
18-500 Final Paper - 7 May 2022 Page 1 of 11

Nature Photography Robot
Authors: Justin Kiefel, Sidhant Motwani, Fernando Paulino

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—Nature photography is a mundane and
time-intensive process. Photographers must wait for
sparse animal appearances and spend even more time
editing the photographs. Remote-controlled photogra-
phy robots exist, but these systems still require con-
stant human attention. Our solution to this problem is
a robotic system capable of performing nature photog-
raphy and photo editing. We developed a photography
pipeline, where the robot searches for, tracks, and pho-
tographs animals then performs automatic editing.

Index Terms—Computer vision, design, motion
planning, object detection, photo enhancement, robot,
search

1 INTRODUCTION

Animal photographs are widely used across the internet
and social media. From advertisements to raising aware-
ness for conservation efforts, there is a clear demand for
high-quality animal photos [1]. However, the process of
acquiring these photos is far from easy. Animals are con-
stantly moving and often avoid humans. The photographer
may need to wait an extended period of time to have the
opportunity to capture a photo. Afterward, more human
effort is required to edit the photos. The cost of human
time and labor in this process is undoubtedly high. As a
solution, we propose a photography robot, which can find
and photograph animals. This robot will be designed to
sit stationary in nature. It will then rotate to capture im-
ages of animals in its environment and automatically edit
the photos. While a photographer needs to be paid per
hour or day, a robot only requires a one-time payment.
Furthermore, a robot will not get distracted or tired while
waiting. This difference will enable companies to search
for photographs for longer hours and on more days. The
reduced costs may also allow companies to purchase mul-
tiple systems and survey a larger area for the same cost.
The idea of photography robots is not new. For example, a
remote-control buggy has been used to take photos of dan-
gerous animals from close up [2]. In our research, we found
many examples of remote-controlled photography robots,
but this approach does not solve the problem of high hu-
man labor costs. Furthermore, the autonomous photog-
raphy systems we found were for very simple applications,
like photographing a stationary object from a close distance
[3]. Our system extends the idea of autonomous photogra-
phy to solve a shortcoming of modern animal photography.
Our goal for this project is to prove that this approach is
feasible by producing a functioning robotic system.

2 USE-CASE REQUIREMENTS

To adequately emulate the capturing of animals in na-
ture, the system must be able to detect animals up to
25 meters (the necessary distance to photograph birds in
nearby trees) away with a recall rate of 75 percent. Re-
call is a more important metric than precision or accuracy,
because animal appearances are sparse and removing irrele-
vant photos is a quick process. An autonomous system with
75 percent recall would photograph as many animals as a
perfect human would in just 33 percent more time. While
humans certainly do not have 100 percent recall, we decided
that this is a reasonable trade off considering the reduced
human effort. Animals are not stationary, so the detection
must happen in a timely manner and the robot must follow
animals after detection. We decided that the system must
detect animal within 15 seconds. Photographing a running
animal or flying bird is difficult even for many humans (es-
pecially when done without a professional grade camera),
but the system should be able to follow and photograph
a walking animal. A walking animal moves approximately
2m/s and could walk the entire search diameter in 25 sec-
onds. Assuming animals will only walk through the center
of our search radius is unreasonable, so we decided that
15 seconds is a more practical time window. Furthermore,
the robot should be capable of following an animal moving
at 2 m/s to continue taking pictures. Performing profes-
sional level photography will be difficult, as the cost of most
DSLR cameras far exceeds our budget. However, the most
common and accessible form of photography is phone pho-
tography, and we think this is an obtainable goal. Most
modern phones have 8-12MP cameras and in-app editing
software. In addition to the technical capabilities, human
photographers have the ability to properly zoom and fo-
cus when capturing photos. Along with being shot with
an 8MP sensor, the photo should be of a quality indistin-
guishable from a human shot and edited photograph. To
quantitatively measure this, we will have human testers
attempt to distinguish our photos from human captured
photos. These testers should not do better than guessing
(50 percent accuracy) with any statistical significance when
labeling photos as robot or human pictures. By this met-
ric, the system’s camera should also be capable of at least
2x optical zoom. The system should also be able to pan at
least camera 180° in both the x and y-directions to be able
to track/detect all accessible animals in its vicinity

Table 2.

18-500 Final Paper - 7 May 2022 Page 2 of 11

Table 1: Use-Case Requirements

System Task Requirement
Detection Recall 75 Percent
Search Search Time 15 Seconds
Tracking Max Tracking Speed 2m/s
Photography Picture Quality 8MP
System Range of Motion 180 Degrees Pan and Tilt
Editing Differentiable from Human Editing 50 Percent

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

Figure 1 depicts a software diagram for the system’s
principle of operation. The camera pans and scans for ani-
mals in its environment. In the case of multiple animals in
frame, the system chooses the first detected animal. Once
an animal is detected, the system’s KLT begins to track
and follow the target, assuring that it is appropriately cen-
tered and that the camera has zoomed in so that the target
is occupying approximately 40 percent of the photo frame.
Meanwhile, photographs are taken and then run through
the system’s photo editing algorithm to produce a more
professional grade photo of the target animal. If the tar-
get exits the KLT frame of tracking and is lost, the KLT
is halted and the camera begins to search for an animal
target again.

Figure 2 contains a hardware diagram of the systems ar-
chitecture. The camera is an Arducam 8MP IMX219 PTZ
camera that is connected to a MIPI CSI-2 port. The cam-
era is mounted on a PTZ stage consisting of 4 Servo motors
(one motor for each of the pan, tilt, zoom, and focus func-
tionalities of the cameras). The Nvidia Jetson Nano draws
power from its USB-C port, the pan/tilt motors draw power
from a 9V battery, and the zoom/focus motors draw power
from the Jetson Nano. The servo motors are controlled by
the SDA and SCL pins in the GPIO Relay of the Nano.

4 DESIGN REQUIREMENTS

In order to pass the use-case requirements outlined in
Section 2, our proposed hardware and software layout must
pass as a set of more specific design requirements. For ex-
ample, to detect animals in a 25m radius within 15 seconds
with 75 percent recall, we must certainly have an ani-
mal detection algorithm with at least 75 percent re-
call. The equation for recall is shown in Equation 1. Even
with a perfect searching algorithm, reaching the desired re-
call level would otherwise be impossible. Furthermore, to
enable a complete search of the 25m radius, the cameras
must be able to pan at least 180 degrees and tilt 90
degrees up and down. The time constraint outlined by
the detection requirement also outlines a joint requirement
for the detection algorithm and the embedded computer.
The more images that can be processed in 15 seconds, the

more complete the system’s search can be. As a result,
once the 75 percent recall level is reached for the
detection algorithm, the speed of the hardware/de-
tection algorithm pairing should be maximized.

Recall =
TruePositives

TruePositives+ FalseNegatives
(1)

In order to properly track and photograph animals mov-
ing at 2m/s, the system must pass another set of necessary
benchmarks. At 2m/s, an animal 5m away could escape
our camera’s field of view from the center in under half a
second. With this in mind it is essential our tracking algo-
rithm can process multiple frames in this time to estimated
and react to the animal’s motion. We believe at least 15
frames per second will be necessary for the track-
ing algorithm, though testing will give a more accurate
number. Our goal for photo quality is to have the robot’s
photos be indistinguishable from photos taken by a novice
using a smart phone. In order to meet this goal, our photo
editing algorithm must have the ability to make photo ad-
justments seen in smart phones. As a result, we will
require the implementation of the most commonly
used algorithms: temperature, tint, exposure, con-
trast, vibrancy, saturation, and sharpness [5]. Ad-
ditionally, the camera will need to be 8MP or above
to meet the smartphone quality use-case requirement. It is
possible to meet the 8MP requirement using a lower quality
camera and a up sampling algorithm. However, completing
this method effectively would be quite complex and require
a large time commitment. As a result, we have decided to
avoid this route and buy an adequate camera.

5 DESIGN TRADE STUDIES

Meeting the use-case and design requirements is a dif-
ficult task. There is no clear-cut way to accomplish our
goals, and choices benefiting our progress towards one re-
quirement may hinder our progress towards another. With
this in mind, it is essential to evaluate tradeoffs between po-
tential implementations for each of our sub systems. Where
possible, we use pre-existing research for these evaluations,
but some tradeoffs must be evaluated through our own test-
ing.

18-500 Final Paper - 7 May 2022 Page 3 of 11

Figure 1: The software architecture of the Nature Photography Robot.

Figure 2: The hardware architecture of the Nature Photography Robot.

18-500 Final Paper - 7 May 2022 Page 4 of 11

5.1 Hardware

Our design requirements require the animal detection
algorithm to perform with 75 percent recall and the max-
imum possible speed. When considering embedded sys-
tems, the two choices available in our class inventory were
the Raspberry Pi’s and NVIDIA Jetson Nano. We found
that no popular CNN backbones ran faster than 3FPS on a
Raspberry Pi, so we decided to use a Jetson for our project
[6].

When buying cameras, we sought to find the most af-
fordable and easy to use hardware that met our design re-
quirements. In order to meet our range requirement of 25m,
we preferred a camera with adjustable zoom. This feature
allows our robot to search for far distance animals without
compromising the detection of close up animals. We also
wanted a camera with native Jetson Nano compatibility
to reduce setup time. There are a very limited number of
cameras that meet these two requirements. We chose the
cheapest camera in this group, the Arducam IMX219 PTZ
Camera. This camera met our 8MP design requirement as
well, which was ideal. Uctronics made an affordable PTZ
base for this camera that met our mobility requirements,
so we purchased this as well.

Our original plan was to use two cameras for the robot.
The idea was that one camera could zoom in to take a close
up photograph. Meanwhile the second camera could track
the animal while at a farther zoom. This approach would
enable closer photos to be taken of the animals. However,
we ran into difficulties while implementing the two camera
robot. First, our model of the Jetson Nano only has one
MIPI-CSI port. We purchased a multi-camera adapter to
avoid this problem, but only one camera stream can use
the MIPI-CSI port at a time. This limitation prevents two
MIPI-CSI cameras from simultaneously streaming, soiling
our idea of a real time two camera tracker. Another prob-
lem with a two camera setup is the necessity of aligning
the cameras. Logistically, the cameras must be vertically
stacked. This means there are two dimensions that the
cameras must align over (tilt and zoom) [6]. This proce-
dure is not trivial and also adds computation to the time
sensitive tracking process. While the perfect outcome is a
closer photo, the more realistic outcome is frequent align-
ment errors. We could have used a USB camera to achieve
multiple streams, but we decided the benefits of a two cam-
era implementation were not worth the time and resources.

5.2 Detection Algorithm

Most modern papers on CNN’s do not present recall as a
metric, but their accuracies on challenging datasets far ex-
ceeds 75 percent [5]. Furthermore, our algorithm only needs
to detect one class, animal. In contrast, research papers use
datasets with many classes that are closely related, so our
network should outperform the results presented in papers.
It appears that most state-of-the-art approaches for object
detection will perform well enough for our recall require-
ment, so our focus in selecting an algorithm is instead on

speed. After researching detection algorithms, we decided
to use yoloV5. This network uses a single stage compared
to multi stage object detectors. Tests have shown that
yoloV5 is faster than other popular object detectors using
EfficientNet and ResNet backgrounds [7]. In addition, we
found yolov5 to be one of the most well documented and
accessible state of the art models [8].

Several design trade offs in the search and detection
pipeline could be fully explored through research alone. For
example, decisions like number of training epochs require
validation testing. Also, the confidence threshold for an-
imal detection should be determined through testing, be-
cause it is unknown how the model will generalize to the
real world.

5.3 Tracking Algorithm

Initially, a Numpy based Bakers-Matthews tracker was
considered for the base tracker of the system. Upon further
analysis, it was decided that a simpler and faster algorithm
would be more adequate for this use case. Many animals
are capable of moving at considerably high speeds, and so
a Lucas-Kanade tracker was chosen to optimize the speed
of the frame-to-frame analysis.

An OpenCV based tracker [9] was chosen over the orig-
inal Numpy based tracker made from scratch primarily for
the support already provided by the OpenCV library. Real-
time rendering of each video frame was bottle necked by the
Matplotlib library’s imshow function, which would require
a wait period of 0.01 seconds after displaying each frame
(before displaying the next one). Moreover, OpenCV’s li-
brary allowed for easy implementation of interactivity be-
tween the tester and window in which a frame/video is
diplayed, allowing for easier and more adjustable testing
via a click event led bounding box.

The OpenCV based KLT was also capable of fine tun-
ing via its parameters (window size and max pyramid level).
Section 7 includes a test that shows the capabilities of the
KLT at three different window sizes and three different max
pyramid levels for animal pictures at three different dis-
tances from the camera. Smaller window sizes with higher
pyramid levels were more appropriate for animals that were
placed farther from the camera, while animals that were
closer were easier to track using a medium/large window
size and low pyramid level.

5.4 Editing Algorithm

Photo editing is a far less studied problem than CNN’s
for object detection. Most methods existing use pixel-by-
pixel manipulations using GAN’s or other Deep Neural Net-
works [10]. These methods may work well, but they do not
align with our goals. Our use case is to emulate human
photography on a phone, which involves applying a certain
number of algorithms like sharpening. Using a pixel-by-
pixel approach can distort an image making the original
impossible to reconstruct. It also provides no explainabil-
ity or modifiability to the result. Automatic editing algo-

18-500 Final Paper - 7 May 2022 Page 5 of 11

rithms like we are looking for exist in photoshop and on
iOS but are not opensource. With this in mind we will
need to experiment with our own methods.

We tested two ideas to solve this problem. The first
method follows heuristic editing rules. This approach is
inspired by histogram equalization (?), which normalizes
the cumulative density functions of image values to avoid
sharp peaks and improve contrast. Our idea is to construct
a set of rules to transform an image and improve its appear-
ance. We are concerned that this approach is too ’one size
fits all’, and it will be difficult to create rules for problems
like blur. There are also documented difficulties getting
histogram equalization to work for color images (?). The
second idea is to train a CNN to take an input image and
returns values to apply image editing algorithms. The mo-
tivation is to create a more adaptable method for image
editing.

6 SYSTEM IMPLEMENTATION

6.1 Setup

In our purchases, we tried to minimize the setup work.
We still needed to use several libraries to receive data and
control our camera and servos. For our camera, we used
GStreamer in addition to OpenCV to read frames [11]. We
also used the smbus to access the GPIO pins on the Jetson
Nano [12]. The SDA and SCL ports were used to commu-
nicate with the motors, and this library enabled this.

6.2 Search and Detection

Figure 3: Pseudocode for the search algorithm

Our search algorithm is shown in Figure 3. The method
uses a constant scan of the search space. We assume that
animals are equally likely in all locations, so a complete
scan is the most efficient approach. We did have to find
the ideal step size for the camera. We tested and chose the
values that minimized overlap between consecutive frames.
This maximizes the speed of the complete search.

For our detection model we used yoloV5, a deep con-
vectional neural net. We chose this specific model because

of its speed and convenience. Yolo networks divide the im-
age into multiple sections and uses a single forward pass.
This approach is considerably quicker than other recurrent
detection networks. The v5 implementation applies a new
technique, cross stage partial networks, to further speed
up the detection [13]. For our final model we decided on
a .45 confidence threshold for predictions and 20 training
epochs. These values were decided by validation testing.

Figure 4: A picture from the WCS Camera Trap dataset.
Notice the non-ideal lighting and quality. These obstruc-
tions are important for training a robust model.

We used the WCS Camera Trap dataset to train our
detection model. This dataset was collected from cameras
pointed at feeding sources all around the world. As a result
there are 675 species and 375,000 images [14]. The large
amount of data and variety of animals made this dataset
perfect for our application. Many of these images are also
lower quality and contain obstructed animals, adding to the
potential for generalization. We ultimately used 20,000 of
these images due to storage and time limitations.

6.3 Tracking Algorithm

Figure 5: KLT test with the red circle indicating the initial
position of the target (Tamal the squirrel), and the green
circle indicating the tracker’s prediction of the target’s new
location.

Using the OpenCV library, each frame of the video
source of interest is read, with each pair of frames acting as
inputs to the OpenCV KLT, along with the x and y coor-
dinates of the target (animal) in the old frame in this pair.
The KLT then returns the location of the target in the cur-
rent/new frame. The KLT works with a window size of 30
pixels x 30 pixels, and a max pyramid level of 2. These

18-500 Final Paper - 7 May 2022 Page 6 of 11

parameter values are sufficient in tracking farther animals
(20 meters from the camera) that appear to be smaller and
closer animals (5 meters from the camera) that seem bigger
and easier to follow.

Both sets of points are indicated by a circle as shown
in Figure 5. The difference between these two point co-
ordinates is then translated into motor steps for the servo
motors that pan and tilt the camera.

6.4 Photo Editing

6.4.1 Heuristic Editing Approach

Our attempt of producing a heuristic editing algorithm
began with running histogram equalization on our image.
Histogram equalization augments the pixel intensity val-
ues such that the CDF of their distribution is linear [15].
The problem with this approach is that it only works for
individual image channels. To solve this problem we tried
applying the algorithm to the Red,Green,and Blue chan-
nels separately. This approach created large color distor-
tions. As a second attempt, we converted the image to
HSV space and performing the operation on the value chan-
nel. We also searched to find a heuristic approach to apply
sharpening/blurring, but our research and attempts were
unsuccessful.

6.4.2 Image Processing Library

In order to make a functioning photo editing algorithm,
our first step was implementing the necessary image editing
algorithms. After researching photo editing, we decided on
a set of seven algorithms (exposure, contrast, temperature,
tint, vibrance, saturation, and sharpening)

Exposure: Exposure in photography refers to the
amount of light allowed in the camera. We emulated this
using an exponentially scaled multiplier shown in Equation
2 [16]. The input, val, can fall in the range [−2, 2], which
was determined experimentally.

out = clip(in ∗ 2val, 0, 255) (2)

Contrast: Contrast in photography refers difference
between light and dark pixels. We used an implementa-
tion by DRKStudios for this algorithm, which is shown in
equation 3 [17]. For this algorithm val can be in the range
[−255, 255]

out = clip(
259(val + 255)

255(259− val
(in− 128) + 128, 0, 255) (3)

Temperature and Tint: We implemented tempera-
ture and tint as pixel wise adjustment to the images colors
in the range [−255, 255]. Temperature is an adjustment on
a blue/yellow scale, and tint is an adjustment on a purple/-
green scale [4].

Saturation: Saturation is also a pixel wise adjustment
to the images colors in the range [−255, 255]. However this

augmentation adds and subtracts from all color channels
[4].

Blur and Sharpen: We implemented blur and sharp-
ening as positive and negative adjustments using a single
algorithm. For blurring we applied a gaussian filter to the
image, we adjusted the blur by setting the gaussian covari-
ance to the input value[18]. For sharpening we convolved
the image with an odd sized kernel that has -1 values in the
middle column and row. The center value is set to keep the
kernel’s magnitude to 1, to not change the energy of the im-
age. An example of a 3x3 kernel is shown in equation 4. We
originally set the kernel size equal to the input value, but
this approach only allows for values that are odd integers.
To resolve this problem, we calculate the image using the
next largest and smallest valid kernels. Afterwards we use
a weighted combination of these images as the output.

 0 −1 0
−1 5 −1
0 −1 0

 (4)

Vibrance: The idea behind the vibrance algorithm is
to increase the color of dull shades while maintaining the
color of bright shades. This approach prevents the im-
age from becoming washed out like with the saturation al-
gorithm. To accomplish this effect we use a shifted and
stretched tanh function shown in equation 5. To apply this
algorithm, the image is converted into hue, saturation, and
value space. The algorithm is only applied to the saturation
channel. The range for this function is [0, inf)

out = clip(255 ∗
tanh(val∗in255)

tanh(1)
+ .5, 0, 255) (5)

It was necessary to create inverses for our image pro-
cessing algorithms to create data for our editing network.
This way we can take an edited image, apply an inverse
transformation, and know the necessary editing amounts
to restore the image. For most algorithms the inverse was
mathematically calculable. However, blur and sharpening
do not have a mathematical inverse. These algorithms are
roughly opposite of each other, so we attempted to roughly
align these algorithms. Our approach involved applying
blur and then sharpening for multiple values. We found
the pairs with the minimum MSE with the original image
and estimated the relationship between the two algorithms.
This relationship was roughly linear, and shown in figure
5. It is important to note that the inverse functions we
created are not perfect. Values are rounded to integers and
clipped between 0 to 255. As a result, large applications of
any algorithm cannot be well restored.

18-500 Final Paper - 7 May 2022 Page 7 of 11

Figure 6: The relationship observed between our blur and
sharpening algorithms

6.4.3 Neural Editing Approach

For our editing network we used the Kaggle Animal
Classification dataset [19], because most of these images
were well edited pictures of animals. We randomly aug-
mented the images with our inverse functions and stored
the restoration values as the output. We applied two ran-
dom augmentations of each image, leading to a custom edit-
ing dataset with about 10,000 images/editing value pairs.
For our network we used a convolution neural net with the
following structure

• 2d Convolution layer with 6 output channels and a
5x5 kernel, followed by ReLu activation and max
pooling

• 2d Convolution layer with 16 output channels and
a 5x5 kernel, followed by ReLu activation and max
pooling

• Linear layer with output size 120 and ReLu activa-
tion.

• Linear layer with output size 84 and ReLu activation.

• Linear layer with output size 7.

We used ADAM and MSE loss for the optimization.

6.4.4 Editing GUI

Figure 7: The editing GUI

In testing, we saw limited effectiveness for both the
heuristic and neural editing methods. With this in mind,
we still wanted to permit users to edit their photographs.
We used the OpenCV sliders functionality to create a GUI
to edit their photographs. This GUI is shown in Figure 6.

7 TEST & VALIDATION

7.1 Results for Detection Recall

Our detection requirement was 75 percent recall. In
training, our results far exceeded our requirement. We saw
a recall of 92.8 percent on our validation data. These re-
sults are shown in figure 7.

Figure 8: The yoloV5 training results

When we tested our detection algorithm with our cam-
era in the real world, we saw a considerable drop in recall.
To perform these tests, we placed an image of an animal in
front of the camera at various distances. We saw a recall
of 82 percent under 15 meters,and a recall of 54 percent
between 15 and 25 meters. We fell below our goal in this
farther range, but we believe a large part of this failure our

18-500 Final Paper - 7 May 2022 Page 8 of 11

low camera quality. Additionally, we saw a larger number
of human/non-animal false defections. We think this was
due to the low number of human and empty frames in our
data.

7.2 Results for Search Time

To test our search time, we ran our search algorithm for
a complete pan/tilt cycle. In our first run through we found
that the process was very slow. Every run of the detection
model took 4.6 seconds. We were using CPU to run the
model, but we were able to speed this up by switching to
CUDA on the Jetson Nano. With CUDA the entire cycle
only took approximately 21 seconds, which is slightly above
our goal of 15 seconds. With more powerful computational
resources, we believe that the 15 seconds goal is obtainable.

7.3 Results for Tracking Capability

To test the KLT’s capabilities, a human was given a
printed image of an animal and asked to stand 5 meters,
15 meters, then 25 meters away from the camera. Once
the wait period passed, the tester walked or slowly jogged
from side to side while holding the picture. The KLT would
then be tested with the specific parameters listed in Figure
9. Three different square window sizes were tested along
with 3 differnt numbers of KLT pyramid levels. Each pyra-
mid level represents a sub-sampled version of the frame’s
image, with each proceeding level containing half the num-
ber of pixels as the previous level. The higher the level,
the more sampled the image. Under mildly lit - good light-
ing conditions, the tracker worked adequately for animals
5m and 15m away. Once the animals reached a distance
of 25m from the camera, the tracker had some difficulties
maintaining the bounding box on target, and would need
a smaller initial window size and more pyramid levels for
accuracy. A successfully tracked animal remained within
the bounding box for at least 3 seconds.

Figure 9: Results for KLT test on animals at different dis-
tances. Successfully tracked targets indicated by ”Y”, un-
successfully tracked targets indicated by ”N”.

7.4 Results for Photo Editing

To test the photo editing algorithms, we chose 150 im-
ages not used in training and divided them into 3 sets of 50.

One set for no editing, one for heuristic editing, and one
for neural editing. Each image is augmented, edited, and
shown to a tester with the original image. The tester has
to guess what the original image is. An ideal image editing
algorithm will have the testers guess correct 50 percent of
the time.

Figure 10: Photo editing testing results

Our results are shown in figure 9 . Originally, we
thought that the testing results for the CNN were higher,
but this was a coding bug accidentally showing the ground
truth edit. This problem has been corrected from the de-
sign report. Overall, neither of our editing approaches per-
formed well, especially considering our goal was 50 percent
tester accuracy. We believe the heuristic approach was too
simple and ”one size fits all” for the many possible aug-
mentations. For the CNN we suspect two issues. First, we
believe that our inverse algorithms were not effective be-
cause information is lost by clipping the original augmen-
tation. This creates low quality data. Second, we believe
our architecture was inappropriate for the task. Overall,
this problem is largely unstudied except for major corpora-
tions like apple and adobe, and this was an ambitious task
to attempt.

8 PROJECT MANAGEMENT

8.1 Schedule

We planned to divide the Setup, Detection, Tracking
and Editing sections of our system. Our plan includes fin-
ishing the physical setup and include time for the detection,
tracking and editing phases as well as preliminary testing
right after the physical setup. This is followed by the fi-
nal integration and testing of the system as highlighted in
Figure 5 below.

18-500 Final Paper - 7 May 2022 Page 9 of 11

Figure 11: Gantt Chart of the Schedule

Compared to our initial plans, ordering parts and cre-
ating the physical setup took longer than anticipated. Due
to problems faced during data formatting and tracking, we
were forced to push back future tasks and had to dedicate
less time integration and final testing.

8.2 Team Member Responsibilities

We divided the responsibilities among our team by dif-
ferent sections of the project as outlined in the schedule.
To be specific:

• Justin took charge of Image editing and put together
the physical setup of the robot and the interactive
editing User Interface.

• Justin played a major role in integration of the
project along with Sid.

• Sid was the Search and Detection lead for the project
and was responsible for the electrical setup of the sys-
tem.

• Sid was in charge of the Testing of the integrated
system along with Justin.

• Fernando was in charge of the Tracking part of the
project and software setup.

8.3 Bill of Materials and Budget

The Bill of Materials mentions a few parts that we did
not use in our system. Our initial plan highlighted using a
two camera system which called for the use of an adapter.
Due to problems faced while integrating the system, we
were forced to pivot our approach to use one camera. As
a result, the final system featured the use of 1 Arducam
8MP PTZ Camera and 1 Digital Servo Kit as well as Jet-
son NANO, for computation, and a battery pack which was
used as a power source (These have not been included in
the Bill of Materials).

The final Bill of Materials needed for the project which
highlight the use of the budgets, can be found in Table 2.

8.4 Risk Management

The critical risk factors we identified for the project is
the ability to detect animals in the defined time frame and
accurately. If we are unable to detect the animal while it is
in the related environment, we will not be able to capture
a photograph of the animal since to the system, it does
not exist. Therefore, detecting the animal with a bounding
box around it is a pivotal aspect of the project. We used a
pre-trained CNN model which already has established va-
lidity to prevent this from being a factor in our project. In
case we faced possible failure with this due to an inaccurate
model, we planned to train with a larger data set and for
more epochs.

Another major risk we identified over the course of the
project was issues created by version and system incom-
patibility. To be specific, running a variety of algorithms
on the system meant importing a large number of libraries.
This caused issues with conflicting versions and dependen-
cies that required large amounts of time for debugging. The
major fallback for this was trying to identify these bottle-
necks beforehand and attempt to allocate time for debug-
ging that may be required during integration phases of the
project.

In the context of personnel and schedule, the risks faced
over the semester were due to problems faced in different
speeds of development in the different phases of the project.
The initial editing library was ready and tested before the
tracking and detection models could be tested. This pushed
back integration of that aspect of the system and caused
slight wastage in time. To deal with this, we made changes
to the schedule and began other work simultaneously to get
ahead in other areas of the project. Once the search and
detection model was ready, we integrated that with the en-
tire system and resumed testing. However we were forced
to pivot our approach and use case since the tracking al-
gorithm was not ready and could not be included in the
system.

9 ETHICAL ISSUES

A great deal of the ethical issues pertaining to the
Photorobo are centered on the user of the system and

18-500 Final Paper - 7 May 2022 Page 10 of 11

Table 2: Bill of materials

Description Manufacturer Seller Quantity Cost @ Total
8MP Pan Tilt Zoom Camera Arducam UCTronics 2 $94.99 $189.98
2 DoF Pan Tilt Digital Servo Kit Arducam UCTronics 2 $89.99 $179.98
Multi Camera Adapter module V2.2 Arducam UCTronics 1 $49.99 $49.99

$ 460.00

their intentions in detecting and tracking various species
of wildlife. In the wrong hands, the system may be used to
facilitate the poaching of animals, particularly those that
are endangered or of high value in poachers’ markets. The
system would have to be administered by a trustworthy
organization that would be conscious of its customers and
perhaps capable of running background checks or surveys of
the like to gauge their clients’ intentions/trustworthiness.

Of course this raises the possibility of selling the robot
in second-hand markets, meaning it would inevitably fall
into the wrong hands. For the sake of protecting endan-
gered/frequently targeted animals, the system’s detector
should be trained to avoid detecting these animals, with
administrative access to the detector’s trained CNN. This
would prevent any malicious users from replacing an eth-
ically trained CNN with one more suitable for finding an-
imals that are illegally hunted. The CNN may also be
replaced by another that was trained in detecting more
niche or unrelated targets that are more deserving of pri-
vacy (i.e. specific humans, humans in general, passenger
vehicles, etc). This administrative access would most likely
be granted to wildlife preservation organizations.

10 RELATED WORK

After looking at the directory of past Carnegie Mellon
ECE Capstone projects, we found related projects using
Computer Vision solutions. Namely:

• Smart Wardrobe

• CV Studio

• Tartans Gambit

Over the course of the project we also noticed similari-
ties with other current Capstone projects like:

• Project Projective

• Where the Milk?

During research we used a variety of online resources.
Among these we also identified a few that had similar pur-
poses and solutions implemented as our system.

11 SUMMARY

The system was not fully integrated, however each sub-
system works well individually. With more time, all subsys-

tems would work in tandem on the Jetson Nano. The cam-
era’s movement was rather jittery and abrupt, contribut-
ing to the blurry nature of many of the pictures taken by
the Arducam. Perhaps a smaller motor step and smoother
environment-scan can be implemented to fix this issue.

The KLT is capable of tracking animals moving at 2 m/s
and those moving at faster speeds. With parameters tuned
according to the target animal’s distance from the cam-
era, the tracker can follow targets up to 25 meters away,
successfully meeting the design requirements that were ini-
tially set. Due to time constraints caused by difficulties
met during the configuration of the Jetson Nano, this sys-
tem was not integrated into the final product.

The photo editing subsystem has a wide range of tools
used by photographers to enhance their shots, with each
tool having a dedicated spectrum of intensity that would
allow for fine-grained editing adequate for a wide variety
of environments (lighting conditions, color temperatures,
etc.). However, the photo editing is only manual, and would
require a substantial amount of user input. With a CNN
trained to apply various amounts of each editing tool to
the initial images, the system would satisfy the automated
editing design requirement.

Under strong lighting conditions, the system was able
to consistently detect surrounding animals. Rooms under
warm and/or slightly dimmed lighting negatively impacted
the system’s ability to detect the printed photos of animals.
Besides a longer training duration with more epochs, the
detector’s subsystem would benefit from a training set that
involved more empty images and images of humans to avoid
false detections, which were not uncommon.

Many of the limits to the system are rooted in the hard-
ware chosen for this project. The Arducam, while simple
to program in conjunction with a Jetson computer, is not
as capable as more specialized, professional grade cameras
with stronger sensor resolutions, image stabilization func-
tionality, wider variety of focal length options, etc. Indeed,
a more advanced camera system could be used to signifi-
cantly enhance the quality of the photos and remove some
of the burden placed on the photo editing subsystem.

With more time, a suitable casing/ chassis would also
be included, making the system insusceptible to water dam-
age, heat damage, or even shock damage. All of these fac-
tors can easily be encountered in the wild.

The Jetson Nano came with a long list of difficulties in
setting up a proper coding environment for this project.
A considerable amount of systems knowledge would have
been helpful in managing the dependencies needed to com-
plete the project. These difficulties contributed to a long

18-500 Final Paper - 7 May 2022 Page 11 of 11

integration period, which was to be expected. Taking the
time to set up an appropriate coding environment is key.

Glossary of Acronyms

Include an alphabetized list of acronyms if you have lots
of these included in your document. Otherwise define the
acronyms inline.

• DoF - Degrees of Freedom

• CNN - Convolutional Neural Network

• KLT - Kanade-Lucas Tracker

References

[1] Heggie, J. Take a photo save a species.
https://www.nationalgeographic.com/photography/article/paid-
content-take-a-photo-save-a-species-the-power-of-wildlife-
photography

[2] Gallucci, M. These robots are transforming how we
see wildlife. https://mashable.com/article/robots-wildlife-
photography

[3] Dempsey, J. Photographers, are robots com-
ing for your jobs. https://digital-photography-
school.com/photographers-are-robots-coming-for-your-
jobs

[4] REI. Photo Editing Basics. https://www.rei.com/learn/expert-
advice/photo-editing-basics.html

[5] NVIDIA. Jetson Benchmarks. https://developer.nvidia.com/embedded/jetson-
benchmarks

[6] OpenCV. Multi-Camera Calibration. https://docs.opencv.org/4.x/d2/d1c/tutorialmulticameramain.html

[7] Dwivedi, P. YOLOv5 compared to Faster RCNN.
https://towardsdatascience.com/yolov5-compared-to-
faster-rcnn-who-wins-a771cd6c9fb4

[8] Nelson, J. YOLOv5 is here. https://blog.roboflow.com/yolov5-
is-here/

[9] OpenCV. Optical Flow. https://docs.opencv.org/3.4/d4/dee/tutorialopticalf low.html

[10] Meisner, B. What is the future of artificial ai in
photo editing. https://www.forbes.com/sites/forbesbusinesscouncil/2022/01/20/what-
is-the-future-of-artificial-intelligence-in-photo-editing/?sh=ef80e5c547c0

[11] Gstreamer. https://gstreamer.freedesktop.org/

[12] Shawn. How to use raspberry pi gpis pins.
https://www.seeedstudio.com/blog/2020/02/19/how-to-
use-raspberry-pi-gpio-pins-python-tutorial/

[13] Wang, C. Et al. CSPNet. https://arxiv.org/pdf/1911.11929.pdf

[14] LILA.WCS Camera Traps. https://lila.science/datasets/wcscameratraps

[15] Bhattacharyya, S. Histogram Equalization.
https://towardsdatascience.com/histogram-equalization-
a-simple-way-to-improve-the-contrast-of-your-image-
bcd66596d815

[16] https://stackoverflow.com/questions/12166117/what-
is-the-math-behind-exposure-adjustment-on-photoshop

[17] DFStudios. Contrast Adjustment. https://www.dfstudios.co.uk/articles/programming/image-
programming-algorithms/image-processing-algorithms-
part-5-contrast-adjustment/

[18] Edeza, T. Image Processing with Python.
https://towardsdatascience.com/image-processing-
with-python-blurring-and-sharpening-for-beginners-
3bcebec0583a

[19] Banerjee, S. Animal Image Dataset.
https://www.kaggle.com/datasets/iamsouravbanerjee/animal-
image-dataset-90-different-animals?resource=download

