Nature Photography Robot

Justin Kiefel, Sid Motwani, Fernando Paulino

Use Case

- <u>Problem:</u> Animal photography is time consuming and mundane. Remote controlled photography robots do little to fix this problem. Photo editing is necessary, but similarly human-capital intensive.
- <u>Goal</u>: Produce a stationary nature photography robot, which can locate, track and photograph animals. The system should also perform automated image editing.
- <u>ECE Areas:</u>
 - Signals and Systems Image Processing and Control Systems
 - Software Systems Embedded System Programming

Quantitative Requirements

• <u>Detection Ability</u>

- Requirement: The system must detect half visible animals within 25 meters with a recall of 75%
- Reasoning:
 - Animals less than half visible are likely not worth photographing
 - Recall is a more important metric than precision or accuracy, because animal appearances are sparse and removing irrelevant photos is a quick process.
 - Humans certainly do not reach 100% recall on this task, though there is little data. An autonomous system with 75% recall would photograph as many animals as a perfect human in just 33% more time. We believe this is a reasonable tradeoff for the reduction in human labor.
 - 25 meters is the necessary distance to photograph birds in nearby trees

• <u>Detection Speed</u>

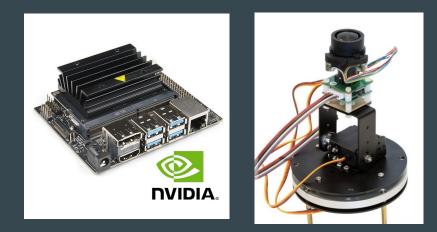
- Requirement: The system must detect animals within 15 seconds.
- Reasoning: Animals rarely stay in the same position for a long period of time. A walking animal moves approximately 2m/s and could walk the entire search diameter in 25 seconds.

Quantitative Requirements Cont.

• <u>Tracking Ability</u>

- Requirement: The system must be able to follow and photograph an animal moving 2 m/s.
- Reasoning: Photographing a running animal or flying bird is too difficult even for many humans,
 but the system should be able to follow and photograph a walking animal.
- <u>Photo Quality</u>
 - Requirement: The photo should be 12MP and have quality indistinguishable from a human shot and edited photograph. Human testers should not do better than guessing (50% accuracy) when labeling photos as robot or human pictures.
 - Reasoning: The most common and accessible form of photography is phone photography, so our system should reach this level of quality. Most modern phones have 12MP cameras and in-app editing software. In addition to the technical capabilities, this measure tests the robots ability to center and focus the photograph like a human would.

Technical Challenges


- Robot Mobility
- Camera Quality and Capability
- Speed/Accuracy Tradeoff in Detection
- Zoom/Tracking Tradeoff
- Computing Power on Embedded System
- Photo Quality after Editing

Technical Challenges - Risk Mitigation

- Accuracy before speed
 - \circ $\,$ A system that misses stationary animals but operates quickly is useless
- Investing in proper hardware instead of using complicated software hacks
 - 2 Camera system
 - \circ 12MP Camera with zoom control
 - Buying premade Pan/Tilt system
- Have a simple starting point
 - Detection: Pretrained CNN
 - Tracking and Shooting: 2 camera approach with inverse compositional alignment
 - Editing: Basic brightness, color balance, contrast, zoom and focus rules

Solution Approach - Hardware

- Jetson Nano 2GB Developer Kit
 - Provides computing power for neural networks and image processing on an embedded systems
- 2 x Arducam 12MP Pan Tilt Zoom Camera with Metal Base and 2 Digital Servos
 - Cameras connect through MIPI and USB
 - Motors connect through GPIO pins

Solution Approach - Software

- Search and Detection

- Initial:
 - Uniform scan at various speeds
 - Pre-trained animal detection CNN (EfficientNet w/ Kaggle Animal Detection Image Dataset)
- Goal: Strategic search with bayesian optimization
- Tracking and Shooting
 - Initial:
 - Camera 1: Inverse compositional alignment at low speeds for nearby targets
 - Camera 2: Adequate zoom/focus
 - Goal: Optimized tracking of distant targets at high speeds
- Editing
 - Initial:
 - Implement a set of image processing algorithms (sharpening, color correction, smoothing, ect.)
 - Apply using research defined heuristic methods
 - Goal: Deep Neural Network trained for applying image processing algorithms

Testing, Verification, and Metrics

- To test the robot's recognition capabilities, a set of animal pictures may be placed in its environment under different lighting conditions and levels of occlusion
 - Locate new animals in 15 secs
 - \circ Targets 5m, 15m, and 25m away
- Human testers will be shown pairs of photos and asked to distinguish robot photos from professional photos
- Animal tracking to be tested at 3 different speeds and 3 different distances
 - \circ Slow(0-1 m/s), medium (1-3 m/s), and fast (3+ m/s)
 - Consistent tracking for up to 5s

Tasks and Division of Labor


• Justin

- Physical Setup
- Image editing lead
- Sid
 - Electronics Setup
 - Detection and search lead
- Fernando
 - Pretrained CNN Setup
 - Tracking and photography lead

Schedule

- We split our work into 4 major sections:
 - Physical Setup
 - Detecting
 - Tracking
 - Editing
- Two major testing rounds will be used
 - All components will be tested in these evaluations
 - We will redistribute efforts based on success of first testing round

таѕк	PROGRESS	START	END
Setup			
Order Parts		2/6/22	2/7/22
Wiring		2/14/22	2/15/22
Getting Video to Jetson		2/16/22	2/19/22
Physical Setup		2/15/22	2/22/22
Controlling the Setup		2/17/22	2/25/22
Setup Slack		2/26/22	2/28/22
Detection			
Get CNN Operating		2/20/22	2/27/22
Initial Search Algorithm (Simple Scan)		2/6/22	2/13/22
Test Initial Search Algorithm		2/28/22	3/7/22
Planning Updates		3/8/22	3/15/22
Implementing Updates		3/16/22	4/6/22
Final Testing and Decision Making		4/7/22	4/17/22
Detection Slack		4/17/22	4/24/22
Tracking			
Baseline Tracking Algorithm (HMM)		2/6/22	2/13/22
Test Baseline Tracking Algorithm		2/28/22	3/7/22
Planning Updates		3/8/22	3/15/22
Implementing Updates		3/16/22	4/6/22
Final Testing and Decision Making		4/7/22	4/17/22
Tracking Slack		4/17/22	4/24/22
Editing			
Implementing Image Processing Algorithm		2/6/22	2/13/22
Implement & Research Hueristic Editing Rules		2/28/22	3/15/22
Explore Neural Network Approaches		3/16/22	4/6/22
Final Testing and Decision Making		4/7/22	4/17/22
Editing Slack		4/17/22	4/24/22

