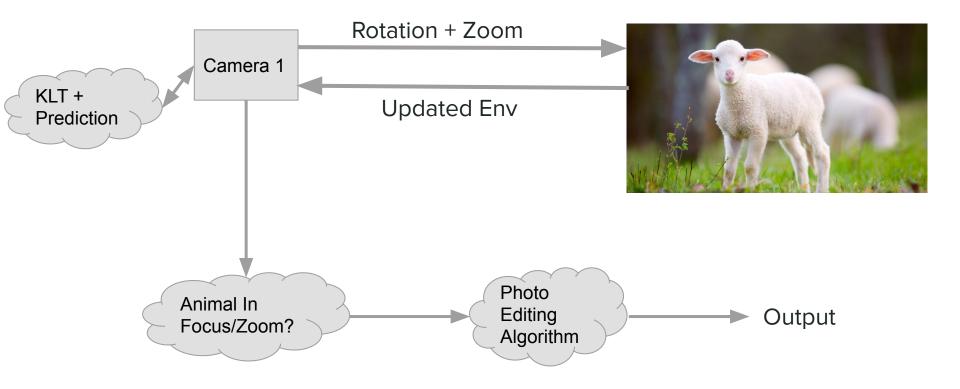
Team B1: PhotoRobo

Justin Kiefel, Sidhant Motwani, Fernando Paulino

Putting it all together...

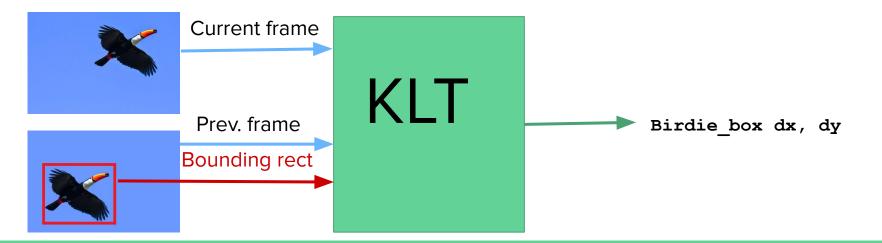
Use Case Requirements


- <u>Problem:</u> Animal photography is time consuming and mundane. Remote controlled photography robots do little to fix this problem. Photo editing is necessary, but similarly human-capital intensive.
- <u>Goal:</u> Produce a stationary nature photography robot, which can locate, track and photograph animals. The system should also perform automated image editing.
- ECE Areas:
 - Signals and Systems Image Processing and Control Systems
 - Software Systems Embedded System Programming

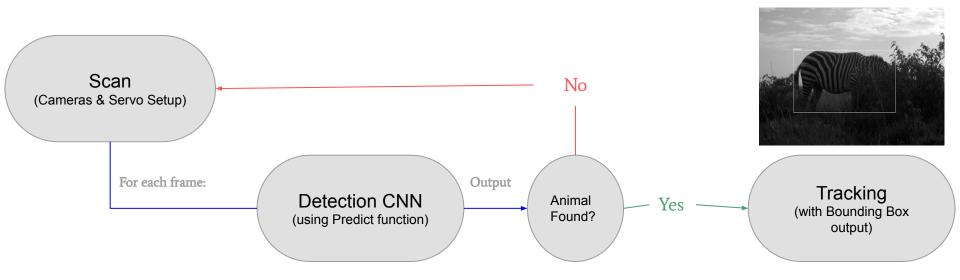
Quantitative Requirements

- <u>Detection Ability:</u> The system must detect animals within 25 meters with a recall of 75%
- <u>Detection Speed:</u> The system must detect animals within 15 seconds.
- <u>Tracking Ability:</u> The system must be able to follow and photograph an animal moving 2 m/s.
- <u>Photo Quality:</u> The photo should be 12MP and have quality indistinguishable from a human shot and edited photograph. Human testers should not do better than guessing (50% accuracy) when labeling photos as robot or human pictures.

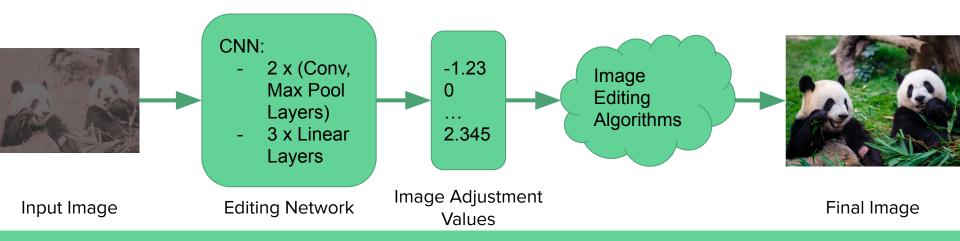
Solutions Approach


- 3 Phase Software Approach
 - Animal Search and Detection
 - Tracking and Photography
 - Photo Editing

Complete Solution - Tracking


Lucas-Kanade Tracker

- Numpy based KLT
- **GSTREAMER** pipes images from Arducam to the app
- Feature matching algorithm to align the two camoras


Complete Solution - Search and Detection

- Constant speed scan using Camera setup with different Zoom layers
- Frame-by-frame processing
- The trained convolutional neural network outputs a bounding box for any animal found
- Transfers control to 'Tracking', by providing it the location of the bounding box

Complete Solution - Photo Editing

- 7 Image Editing Algorithms (Sharpening, Contrast, Tint, Temperature, Saturation, Vibrance, Exposure)
- CNN Trained to apply various amounts of algorithms
- Dataset created by applying random modifications to Kaggle Animal Classification Dataset
 - Inverse functions of editing algorithms implemented to get ground truth editing amounts

Testing, Verification, and Validation- Detection and Tracking

- Subject: Printed cutouts of animal pictures
- Search & Detection
 - Placed at different distances
 - Placed in different lighting conditions
 - Different Orientations
- Fast + accurate camera

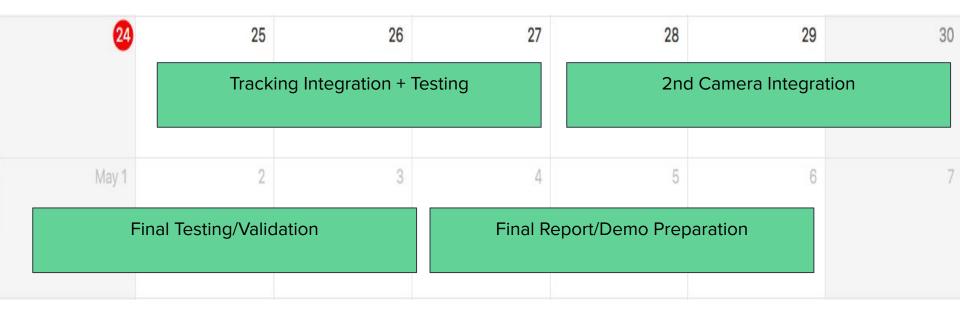
 $\geq =$

human reaction speed?

Detection Neural Network Training Results		
Epochs: 30	Recall: ~ 93%	Accuracy: ~ 92.8%

Testing, Verification, and Validation - Photo Editing

- 2 Testers (Not members of project) shown 50 image pairs for each image editing approach and asked to identify original image
- One image is original image, and the other is an edit of a randomly augmented image
- Ideal image editing algorithms will lead to a 50% correct rate


Photo Editing Testing Results (Percent Correct Guesses)			
No Modification	Heuristic Editing Rules (Original Approach)	Neural Network Approach	
91%	85%	89%	

Future Work

- **Detection**: Large and Precise Dataset
- **Tracking**: Two Camera Approach for Focussing
- **Editing**: Different editing CNN architectures
- Hardware:
 - Update to two cameras
 - Better Processing Unit (>Jetson Nano)

Project Management

