Fresh Eyes Team B3

Alex Strasser, Samuel Leong, Oliver Li

Use Case

- The United States wastes approximately 40
 million tons of food per year (219lbs per person)¹
- We want to reduce **residential waste** which largely occurs from discarding expired produce
 - This also costs \$\$\$!
- Propose vision-based tracking system to collect statistics on fresh produce
 - Remind users about expiring foods
 - Suggest appropriate recipes

Use-Case Requirements

- We want to reduce the amount of food waste per person by ~ 1 fruit/vegetable a week
 - ~ \$1.50/week saved
 - o 25 pounds per year
- Each scan (assume 7 items/wk)
 - 85% accuracy (< 1/wk)
 - o 2 seconds (CV -> UI)
 - o At least 10 different items
- General-purpose (semi-permanent add-on)
 - o < 2hrs installation and uninstallation</p>
 - Minimal maintenance (< 30 mins/month)
- Intuitive UI
 - < 2 sec avg modification time</p>

Use-Case Requirements: Justification

In a week, assuming 7 items bought

Time - 30 seconds

2 seconds / scan 2 seconds / modification

Cost Savings - \$1.50

1 item = \sim \$1.50 saved

Interaction Cost - \$0.25

year!

Median salary: \$0.50 / min 0.5 min * \$0.50 / min = \$0.25

<u>User Savings - \$1.25</u>

Cost Savings - Interaction Cost \$1.50 - \$0.25 = \$1.25

Technical Challenges

CV System

Object Detection and Segmentation

Classification: Speed + Accuracy

White background during training

Potential dataset collection

Attachment System

Removable

Easy to maintain

UI Interface, Back-end

Intuitive

Fast and robust communication between front and back end

Solution Approach (General)

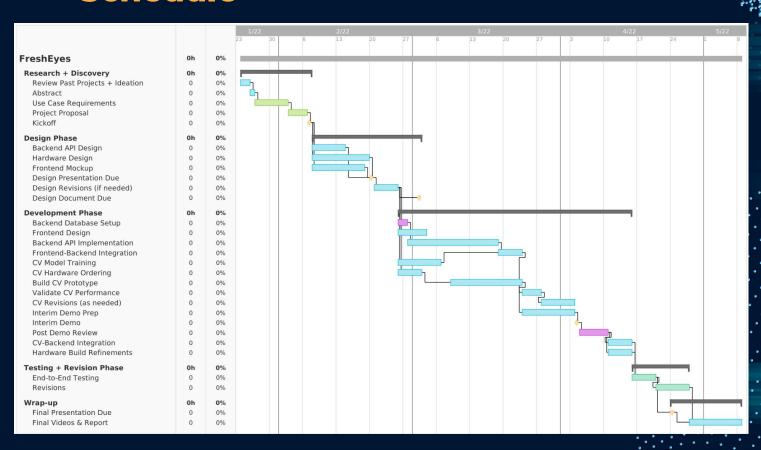
- Take advantage of computers and computer vision technologies to track use of food
 - Identify items, their purchase dates, and their expiration dates
- Remind users about items that will expire soon
- Recommend recipes for the user to make use of expiring items
- Collect statistics on what food frequently expires

Solution Approach (Specific)

- Hardware:
 - Jetson Nano
 - Android Tablet
 - USB Webcam
- Software:
 - Computer vision on Jetson Nano for detection
 - Fruits 360 dataset
 - Training on dedicated desktop
 - Communicates to Backend via Web API
 - Backend on Jetson
 - UI on Android Tablet
 - Communicates to Backend via Web API
 - Extensible to other devices (mobile phone)
 - Easy touchscreen

Testing, Verification, and Metrics

- CV Accuracy
 - We will purchase a selection of fruits and vegetables and test them under simulated real-world usage conditions
 - Target of >85% accuracy and <2s response time
- Front-end and back-end
 - Write automated tests to ensure correctness of API endpoints
 - Collect feedback throughout development process on front-end UX design, system performance, and ease of use, including the installation process



Tasks and Division of Labor

- Samuel
 - o CV System
 - Testing
 - o Helps with front-end
- Alex
 - Front-end
 - o Helps with CV system, back-end
- Oliver
 - o Back-end, APIs, Hardware
 - Administration

Schedule

