness of the code.
Bugs are also prevented from entering the master branch
by enforcing strict type-checking and linting standards.

A similar source of bugs has been considered for
the front end. Strict type checking and linting for the
JavaScript on the front end will significantly decrease the
number of bugs, as well as eliminate a large portion of time
spent debugging. This will additionally increase the relia-
bility of the system in production and during interaction as
many hidden bugs can be removed before they cause issues.

9 RELATED WORK

9.1 SmolKat

SmolKat is a smart fridge system that can detect and
track produce inside one’s mini-fridge and display where
the produce is on the shelf. It was a project completed by
Team D3 in Spring 2021. However, unlike our outward-
facing camera system, SmolKat used cameras mounted in-
side the mini-fridge. Their setup had the advantage of not
disrupting their ordinary workflow of loading and unload-
ing groceries out of the fridge, and even included a neat

feature where an LED would light up to indicate the ex-
act position of an item inside the fridge. These are features
that we would be unable to achieve with our current system
design. However, for reasons detailed in 5.3, this design suf-
fers from some major flaws, including insulation problems
with wiring, cost-integration concerns and occlusions. In-
deed, in their final demo, we can see that their wiring was
a complete mess, and would definitely have affected the in-
sulation of the fridge as the door would not have been able
to close properly. Moreover, their product seems to work
only with mini-fridges consisting of a single layer, likely be-
cause they could not overcome the occlusion problem. On
the other hand, our system will be an integrated, modular
add-on that can be used for any normal fridge. It will be
able to track a large variety and number of fresh produce,
without being limited by fridge size.

9.2 Cozzo

Cozzo is a commercial fridge and pantry management
application targeted at households who would like to track
their groceries. Similar to our system, it offers reminders
about expiring produce and suggests smart recipes to users.
They offer many impressive features, with notable ones be-
ing the ability to scan receipts and barcodes of pantry pro-
duce. However, as noted in Section 5.1 above, the scanning
of barcodes does not really apply to our use-case because
most fresh produce (eg. fruits and vegetables) do not have
barcodes and are handled manually at the store. That be-
ing said, their receipt scanning is a great idea, although
most of the user input required is still fairly manual: Users
still need to review each item on their scanned receipt in-
dividually, and need to manually update each time an item
is used, changed or thrown away. On the contrary, our
system allows users to scan produce before loading or un-
loading them into the fridge, which provides an intuitive
way of tracking produce going in and out of the fridge; the
ability to track produce being used is a unique feature of
our design, and will allow us to also give the user a sum-
mary of their food (and possibly nutrition) consumption.

10 SUMMARY

FreshEyes aims to provide a modular, intuitive and low-
latency experience to aid households in tracking their fresh
groceries. To do this, we provide an integrated modular
system that can be placed on any fridge, and that uses a

 http://course.ece.cmu.edu/~ece500/projects/s21-teamd3/
https://cozzo.app/#features
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vision-based scanning system that is non-obstructive, ac-
curate and fast, with an easy-to-use UI optimized for ef-
ficiency and intuitiveness. Our back-end is designed to
be low-latency, secure and stable, thus providing our users
with a smooth and enjoyable experience. Finally, we fur-
ther add value to the user, by not only tracking their pro-
duce going in and out of the fridge, but also remind them
of expiring produce via our web-based UI, and even suggest
recipes to them that use said produce.

One major challenge will likely be the back-end sub-
system, which has a lot of moving parts, and is also the
backbone of our project. Getting the computer vision sys-
tem to work reliably in a real-world environment will also
be a challenge, and might require re-training the CNN
with self-collected data - a time-consuming process. How-
ever, the most challenging part of the project is most likely
going to be the integration of the various subsystems to-
gether through the back-end, which requires a well-defined
APIs and the individual subsystems to be working prop-
erly. However, given our current abilities and the fact that
we are on schedule implementation-wise, we are somewhat
confident in the success of the project.

Glossary of Acronyms

Include an alphabetized list of acronyms if you have lots
of these included in your document. Otherwise define the
acronyms inline.

• API - Application programming interface

• UI – User Interface

• CV – Computer Vision

• CNN – Convolutional Neural Network

• ORM - Object-Relational Mapping

• BLE - Bluetooth low energy

• NFC - Near-field communication

• vCPU - Virtual Central Processing Unit

• RAM - Random access memory
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