
DrawBuddy
B2: Lisa Mishra, Ronald Gonzalez, Denise Yang

18-500 Capstone Design, Spring 2022
Electrical and Computer Engineering Department

Carnegie Mellon University

System Architecture

Product Pitch
While virtual platforms like Zoom are useful tools for remote lectures they
are not as adept for group work that involve drawing diagrams especially
with only a mouse/mousepad. Cue DrawBuddy, a more accessible and
natural web app that can convert black and white hand drawn images to
SVG files that cam be displayed, modified and sent to peers in a shared
session.

DrawBuddy should be able to render diagrams drawn with black ink with
line thicknesses of 0.4mm-1mm on white letter sized paper held anywhere
from 1-3 feet from the camera within 120s. Any modifications and
broadcasts should be reflected within 100ms and 500ms respectively. We
aimed for users to rate the rendered image 9/10 with 10 being the highest.
Our system is able to convert diagrams in 100 ms, reflect updates in
15ms and has varied results with .svg broadcasts. Users rated our system
5.3/10.

Drawbuddy relies on the laptop camera to capture the image and then
performs image processing (reducing noise, detecting lines, masking/
cropping image) via OpenCV. DrawBuddy will convert the initial .jpeg into
a .svg via Vtracer. Then our system will extract the objects in the .svg file
with a parser that we wrote in Python and displayed on a web app made
with PySimpleGui. Diagrams can be modified and then later exported
as .svg files using our parser.

http://course.ece.cmu.edu/
~ece500/projects/s22-teamb2/

System Description

System Evaluation

Conclusions & Additional Information

Find out more:

To test our communication
use case we measured the
time it takes to send a
compressed and
encoded .svg file with 30
vectors from one user to a
varied number of users. The
latency increases somewhat
exponentially as the number
of users increase.

We implemented our MVP of converting hand drawn
lines into an .svg file that can be moved around the
screen and resized/rotated before being sent to peers.
Although the quality of the .svg rendering of the diagram
can be improved with algorithms to remove similar lines
that overlap, and line detection algorithms. Overall
DrawBuddy taught us the importance of collaboration
and communication not only as we considered how to
quantify improvements to collaboration but also during
the integration of our individual parts.

Figure 1. DrawBuddy Flowchart: Our architecture can be
broken down into image processing (yellow), converting to and
from .svg files (green), and socket communication (red). There
are 4 main states: Start, Join, Host, and Whiteboard indicated in
bold.

To create and join sessions DrawBuddy uses PySocket to start servers and
register users as clients. .svg files can be sent over these sockets.

Figure 2.2 Welcome Screen Figure 2.4Join ScreenFigure 2.3 Start Server Screen

Figure 2.1
Whiteboard
Screen

Convert to .svg
button

Broadcast to users

Receive/display new
images

Group lines together
Erase all lines

Camera feed

Interactive
whiteboard space

To quantify the quality of
our diagrams we
compared the number of
lines rendered with the
true number of lines. We
tested with 1, 5, 10, 20,
and 50 lines. Ideally we
would see a 1:1 ratio, but
as the number of lines
increase, we render less
lines. As a result of these
inaccuracies we fell short
of our user rating goal. Figure 3.1 Comparison of number of lines rendered vs lines drawn.

Our behavior is relatively linear however as we begin to lose quality
as the amount of lines drawn increases

Figure 3.2 Comparison of sending 30 vectors latency to
varied number of users.

