
18-500 Final Report Template - 18 January 2022 Page 1 of 9

B2: DrawBuddy
Authors: Lisa Mishra, Ronald Gonzalez, Denise Yang

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—A user run P2P application that enables
the transfer from physical drawing of diagrams to a
computer accessible SVG file that can be modified.
Line detecting computer vision algorithms will be used
to collect points and lines which will be fed to a vector-
ization software algorithm. The output SVG file will
then be sent to all other users through a server for
everyone to be able to modify.

Index Terms—Python, Sockets, Image Vectoriza-
tion, Computer Vision Line Detection, P2P Communi-
cations, SVG files

1 INTRODUCTION

DrawBuddy is an interactive multi-user whiteboard ap-
plication that can assist students, or developers in creating
diagrams and sharing them to each other without having to
go through the hassle of using their mouse to draw diagrams
which can be tedious at best, and downright impossible at
worst. With COVID-19 having modified many aspects of
our lives to an online format there is a growing need for an
easier way for students to create these kinds of diagrams
online at little to no cost to them. As stated the current
best way to create diagrams online and share them with
others is to either use some sort of whiteboard software
and draw with your mouse and keyboard, or have a draw-
ing pad which can be expensive and take up unnecessary
space or use some other software to create the diagrams.

Neither of those two options are very helpful, especially
for college students so, we are proposing an application
that allows the user to take a picture of their hand drawn
diagram and we can convert it into an SVG file that can
be transferred to other connected users and from there the
users can then modify the file by translating lines or rotat-
ing blocks. With this students will be able to form groups
of 2-5 and be able to study for classes and have the abil-
ity to send properly made diagrams to each other without
needing to spend vast amounts of time on some application
hand drawing them with a mouse.

Our goal is to have an easy to use application that can
set up virtual rooms with which people can take an image
of a diagram and have it be converted into a modifiable
SVG file. This process is going to use computer vision to
detect all of the lines in the file and then vectorize that
into an SVG file. That SVG file will be sent to all other
users through a socket server being run on the host’s com-
puter. Once sent other users will have the option to accept
or reject images with the first received image being auto-
matically placed within view to start modification.

2 USE-CASE REQUIREMENTS

We want to ensure the creation of a usable and adapt-
able application that various groups of students can find a
use for. Our use-case requirements have been split into two
categories based on the aspect of the project they apply to,
those being: communications and ease of access. It is key
that the application can support multiple people using it
since the main goal of this is to be used by a study group
to share diagrams. By nature of the application there are
additional required components for the user to have access
to, those being a paper, a camera, and some sort of tool
to write with. So we want it to be as easy as possible for
them to have all of these components readily available.

2.1 Communication Requirements

This application is peer-to-peer by design so that all
users can send SVG files to each other and work on the
same diagram. For example a class might require a group
working on a state transition diagram as a lab and some-
times these diagrams can get complicated so drawing them
on a mouse and keyboard is not a realistic option. On
the communications side, we need for there to be a good
amount of users being able to join a room and an optimal
size for a study group is about 4-5 people so we want the
max size for the application to be 5 people being able to
join a group [1]. Since we can not run a server for people
to connect to we’re going to have the user who creates the
room run the server on their local computer and give them
an access code to give out to the other users who will then
be able to type that in and connect to the network.

2.2 Usability Requirements

DrawBuddy should be able to recreate the user’s dia-
grams as accurately as possible. Thus we would like to
have users rate the produced diagram on a scale of 1 to 10
where 10 is an exact copy of what they intended to create
and 1 would mean that the produced diagram is unusable.
We also hope of having 90% accuracy in terms of lines out-
putted compared with the number of lines drawn in order to
more quantitatively measure the accuracy of the produced
SVG.

2.3 Ease of Access Requirements

One of the primary goals of our project is to make our
system accessible, meaning that users should be able to eas-
ily use our system with what they currently possess in their
work space.The user should be able to draw their diagram

18-500 Final Report Template - 18 January 2022 Page 2 of 9

on white letter size printer paper with any writing uten-
sils that uses black ink and has a diameter of anywhere
between 0.4-1.0 millimeters. Letter sized papers can fre-
quently be found at home or in academic public settings
such as schools and libraries and the range of supported di-
ameters includes common writing utensils from anywhere
between a fine tip pen all the way to a sharpie. The user
should be able to hold the image up to the camera from
anywhere between 1 to 3 feet away since the user should
not need to move too much from their current position in
front of their computer in order to use our web application.
As for the camera we have decided that a laptop camera is
enough to work and since we can assume that most of the
students are going to have access to a laptop this is best
for their ease of access.

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

3.1 High-Level Architecture

The main technical components of this project can be
broken up into image filtering/vectorizing, the graphical
user interface, and communication over a server between
users through the usage of sockets.

See Figure 9 for our high-level block diagram (on the
next page). The laptop camera will take in the image that
the user should be holding up, and give that JPEG or PNG
file to an image filtering program. The image filtering pro-
cess will convert the image to black and white (to make it
easier to identify the lines and shapes in the drawing) and
eliminate any noise in the image using a Gaussian Blur.
The filtered image will then be sent to an image vector-
izer program which will vectorize the code using a software
called VTracer. VTracer will take the image and create an
SVG file that can be rendered to display or sent to other
users on the server. On the display will be a graphical user
interface that will contain a virtual whiteboard. The vec-
torized image will be on this whiteboard and the user can
use it to modify the diagram and send it to other users
within a shared session.

3.2 The Graphical User Interface

The Graphical User Interface should encapsulate the
technical components of this project - the user should be in-
teracting with it, the image filtering/vectorizing programs
should be behind the GUI to facilitate the “virtual white-
board” portion of the project, and the socket communi-
cation code should also be behind the GUI to allow the
different users to communicate. Therefore, the GUI will
serve as our frontend and the image filtering and vectoriz-
ing process, along with the sockets code for communication
among users, will serve as the backend.

The user will have to start the application on their lap-
top, and the homepage of the GUI should look like the be-
low picture. There will be two buttons on the home page,

one that says “host” and one that says “attendee.”

Figure 1: The home page of the graphical user interface

(a)

(b)

Figure 2: User interface (a) the creator’s view. (b) the
joiner’s view

There will be two buttons there, one that says “Create
Session” and one that says “Join Session.” If you click “Cre-
ate Session”, you will start a session and create a 5-digit
access code for that session, as shown in Fig. 2(a)

The host will then have to give the access code to their
peers. If you’re an “attendee”, you will have to use that

18-500 Final Report Template - 18 January 2022 Page 3 of 9

access code to join the server. Fig. 2(b) depicts what the
attendee will see on their end of the user interface once they
click on the “attendee” button.

Each user will have their own whiteboard that will look
like Fig. 3, with a camera in the top right corner that cap-
tures the user’s drawing and the whiteboard that has the
vectorized version of it.

Figure 3: The virtual whiteboard in the GUI

All attendees of the session can send and receive images.
The bottom right corner of the virtual whiteboard will have
a “send” and “receive” button for all users. Note that the
host is not the only one that can send messages. We de-
cided to use the names “host” and “attendee” to mimic the
terminology that many people are already familiar with due
to their using Zoom for virtual learning. For example, in
the context of using Zoom, even though there is typically
only one host, all attendees in the zoom meeting can share
their screen. Similarly, the host in our app is only respon-
sible for starting the session so that other connected users
can communicate within the shared server.

3.3 Image Filtering and Vectorizing

A high level depiction of the order of programs through
which the image travels before being rendered to display
and ready to send is shown below.

Figure 4: A high level summary of the image filtering and
vectorizing process

Once the image is read through the laptop camera, the
backend should begin filtering and vectorizing the image
before ultimately displaying the vectorized image onto the
whiteboard. The image filtering portion will use computer

vision algorithms to read the image, convert it to black
and white, and then apply a Gaussian Blur on the image.
The Gaussian Blur helps to eliminate the noise and assist
the vectorizer in being better able to detect the lines and
shapes in the drawing.

Once the image filtering is completed, the image vector-
izing program will start. It will vectorize the image using
an open-source software called VTracer. We had also con-
sidered other options instead of VTracer, which are noted
in the ‘Design Trade Studies’ section. The vectorized im-
age will be an SVG file that can be rendered to the display
and sent to other users.

Should the user choose to modify the vectorized image,
they would have to click on the component that they want
to vectorize. The program will use the mouse click and re-
lease points to determine whether the user is attempting to
translate or scale and then carry it out. If the user wants
to translate the image, they will have to select the image
as a whole, by clicking near the center of the image (a bor-
der like the one shown in the [figure] should be displayed if
successful). Then the user can click and drag the image to
translate. If the user wants to scale the image, then they
would have to click on one of the endpoints of the polygon
or line and drag the mouse click to scale it out.

This will all be done on the graphical user interface. In
order for the change to be reflected in the vectorized dia-
gram on the whiteboard, the underlying SVG file will have
to be modified. For example, if a user’s vectorized diagram
has a line, the SVG file will have a line in it that indicates
that there is a “line” with the associated endpoints written
out in the SVG file as well. Therefore, if we’re modifying
a line using the GUI, we also have to modify the SVG file
behind it, specifically those endpoints. We’ll be using the
python library SVGUtils for that. Fig. 5 depicts a high-
level summary of this process.

3.4 Communication Among Users

Once the image is vectorized as an SVG file, it is ready
to be displayed onto the whiteboard and sent to other users
in the session. The host and attendees can now send and
receive images to each other (recall that the only functional
difference between a host and an attendee is that the host
started the session and provided the access code to the at-
tendees). In order to receive an image, the receiver has
to actually click on “receive. The reason for this decision
was to make sure that the sender can’t just inundate any
receiver with images. Until the user hits “receive”, that
SVG file will be stored in a queue for the receiver to even-
tually take the file off of. The receiver will also see, on their
whiteboard, the number of total received messages in the
bottom left corner, so that the sender will not have to no-
tify the receiver every time they decide to send a message.
If the receiver wants to look at the received images, they
can open the inbox, which will look like Fig. 6.

18-500 Final Report Template - 18 January 2022 Page 4 of 9

Figure 5: A high level summary of the image filtering and vectorizing process

Figure 6: Example of user inbox. If the receiver wants to
view an image, they can click on the button that is labeled
”Receive Message”, which will show the sender and time
the message was sent.

4 DESIGN REQUIREMENTS

4.1 Accessibility Requirements

Our system must also support camera resolutions of
720p and 1080p because these are the most common reso-
lutions of the built-in cameras on laptops. The image will
be captured as either a PNG or a JPEG before sent over
to image processing to remove any noise.

4.2 User Experience Requirements

The result will then be sent over to the image vectorizer
where the JPEG/PNG will be converted to a SVG file that
will then be sent over to the display. The overall latency
from capturing the image from the laptop camera to ren-
dering it on the user’s display should take no more than 2
minutes for a simple image. From experimentation, to cre-
ate a diagram consisting of roughly 50 primitives digitally
with a mouse took about 4 minutes, so we are aiming to not
only be more efficient than drawing the diagrams digitally
but also provide a 2 times speed up with our application.

The components within the file can be translated or
scaled digitally. In order to provide a smooth user expe-
rience, we require the latencies to modify a component of
the digitized diagram to be 150 milliseconds. This latency
is based on Dabrowski’s research on The Effects of Latency

on Player Performance and Experience in a Cloud Gaming
System, where he added network latencies to a PC game
(Crazy Taxi) and measured how they affected the users’
quality of experience (QoE)[2]. Users were asked to rate
their QoE on a scale of 1-5[2]. There was a linear decrease
in QoE as the latencies increased however after 150ms the
ratings dropped below 3[2]. This is a much stricter bound
than necessary since in gaming users need to be able to
react immediately or else their character could lose; how-
ever with our use case users may only experience a slight
annoyance if there is a small amount of lag.

4.3 Communication Design Requirements

The server will be set up and run by the first user and
they will give the access code to all the other users who will
then join. The latency to join the server is almost negligible
since there is going to be a screen where we will have the
host of the room start the room and they will be able to
see who has joined the room. Once they see that the room
is full with five people they will then select the option to
begin communications. The SVG file produced from the
vectorizer will also be broadcasted to all connected users.
We require sending the SVG file to users in a joint session
to take less than 500 milliseconds since once again we can
add more leeway than the gaming latency bound since our
use case does not require immediate responses; furthermore
this latency is likely to be masked by the user interaction
of clicking the receive button to actually receive the image.

5 DESIGN TRADE STUDIES

The area with the most variability of our project is im-
age processing and vectorization. For these steps within
our design we have considered several approaches.

5.1 Pure CV Vectorization

Our initial idea involved using computer vision to pro-
cess the image and produce the primitives that we would
then output to an SVG file; however the main flaw with
this approach is that the line detection algorithm broke
our lines down into multiple overlapping lines especially as
we increased the thickness of the lines.

18-500 Final Report Template - 18 January 2022 Page 5 of 9

5.2 CV Vectorization with Temporal Data

A second approach to resolve this challenge involved
processing the image temporally i.e. the user would draw
a single primitive, and capture it with the camera before
drawing the next primitive. With every frame, we could re-
duce the additional lines generated into a single primitive
and create a mask using the previous frames to subtract the
previous primitives, such that we only vectorize the newly
added primitive onto our virtual whiteboard. The primary
concerns with this approach was that it would require addi-
tional accuracy on the users part to present their drawing in
a similar position between frames such that we can compare
two frames to remove the previously drawn primitives. For
example if the mask from the previous frame was a straight
line in the middle of the paper, but then the user held up
their next image such that their next primitive was slightly
in the center; this would result in the risk of the next prim-
itive being masked out. This method would add additional
latency than some of the other approaches since the user
would have to draw the primitives in their diagrams one by
one which would not scale well. Furthermore from a user in-
teraction perspective, this approach increases the difficulty
of use such that customers may not see the benefit of using
DrawBuddy when compared to other virtual collaborative
platforms like Zoom Whiteboard.

5.3 Potrace vs VTracer

We then pivoted to perform the vectorization process
on the software side. We considered two different soft-
ware libraries to use: Potrace and VTracer. Both of the
algorithms used for Potrace and VTracer involve using a
path walking algorithm to determine the contour of the
primitives within the image file. Then they smooth the
image to remove staircase artifacts termed “jaggies” from
the path tracing. Potrace does this by identifying the di-
rections of subpaths and creating a line on the straight
subpaths, whereas VTracer uses the signed area of right
triangles to determine whether to fill the jaggies in or re-
move the corners of the staircase that create these jaggies.
Both algorithms then try to optimize the created lines to
simplify the shape before applying a Bézier curve fitting in
order to smooth it out.

Potrace can convert bitmaps into SVG files and works
well for low-resolution images, which would satisfy our re-
quirements for vectorizing diagrams because our use-case is
for displaying diagrams in a collaborative setting. In other
words, we are assuming the user would not spend a consid-
erable amount of time (less than 2 minutes) to create their
diagrams live. This method has lower CPU and memory
footprints than other bitmap tracing libraries like Auto-
trace. However with Potrace we would need an additional
step to convert the PNG/JPEG files produced from our
computer vision software into a bitmap. With VTracer, we
do not need this extra step since it can convert JPEGs and
PNG into SVG files. This also means that we could extend
DrawBuddy to be able to process colored input as well.

Furthermore when Potracer performs it’s optimizations, it
analyzes the entire shape whereas VTracer runs a linear
algorithm on clusters of the shape. As a result VTracer
has a smaller CPU and memory requirement than Potrace
making it more favorable for minimizing latency [3].

5.4 Sockets

We made the decision to end up using Sockets as op-
posed to other programs or applications. Initially we had
it so that sending the SVG file to all users would take 150
milliseconds but we after some initial testing we realized
it would not be possible to reach that mark using Sockets
since the code was as optimized as it could be and the files
just needed that amount of time to be sent and saved. For
that reason we did consider using software other than Sock-
ets to send the image but after some consideration we came
to the conclusion that since instant messaging takes about
5 seconds to send and receive 500 ms would be an adequate
update to our requirement for vector sending latency.

One of the options we had considered was using Amazon
Web Services Elastic Compute Cloud or EC2. We decided
against this for a few reasons, the main one being none
of us were very experienced using AWS whereas we had
one member who was very familiar with using the Python
Sockets library. Using Sockets would be a much faster en-
deavor than using EC2 since there would be no additional
documentation to learn. Another reason why we chose to
use Python Sockets is for integration, all of our software
is being written in Python so it would make for a much
easier integration process if the server code was also done
in a similar fashion.

6 SYSTEM IMPLEMENTATION

6.1 The Graphical User Interface

The graphical user interface will be implemented in
Python, using the PyGUI library. The PyGUI library will
allow us to develop a GUI API that is designed specifically
for Python. We chose this because our image filtering and
vectorizing code, as well as our sockets code, was all writ-
ten in Python; therefore, in order to make our integration
smoother, we decided to write our user interface in Python
as well. . Our GUI code will also have to tie into the image
vectorizing code and communication code. See Figure 1,
2, 3, 6 for our designs for our user interface.

6.2 Image Filtering and Vectorizing

We will be using the laptop camera as the means for
taking in the image. A user will hold up their drawing to
their laptop, and the laptop camera should be able to take
the image and send it to the image reading and filtering
software. Refer to Fig. 4 for the high-level overview of the
image filtering and vectorizing component of the project.
Image filtering will be done in Python, using the OpenCV
library, a library that provides the tools to facilitate the use

18-500 Final Report Template - 18 January 2022 Page 6 of 9

Figure 7: The crop image algorithm. The green box represents the bounding box.

of computer vision in our program. We implemented an im-
age cropping feature in order to remove the background of
the image to ensure that when the user holds up the paper
from various distances, we do not get unwanted artifacts
due to objects in the background. We used OpenCV to
convert the image to gray scale, and apply a binary thresh-
old to convert the image black and white, before performing
a morphological erosion and dilation to remove noise. After
that we find the biggest contour within the image and cre-
ate a bounding box around it. Then we scale the bounding
box down to remove the hand that’s holding the paper as
shown in Figure 7.

Image vectorization will be done using VTracer, a raster
image (a JPEG or PNG image) to vector graphics con-
verter. VTracer stores the objects that it identified as a
path object within the SVG file which is very versatile for
creating various sorts of filled shapes and lines, but for our
purposes we only wanted to display lines, so we wrote our
own SVG parser that iterates through the lines of the file
and extracts the end points of each path object and out
stores it into a 2D array. Then we read each line within
this 2D array and draw it in our whiteboard GUI.

6.3 Modifying Vectors

Every line on the whiteboard has a unique figure index
to help distinguish it from other lines, used particularly
when the user tries to move, delete, rotate, or scale a line.
All lines are stored in a dictionary with the key being the
figure index and the value being the endpoint values (the
format being a list containing (x0, y0) and (x1, y1)). When-
ever a line is modified or deleted, the program obtains the
figure index (using the graph element of pygui), and uses
that figure index as a key into the dictionary to modify
the endpoints that is stored for that key in the dictionary.
Whenever a line is deleted, the entry in the dictionary is
also deleted.

We added a feature to be able to delete lines. Some-
times, when a user’s drawing is vectorizing, the computer
vision line-detection algorithm that we use can add extra
lines that aren’t in the user’s diagram. So, we added a
delete lines feature so that the user can check the “Delete
Lines” box, and click on whichever lines that the user wants
to delete (and then uncheck the “Delete Lines” box once
they are done). There is also an “erase all” button that
clears the entire whiteboard. One use case scenario in
which this feature could be used is if the user vectorizes
an image, but decides to add or remove several things rom

their diagram and vectorize again. Before re-vectorizing the
image, they can hit the “Erase all” button. We had also
implemented a ”group lines” feature that could be used to
combine several smaller lines into one big line, but we re-
alized that the same effect could be achieved by the user
by deleting lines and then scaling one - this second solu-
tion was picked because it could allow the user to be more
accurate and not confuse the two features.

6.4 Communication

A program will be written in Python to facilitate the
communication between users. The Python sockets library
will allow setting up a server that the users can use (and
that the host can set up with an access code). A 5 digit
access code will be randomly generated, this access code
is what users will need to input before they can join the
room, but they double as the port number for joining the
server. The Python threading library will allow concur-
rent communication between the users, meaning that more
than one image can be sent at the same time. When the
server is created it will create a thread for handling user
messages and a thread for the server which is what sends
messages back to other users. When a user joins the server
they will create a thread to handle incoming server mes-
sages so that they can always receive incoming server mes-
sages. The users can then generate vectors and when they
hit send the vector will be converted into a string format
and then encoded using UTF-8 so that we can get it in
the bytes python format so that it can be compressed to
make sending faster. After compression we encode it using
base64 encoding to get it into a valid string format so that
it can then be encoded using UTF-8 again to get it back
into bytes so that it can be sent across the server again.
The users will then receive the message in an inbox where
they can select the vector they want to use and undo all the
encoding and compression and rebuild the vector on their
side. See Figure 6 for a layout for how a receiver’s inbox
would look in the GUI.

7 TEST & VALIDATION

7.1 Tests for Image Vectorization

7.1.1 Image Accuracy Results

Testing vectorization will involve submitting PNG files
with 1, 5, 10, 20, and 50 lines drawn on them and assess-

18-500 Final Report Template - 18 January 2022 Page 7 of 9

ing how many lines are outputted onto the whiteboard in
the GUI. As shown in Figure 8, DrawBuddy is relatively
consistent with it’s accuracy (roughly around 83.7%) in
terms of outputted lines versus lines actually drawn. We
were close but did not meet our quantitative use case re-
quirement for accuracy of 90%. This is likely due to the
uneven lighting conditions while testing which we will ex-
pand upon more in the future work section. However this
failure is not a big concern since the overall diagram is fairly
true to the original drawing. Furthermore the user vector-
ize the image again which will overlay the new image over
the existing one, and then the user can manually translate,
resize, and rotate the new lines to create the diagram they
originally intended.

Overall our results were In order to judge accuracy we
will ask several users to create PNG files using an online
drawing software and have them rate on a scale of 1-10 how
well the outputted SVG file reflects their original drawing.
Originally 10 users rated the outputted images an aver-
age of 5.3 but after we tuned the line detection parameters
and included image cropping, we asked 10 more users and
received an average of 9.1 thus meeting our use case re-
quirement for usability of 9 out of 10.

7.1.2 Vectorization Latency Results

Furthermore in order to measure the latency we will
track the length of time it takes for the image processing
steps and VTracer to convert the PNG once it’s been up-
loaded to when a SVG file is actually outputted onto the
GUI. For an image of 50 lines, it took around .1 seconds
thus performing 1200x better than our use case requirement
of 120 seconds When modifying the diagrams we will be
timing the latency from when the mouse clicks the bound-
ing box to the mouse release, and how long it takes for
updates to be reflected within our display.

7.2 Tests for Communication Specification

Testing for communications is going to require running
the server on one computer and then having a varying
amount of users join and then sending SVG files to all of
them. We tested this with 2 users and that is where we got
our updated vector latency requirement of 500 ms, when
testing with more than two users we saw an increase in la-
tency based on the total number of users that had joined
and this was due to the fact that the server software sends
the vector to one user at a time so an increase in users leads
to more latency.

2 3 4 5
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

Number of Users

L
a
te
n
cy

(m
s)

Number of Users v. Latency

As can be seen on the graph above it is not a linear
change in latency like how we would expect and this is
due to many factors including that testing was done on
one computer with the server and all users being run on
the same laptop which led to an increase in latency as the
computer might not have been able to handle loading and
running all those users. Another factor could be high vari-
ability in vector generating which could increase the total
number of primitives in the SVG file that was being sent.

8 PROJECT MANAGEMENT

8.1 Schedule

Our schedule has been broken up into multiple parts to
create a separation of components that will then need to be
integrated together. These components are based mostly
on which Python library they are mainly focused on. The
parts are the OpenCV line detection software, the PyGUI
software for creating an application that looks appealing,
VTracer for vectorizing the OpenCV output, Sockets for
server creation, testing and verification time, and finally
some integration time. The full schedule can be found in
figure 10.

8.2 Team Member Responsibilities

The project has been divided such that each member is
working mainly on parts that they are most familiar with.
Ronald will be working on the Python Sockets software
as he has the most experience with it and has previously
worked on a project that included it. Similarly Lisa will
be working on the OpenCV. Both Lisa and Ronald will be
working on the frontend for the application using PyGUI.
Denise will then be the one working on the image vectoriza-
tion using VTracer. Everyone will then test their individual
components before the final integration that everyone will
be a part of.

18-500 Final Report Template - 18 January 2022 Page 8 of 9

Figure 8: Vectorization accuracy for various image complexities measured by number of lines outputted on the white-
board versus actual number of lines drawn. The average accuracy is 83.7%.

Table 1: Bill of materials

Description Manufacturer Quantity Cost @ Total
Laptop Apple 3 $0 $0
Pencil Bic 1 $0 $0
Pen Pilot 1 $0 $0
Permanent Marker Sharpie 1 $0 $0
Paper GP 20 $0 $0

$0

8.3 Bill of Materials and Budget

Our project will be done entirely on software so we don’t
really have the need to purchase anything. We will need
some things for testing and verification that won’t be com-
ing out of our budgets as they are extremely to get a hold
of, those being a laptop with a camera that every team
member has access to, some writing implements (Sharpie
permanent marker, pencils, and pens), and some 8.5”x11”
white paper. The table for cost can be seen in table 1.

8.4 Risk Management

The biggest risk that jeopardizes our project involves
accurately converting the image to uniform lines and poly-
gons within our latency requirement. There are many lines
generated by our computer vision software but in order to
improve the usability of our project we need to reduce the
lines such that we only have a single line for each con-
nected component that the user drew. This would also
make rendering more efficient since the software will not
need to process as many lines. In order to mitigate this we
changed our approach to separate vectorization from the
computer vision processing by utilizing VTracer, a PNG
to SVG converter. Another risk was that VTracer would
often convert other objects in the background of the image
so we sought to improve the image quality by introducing
a image cropping feature to remove the background as well
as tune the line detection parameters.

9 ETHICAL ISSUES

While DrawBuddy is functional it is not quite ready
for public use, since there are some ethical concerns with
security and privacy. DrawBuddy does not currently use
any method of encryption such that malicious users can
snoop on the messages that are being sent between users.
Furthermore while each session is passcode protected, if a
malicious user gains access to the passcode then they can
join the session and will have access to all the files sent after
they have joined. There is no way for the host to remove
them except to close the entire session. Another privacy
concern is that DrawBuddy will ask users to allow camera
access on the very first use, but not with any launches after
that, so it is likely that the user may forget that they gave
DrawBuddy those permissions such that DrawBuddy now
has those permissions even if the user does not want that.

10 RELATED WORK

Based on what we have searched there is nothing online
that converts hand drawn diagrams to images but there are
some somewhat similar products out there.

10.1 Zoom

Zoom allows for the user to get in a video call with a
large number of other users. Zoom can be free but the issue
is calls will be limited to 40 minutes and the next pricing is

18-500 Final Report Template - 18 January 2022 Page 9 of 9

$150 a year. There is a draw option so someone can share
their screen and create diagrams with their mouse but that
is an extremely tedious option and exactly what we are
trying to avoid.

10.2 Online Whiteboard Programs

There are plenty of online multi-user whiteboard pro-
grams but they face the same issue that Zoom does which
is that this requires the user to use their mouse to create
diagrams, the user could have a drawing tablet but that
could incur a higher cost if they do not own one already.

11 SUMMARY

Virtual platforms have proven to be an effective mode
of collaboration not only under COVID but also during
poor weather conditions and for connecting peers across
different timezones. DrawBuddy aims to provide an ac-
cessible and intuitive interface for virtual collaboration by
enabling users to effortlessly transcribe their physical black
and white diagrams onto a digital platform.

DrawBuddy utilizes computer vision for noise filtering
and then VTracer to convert the image into an SVG file for
the user to interact with and forward to peers via sockets.

Despite being widely used during COVID, virtual
academia is still a relatively new and growing field. We
hope to continue to help this field grow through Draw-
Buddy.

11.1 Future work

While we did achieve our MVP and a few stretch goals,
our image processing stages produced poorer results in
Wiegand Gymnasium compared to when we tested it in
the lab and at home. This was likely due to the differ-
ent lighting that also illuminated the objects in the back-
ground. Furthermore when there is uneven lighting Draw-
Buddy tends to omit portions of the drawn diagram when
vectorizing. To make our system more robust, we could uti-
lize a HSL (hue, saturation, light) line detection algorithm
to better identify objects within the diagram instead of our
current greyscale implementation. We could also improve
our security by encrypting messages shared between peers
via encryption algorithms like AES and also ask the user for
camera permission upon every launch of the application.

11.2 Lessons Learned

The most important portion we learned is to give our-
selves plenty of slack time, because We realized that inte-
grating different pieces of code into a working application
is bound to introduce new bugs. Furthermore as we worked
on this project we identified new features that we needed
to add that we didn’t previous take into account like image
cropping as well as adding helpful GUI features like a back
button. Fortunately we heeded our mentors advice and did

give ourselves plenty of slack in order to accomplish the ad-
ditional work that we discovered and were able to integrate
everything together to produce our MVP and meet a few
stretch goals like rotation as well.

Glossary of Acronyms

Include an alphabetized list of acronyms if you have lots
of these included in your document. Otherwise define the
acronyms inline.

• AWS – Amazon Web Services

• CPU - Central Processing Unit

• CV - Computer Vision

• EC2 – Elastic Compute Cloud

• GUI - Graphical User Interface

• JPEG - Joint Photographics Expert Group

• P2P – Peer-to-peer

• PC - Personal Computer

• PNG - Portable Network Grpahic

• QoE - Quality of Experience

• SVG - Scalable Vector Graphic

• UTF-8 - Unicode Transformation Format 8-bit

References

[1] “5 tips for an Effective Study Group,” The David
Eccles School of Business, 23-Apr-2015. [Online].
Available: https://eccles.utah.edu/news/5-tips-for-an-
effective-study-group/. [Accessed: 04-Feb-2022].

[2] Dabrowski, Robert, et al. WORCESTER POLY-
TECHNIC INSTITUTE, 2014, The Effects of Latency
on Player Performance and Experience in a Cloud
Gaming System, https://web.wpi.edu/Pubs/E-
project/Available/E-project050514-
142618unrestricted/The Effects of Latency on Player
Performane and Experience in a Cloud Gaming System.pdf.
Accessed 6 Feb. 2022.

[3] Pun, Sanford. “VTracer.” Vision Cortex, 1 Nov. 2020,
https://www.visioncortex.org/vtracer-docs.

[4] Selinger, Peter. 2003, Potrace: a
Polygon-Based Tracing Algorithm,
http://potrace.sourceforge.net/potrace.pdf. Accessed 2
Mar. 2022.

18-500 Final Report Template - 18 January 2022 Page 10 of 9

Figure 9: Software flowchart for DrawBuddy. The red components represent communication tasks, the yellow portions
are the image processing components, and the green portions are vectorization steps. The bolded font represents our
web app states.

18-500 Final Report Template - 18 January 2022 Page 11 of 9

Figure 10: The current scheduled plan.

