18-500 Final Project Report: Team B0 05/07/2022

Where’s the Milk?

Project Contributors: Lucky Wavai, Allen Ding, and
Takshsheel Goswami

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract—For the average shopper who is not able to find the
items in their local stores that they desire, the employees that are
constantly showing customers the aisles where things belong only
to find them out of stock, the businesses losing customers to the
ease of online shopping and retail, it seems that the traditional
brick and mortar shopping experience needs to be reevaluated.
We hope to create a component of the next generation of the
in-person experience that will provide real time information to
customers and businesses alike. More specifically, we aim to build
a platform that incorporates computer vision for inventory
management of grocery store aisle shelves.

Index Terms—AJAX (Asynchronous JavaScript and XML),
Background Subtraction, BRISK (Binary Robust Invariant
Scalable Keypoints), Brute Force Matching, Feature Detection,
Client, Flask Micro Web Framework, FLANN (Fast Library for
Approximate Nearest Neighbors) Matching, HTTP Response,
HTTP Requests, Lowe’s Ratio Theorem, OpenCV, ORB
(Oriented FAST and Rotated BRIEF), RPI (Raspberry pi),
Server, SIFT (Scale Invariant Feature Transform), SQLite3,
SURF (Speeded Up Robust Features)), Web App (Web
application), Wireless Communication

1. INTRODUCTION

These days, more and more people are turning from
in-person shopping to e-commerce alternatives for ease
compared to that of traditional brick and mortar stores.
According to Fortune, “UBS forecast that some 80,000 retail
stores, or roughly 9% of the current total, will shut their doors
permanently by 2026. The forecast is based on the assumption
that e-commerce as a percentage of total retail sales jumps to
27%—up from 18% now” [2]. There seems to be a trend of
local brick and mortar stores closing which also inevitably
results in lost jobs nationwide. One potential way to combat
this is to provide customers with a reason to do more of their
shopping locally.

Current solutions lack real time analysis and/or require
heavy infrastructure. For instance, the typical inventory
management systems involve scanning products when
received at the backdoor, then keeping track of what gets sold
at the register. These processes have no comprehensive
management of items while in the store such as information
about the presence of items on shelves or misplaced products.
(3]

Some more advanced solutions involve robotics in
grocery stores such as the Marty Robot. Similar technologies
maneuver around the store sensing for the desired information
such as spills or hazards, but the downsides include high cost

of such robotics hardware (i.e a single Marty Robot costs
about $35,000), take up aisle space, and lack the ability to
perform comprehensive real time analysis as robots do not
scan all aisles of the store simultaneously. [4]

We hope to work towards a new generation of brick and
mortar stores with real time automated inventory management
systems, navigation systems, and more. Specifically, this
semester, we will attempt to take steps towards that store of
the future by developing a platform which incorporates
computer vision technology to transmit real time data of an
aisle status to an application for store operators.

11. UsE-CASE REQUIREMENTS

Our primary goal is to build a platform that accurately
detects and provides real time data on aisle and object states to
a web-interface. Therefore, our primary focus is on accuracy
and time/latency..

One use case requirement is to provide a system with at
minimum 75% accuracy in detecting the presence of all of the
expected store items on aisle shelves. The qualifier of
“expected” is to differentiate from items that are on the shelf
that were displaced from another aisle. For our primary goal,
such items will not be a requirement, but we hope to tackle
this area in a possible reach scenario. This use case
requirement will be analyzed in our testing phase called the
Presence Test.

Another use case requirement is to provide a system with at
least 80% accuracy in detecting activity within the aisle,
specifically the motion / activity of people within the aisle.
This use case requirement will be analyzed in our testing
phase called the Motion Test.

Another use case requirement is for all of the information to
be processed, transmitted, and displayed to the user device
within 15 seconds of detected motion in the aisle i.e. someone
entering and leaving an aisle.

I11. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

We are building our platform primarily using the Python
programming language with some exception i.e. the web
application front end. On top of Python, we are using various
libraries packaged under the conda-forge openCV
requirements package. The primary libraries of note are
openCV, numpy. We will use the MOG?2 class within openCV
for background subtraction. During the design review we were
unsure of which feature extraction method we would use i.e.
SIFT, SURF, ORB, or BRIEF, but after testing and
implementation we settled on using SIFT with openCV for
feature extraction. See Fig 3. Python with the addition of these
libraries provides an efficient development environment for
our detection use case requirements as well as backend
technology and communication between devices for the rest of
our system.

The system will process in a manner similar to a finite state
process. Initially, the system is in an idle state awaiting aisle
activity. After a person is detected within the aisle the system

18-500 Final Project Report: Team B0 05/07/2022

enters the motion state. Once there is no longer any motion
detected, the system enters the item detection state where the
presence of all items will be updated. Once processing is
complete, the system resets to the idle state. See Fig 2

On the user-facing side, the web application is built upon
the Flask framework, backed by a SQLite3 database. The
website gives users the ability to create and populate aisle(s)
with item(s) as if they were creating their stores. Additionally,
these aisles can be viewed in a format that presents aisle
information, specifically, the presence of each item on the
shelf that will continuously update as changes are being made
real-time via the other two subsystems.

Fig. 1. Overall system. In reference to the above image, depicted is a
demonstration of our overall system. In the background observe the shelf
of items, placed at a distance of 5 ft from the wireless system
(ARDUCAM connected to a raspberry pi4). This image does not show
the height of the camera which is supposed to be 3 ft above the ground.
Next to the wireless system is the web application user interface running
on a Macbook Pro, displaying the status of items on the shelf for a user
created aisle.

Idle State:
no motion occurring

Object Detection State:
Runs object detection
algorithm on latest
frame

Motion State:
Ongoing motion
occurring

Fig. 2. This is the overall finite state-esque control system for the motion

detection and object detection system on each camera module. When a
camera module is assigned to an aisle it begins in an idle state. Both the
Idle state and the Motion State run the motion detection algorithm
indefinitely. The Idle state transitions to the motion state when motion is
detected. Once motion ceases, the control transitions to the object
detection algorithm which detects the presence of items on the shelf then
outputs results to the web app. When that portion completes, control
transitions back to the Idle State

18-500 Final Project Report: Team B0 05/07/2022

Wireless Transfer

(Contains a small Flask
server and background
subtraction code - for people
detection)

ARDUCAM

(Capturing live video feed of
people in aisle)

Object Detection

Segmentation

(Segmenting shelf
image using sliding
window technigue)

\ y.

Image Processing

Output

(Resulting matches and

presence of itemsare — |

sent to the web
application)

Recognition

(An object is matched

Fig. 3. System Architecture

(SIFT) with the training data
set)
b £ i
Y))
™
» Back-End Server Front-End
Legend
Hardware Off the Shelf
(Data is displayed on a web
page created with Flask)
Software MNewly Designed
/ _—
S

18-500 Final Project Report: Team B0 05/07/2022

IV. DESIGN REQUIREMENTS

For this system, we have 3 primary subsystems, namely the
motion detection, the object detection, and the web
application. The main use case requirements are speed and
accuracy for our whole system. Our wireless camera system
would capture frames and process both motion detection and
object detection locally. Our camera should be able to capture
clear images of people and items on shelves 5 feet away, and
must be compatible for use with a raspberry pi. The rpi
controls the camera, motion detection, object detection, and a
flask server. The server sends a rendered image of the shelf
section showing where items are located along with a
dictionary of items mapped to booleans representing their
presence. The rpi serves that data to the web app for the user
interface. The process from detecting motion to updating the
web app user interface should be within the 15 second user
requirements. The transfer from the rpi to the web app should
not take longer than 1-2 seconds (preferably near
instantaneous) so we have 13-14 seconds to perform image
processing and detection.

For our image processing, we have 3 primary
processes/algorithms that we would need to execute at any
point. Namely, motion detection (background subtraction),
segmentation (sliding window), and feature extraction (SIFT).
Motion detection/background subtraction is not counted
towards our 15 seconds since it is always running and serves
as the initial trigger for the rest of the actions. However, the
time from the trigger to object detection is counted towards
the 15 seconds as the initial event. That time should be near
instantaneous at best and 1 second at worst. Through research,
we determined that our feature extraction portion could take at
the least 3-6 seconds. In combination with the segmentation,
we aim to complete a cycle of detection in 10-11 seconds.

Besides the timing requirements, we need to have a high
degree of accuracy as well. Our motion detection algorithm
must have over 80% accuracy in determining motion in the
aisle. We also aim to have at least a 75% accuracy with the
feature extraction and matching with SIFT. Once this
processed data has been collected, we need to present it in a
viable format. That is where our web application comes in.

For our web application we need a speedy framework
specifically for display of data. We aren’t performing much
computation in this step, so our framework need not be
extremely comprehensive (eg: django) so we wil veer towards
Flask which is lightweight and faster for the specific purposes
of receiving and displaying data. For this web application,
we’d also need a database that could store processed image
data and also work in conjecture with the python image
processing that we shall perform. With the current timing, this
should leave us about 2—3 seconds to spare from our use-case
requirements, while meeting and/or exceeding the accuracy
standards involved.

V. DEsIGN TRADE STUDIES

The following are some design trades we made before and
during implementation along with the reasonings behind them:

A. Raspberry Pi 4 vs Jetson and other alternatives

Raspberry Pi is an affordable microprocessor / computer
device that is about the size of a wallet or credit card. The pi
module is programmable, and can be used as a controller for
other devices. Due to its form factor it can serve as a gateway
to IOT device like applications. These specifications make it
an ideal candidate for the camera subsystem of our project.

Other options could include using our own laptops or
computers, devices from the arduino, or a device such as the
jetson nano. One reason laptops and jetsons are not reasonable
to meet our project goals is in part because they are expensive
devices that provide more computing power than we need.
Therefore, a cheaper alternative is desirable. Another reason
laptops are not desirable is that it is too large to incorporate on
store shelves. The arduino is a cheaper option, but it is also a
limited option. The arduino is essentially just a controller for
other devices. We want to attempt some onboard processing
using the raspberry pi’s and transmission that would otherwise
require additional complexities if we used an arduino.

One drawback/issue is the limited supply of raspberry pi’s
in the market. We will implement the local wireless system on
a MacBook Pro (16-inch, 2019) with a 2.6 GHz 6-Core Intel
Core i7 processor, 32 GB 2667 MHz DDR4 of RAM, and
AMD Radeon Pro 5500M 8 GB graphics. Then, we will
attempt to port everything over to a raspberry pi

B. Raspberry Pi FB2 Camera - Arducam vs other
alternatives

Raspberry Pi cameras can take good quality images and are
fully programmable. Another benefit with using the raspberry
pi camera is integration with the raspberry pi device itself.

We will avoid the risk of hardware incompatibility that may
come with certain webcam or other camera devices. We will
also avoid the risk of cameras that require more complexity to
control or may be limited in functionality altogether for the
purposes of our project.

One drawback of the Arducam is that the current lens we
have is a fisheye lens. Fisheye lenses cause some distortion in
footage. This is addressed in the risk mitigation portion of this
report. In the meantime we will use a Logitech HD Pro
Webcam C920 in conjunction to the laptop. Then, we will
attempt to transition when porting to the raspberry pi

C. Raspberry Pi Power Supply

One goal is to make the system as unobtrusive as possible
within the use case environment. Therefore, we are using a
separate power supply for the camera subsystem.

The alternatives were battery power or connecting to a
laptop or computer device. The laptop or computer device
connection defeats the purpose of using a raspberry pi in place
of a traditional large computational device to begin with i.e.
bulk and cost. The battery powered option would require
constant replacements. We want our system to be as set and
forget as possible to increase the ease of installation and
maintenance

18-500 Final Project Report: Team B0 05/07/2022

D. SIFT, SURF, ORB or BRISK - Object Detection

SIFT stands for Scale Invariant Feature Transform. That
means SIFT can be used to detect objects with a degree of
invariance or degree of tolerance to objects that are scaled
differently or in different orientations. For our use case, that
could mean items that are further back in the shelves, items
that are toppled over or replaced in an un-orderly fashion by
people. Therefore, to meet accuracies of above 75% for object
presence detection, we would benefit from such an algorithm

One drawback to SIFT is that it is an algorithm that incurs a
lot of latency. From research paper [9], it is evident that
among similarly peer reviewed alternatives, SIFT is orders of
magnitudes slower in total processing time. For instance it
averages about double the processing time of SURF.

However, among the alternatives, SIFT time and again out
performs in terms of matching accuracy. Since these
algorithms run up to about 3-5 seconds in research papers [5],
[6], and [9] , and our use case requirement is 15 seconds of
total processing time we hope to remain compliant to user
expectation and deliver a high accuracy robust system.

Nevertheless, SURF is twice as fast as SIFT, and BRISK
and ORB are on average faster than SURF according to
research paper [9].

We also performed our own in-house testing to compare
SIFT with ORB. We found that SIFT outperformed ORB
using our own matcher and filtering algorithms — FLANN and
Lowe’s Ratio Theorem — (as in Table 1). From research paper
[9], we know that BRISK performs around the same as ORB.

E. FLANN and Lowe s Ratio Theorem

After extracting the features using SIFT, we will need to
implement a matching algorithm to determine if new images
match items in our stored trained images of items.

In order to draw clearer matches we will use FLANN (Fast
Library for Approximate Nearest Neighbors) rather than Brute
Force Matching.

To further improve accuracy, we need to filter the matches
to only include matches that are sufficiently different from one
another i.e. distinct to filter out noise and focus only on good
matched points. To do this we will use David Lowe’s Ratio
Theorem as mentioned in paper [13].

However, the Lowe’s Ratio Theorem itself requires the
adjustment of a threshold for the distance between matched
points, and a threshold for the number of total good points to
be considered a detected object. This will be determined in
testing and validation to achieve the best results

F MOG Background Subtraction

We decided to use background subtraction for detecting
motion within the aisles, more specifically MOG2 background
subtraction. Background subtraction is a simpler process of
object detection than other methods such as HOG or YOLO
because it is essentially just a difference of two images rather
than an algorithm to generate and match keypoints and
descriptors.

In addition, compared to other background subtraction
alternatives such as MOG or GMG, MOG2 performs 3 times

faster than MOG and 10 times faster than GMG according to
research paper [7]. MOG?2 is also capable of upwards of 89%
accuracy which exceeds our use case requirement of 80%. [7]

TaBLe I. SIFT vs ORB

SIFT ORB
Items Max Num Max Num Max Num Max Num
Correct Incorrect Correct Incorrect
Matches Matches Matches Matches

apple 0 7 1 0

bread 10 1 0 0

broccoli 0 1 0 0

cereal 133 0 0 1

chips 10 3 1 0

eggs 0 1 0 0

lemon 0 2 0 0

milk 1 1 0 0

orange 0 5 0 0

oreos 75 1 2 0

peanut

butter 57 26 0 0

potato 0 1 0 0

soda 10 1 0 1

tomato 0 3 0 0

case of 0 1 0 0

water

G. Flask vs alternatives

Flask is a lightweight web framework that is developed
using python. Since the rest of our system is primarily built
using python this reduces complexity. [10]

An alternative we initially considered was the Django Web
framework. Django has more configuration requirements and
features that go beyond the scope of what we need for the user
interface of our project. The focus of our system is not in the
web application portion, therefore a lightweight option with
configurable features / components such as Flask is desirable.
[10]

One drawback however is that Flask does not have a built-in
administrative tool which comes with frameworks such as
Django. Therefore the development portion will lack in the
ease of creating and managing instances of models and
dummy data for presentation and testing [10]

H. SQOLite Database for Object Detection

SQLite is a lightweight database system that supports the
ACID principle. This makes SQLie ideal for embedded
systems which would serve our project well if we are able to
process the object detection on the camera sub system and still
mee processing time requirements for our system. The

18-500 Final Project Report: Team B0 05/07/2022

liteweight, configuration free, self-contained , and
transactional nature of SQLite enables such implementation.
SQLite also works with python thus reducing the complexity
of our overall system. [11]

The ubiquitous nature of an ACID based database schema is
crucial for an inventory management system that is focussed
on localized aisle items. Therefore desirability of partitioning
at the cost of consistency is not an issue. In addition, we will
not require high traffic requests for the object given the
specifics of application for our object detection. [11]

VI. SYSTEM IMPLEMENTATION

Our project can be seen as four submodules integrated
together. These four submodules are:

A. Motion Detection
B. Object Detection

C. Web Application

D.

Wireless Integration

Note: See Figure 1 and Figure 2 above for reference
throughout this section.

Before we delve into each submodule, we will discuss how
the aforementioned parts will be integrated together. To start,
we will have a continuous video feed monitoring the aisle for
human activity. Once a person is detected in an aisle (using
openCV, specifically background subtraction), the RPI/Laptop
that was used with people detection will run object detection
using the latest frame from the motion detection. The object
detection algorithm examines the image and sends an output
detailing what items were on the shelf along with a rendered
image with bounding boxes around the items that were found.
Processing and running our people/object detection algorithms
will be tested in two ways: on the RPI and on our laptop. The
RPI is the final desired implementation, but given the supply
of raspberry pi and the increased complexity of them, we will
implement it first on a laptop with the USB camera as
described in section V. Design Trade Studies. The detection
output will be transmitted through a flask server to the web
app. Our output will be tested in potentially two ways:
continuously running AJAX from our web application to
update data and synchronous HTTP responses and requests.
Once the data has reached our web application, we will add
the data to our database, which will trigger our app to send the
updated data to the frontend for the user to view. Now, let’s
examine each submodule in detail.

A. Motion Detection

Our first subsystem is our motion detection subsystem
which must detect motion in the aisle until the aisle is clear,
and then report to the object detection subsystem. For our
camera we’re going to be using the Logitech Webcam then
eventually replace it with the ARDUCAM for both the motion
as well as the object detection algorithm. We will eventually
connect to this arducam via a RPi, but begin with the laptop

and Webcam. Once we capture footage, we run a background
subtraction algorithm using MOG?2 for our implementation
since it was the most reliable one; especially since other
algorithms like KNN specialize in finding motion in a few
pixels while our bodies in the frame take up a substantial
amount of space. Our background subtraction algorithm works
by finding differences between a mobile foreground image and
a stationary background image, and we record that there is
motion in the aisle if we can see motion in the frame
differences. The detection uses a finite state-esque control to
trigger the object detection. First state is the idle state when
there is no motion, next state is the state where there is
motion. The final state is the object detection state that occurs
on the transition from the motion state to the idle state,
obviously motion must be detected within the system, and we
do so when at least 24 frames have motion detected. Once in
the motion state, nothing occurs until no motion is detected
which occurs after at least 24 frames have been detected
without motion (as in Fig 2 above).

B. Object Detection

For object detection, we will traverse the image given using
a sliding window algorithm to yield segments that are of size
similar to our desired grocery items. Then we will extract key
points and descriptors from the image using SIFT, and
compare those points with our training data set. The training
data set will be SIFT extracted keypoints and descriptors of
images we acquired online and take ourselves mapped to our
desired grocery items. We will use FLANN to match the key
points, and Lowe’s Ratio to compute a number of good
matches between each window and one of our desired grocery
items. If the number of good matches exceeds a threshold we
will mark the object as present and store the window’s
location on the shelf. At the end, we will use the presence
information and the locations where found to modify the
original shelf image and draw labeled bounding boxes of
detected images. Both the rendered detected image and the
presence information will be served to the web app via a local
flask server.

C. Web Application

For the web application, we will be using the Flask web
framework with SQLite3 as our database. The motivation
behind choosing these two were mainly because of
functionality and speed. For our use cases, Flask provides
more than enough (i.e. user authentication, forms/form
validation, database compatibility, HTML templates, etc). At
its core, Flask is very bare bones and we add modules to it as
we need. This lightweight service compared to other services
(i.e. Django) is much faster. Flask may not be as
comprehensive as other web frameworks, but for our use case,
it’s perfect. As for SQLite3, just like Flask, it’s very
lightweight. To meet our user requirements, we are going to
need fast access and management with our database. SQLite
can handle up to 281 Terabytes, which far exceeds our project
scope [12]. Once the data from the computer vision algorithms
is finished computing, we will process that data and store it in

18-500 Final Project Report: Team B0 05/07/2022

our database in a table where the name of the product, the
existence of the product, and a unique identifier will be
located. After this, we will trigger a call to the frontend where
we will upload the new data to the webpage. The frontend will
be designed through five main pages: login/registration,
inventory management, homepage, and items presence. For
login/registration, that is self-explanatory, but for the
homepage, it’ll have various tiles on the page (similar to a grid
view). The tiles represent an aisle in the store and when
clicked, the user will be redirected to a page that has all of the
items in that aisle shown as present or not (item presence
page). In order to populate those aisles, we have a page where
the user can create aisles and assign items to them (i.e.
building the layout of the store). This will be the inventory
management page. The frontend will be styled with Bootstrap,
HTML, CSS, and JavaScript.

D. Standalone/Miscellaneous (Foot Traffic Counter)

A 4th, standalone system was also made that unfortunately
we couldn’t integrate in time. This subsystem was completed
rather late into the project, and we didn’t have the time to use
it in our final design. However, we developed a foot traffic
counter with the goal of having it perform 2 functions. First,
the counter would keep track of how many people walked into
frame. To do this, initially we were interested in centroid
tracking and contour detection, however, on testing, we
realized that these worked well for systems where the people
were over 10 feet away from the camera, and these systems
couldn’t detect people who were 3-5 feet away very
accurately. For our system which has a 5 ft wide aisle, we need
something that works for a shorter distance. Then I switched
my idea to a face detection algorithm using Haar cascades.
This worked rather well until we realized another issue.
There’s no guarantee that the shoppers would face the camera.
Thus, we switched from a face detection Haar cascade to an
upper body haar cascade. Now, no matter which side the
customer faces, we have got a detecting body. The second
thing we wanted our foot traffic counter to do, was to signal to
the object detection system when the frame was clear for
running the object detection system. To do this, we checked
for when the current number of people in our frame were 0,
and signal.

Fig. 4: Sending a signal “clear” when no customers in frame

VII. TEST, VERIFICATION AND VALIDATION

Seeing as our project has 3 primary sections we shall divide
our testing of project requirements into the 3 parts as we have
discussed in our block diagram, where we test the computer
vision portion, wireless transmission, and the web application
as separate entities and individually test those. After
successful testing of these separate components, we shall test
the integration of our components with full system tests after
our full implementation.

A. Motion Test - Results for the Wireless System

For our Motion Test, we did not have a working subsystem
in time for thorough testing. From research paper [7], we
found that background subtraction methods can reach
accuracies up to about 90%with averages around 80%.
Therefore, our goal is to be able to detect the presence of items
on shelves above 80% accuracy. Since our motion detection
will be a video feed as opposed to the image capture used for
item presence detection, our testing process will be different.
We will run multiple tests of different motion states: (1) steady
state - a person standing in an aisle simulating browsing items,
(2) a person moving through the aisle to simulate traffic /
motion through the aisle, (3) no people in the aisle.

What we instead tested for was the minimum frames to use
to determine that items may have been moved on the shelf in
order to cause transitions in the control system. We timed how
fast we could take to enter the camera, frame, and modify the
shelf i.e. take objects from the shelf. We determined that the
length of time was at least 3-4 seconds which when using our
Logitech Webcam and motion detection algorithm was about
24 frames. Therefore we set that as the minimum frame count
for transitions in control as shown in Fig 2 above.

B. Presence Test — Results for the Object Detection
System

For our Presence Test, tested the shelf item detection
accuracy. From research paper [5], SIFT, ORB, and SURF
reached accuracies up to about 50-70% after undergoing
several comprehensive tests. From research paper [6], SIFT
reached accuracies up to 100% in some unit tests. Therefore,
our goal is to be able to detect the presence of items on shelves
above 75% accuracy by using either SIFT, SURF, or BRIEF
feature matching algorithms. Our data set used multiple
images containing one or more of the intended shelf items for
the following items: apple, loaf of bread, broccoli head, cereal
box, bag of chips, egg carton, lemon, milk, orange, oreos,
peanut butter, potato, soda, tomato, case of water, oil, protein
powder, oats, paper towel, tuna can, box of brownie mix, box
of ziploc bags, container of chia seeds. We split the data set
into 25% testing and 75% training groups (not training as in
that of a machine learning algorithm but just for explanation
sake). We compared the training set to the test set to
benchmark accuracy ratings for our project, and to help us
select which algorithm to proceed with. From testing We
found that SIFT was the better option for our use case (as in
Table 1 above)

From the testing to determine to use SIFT, we also found

18-500 Final Project Report: Team B0 05/07/2022

that some items were not optimal for our project i.e. the
product and decided to remove them from our interest list. We
considered other designs i.e. adding a color detection
algorithm, but did not implement it within the semester.

We also used the metrics to tweak parameters i.e. the
filtering threshold for Lowe’s Ratio. As shown in Fig 5 below
, we found a Lowe’s ratio between 0.70 and 0.80 yielded the
best results with consideration of correct matching, items that
were missed altogether, and mismatching i.e. false positives.

In total we were able to receive consistent results of at least
70-80% when all of the parameters were set in our apartment
testing environment.

However, as found when we demoed in the CMU
gymnasium, our system was severely hindered by the change
in ambient light. We had to teak parameters on the spot to
achieve presentable results. A future consideration would be to
create an image processing process that set’s the test image to
a certain parameters of contrast and light exposure

List of prasant items false

Positives P s

List of present items not detected

protein-powder, oats, milk, cereal, chia-seeds,
0.00 0 11 0 peanun-butter, brownles, tuna, ziplacs, NIA
vegetable-oil, paper-towels
protein-powder, cats, milk, cereal, chia-seads,
0.05 0 1 0 peanun-butter, brownies, tuna, ziplacs, NIA
vegetable-oil, paper-towels
protein-powder, oats, milk, cereal, chia-seeds,
0.10 0 1 [} peanun-butter, brownies, tuna, ziplocs, NIA
vegetable-oil, paper-towels
protein-powder, oats, milk, cereal, chia-seeds,
045 0 11 [peanun-butter, brownies, tuna, ziplocs, NIA
vegetable-oil, paper-towels
protein-powder, oats, milk, cereal, chia-seeds,
0.20 0 11 0 peanun-butter, brownles, tuna, ziplacs, NIA
vegetable-oil, paper-towels
protein-powder, cats, milk, cereal, chia-seads,
0.25 [11 [} peanun-butter, brownies, tuna, ziplocs, NiA
vegetable-oil, paper-towels
protein-powder, oats, milk, cereal, chia-seeds,
0.30 0 1 [} peanun-butter, brownies, tuna, ziplocs, NIA
vegetable-oll, papar-towels
protein-powder, oats, milk, chia-seeds,
e ° Y C peanun-butter, tuna, vegetable-oil ik
protain-powder, oats, milk, chia-seeds,
0.40 4 7 ° peanun-butter, tuna, vegetable-oil MiA
protein-powder, oats, milk, chia-seeds,
D= ° Y C peanun-butter, tuna, vegetable-oil ik
protain-powder, oats, milk, chia-seeds,
0.50 4 7 ° peanun-butter, tuna, vegetable-oil MiA
protein-powder, milk, chia-seeds, p b
(LS g g c vegetable-oil 306
0.60 7 4 1 milk, chia-seeds, peanun-butter, vegetable-oil tuna
0.65 7 4 1 milk, chia-seeds, peanun-butter, vegetable-oil brownie
protsin-powdar, oats, milk, p . protein-powder, milk,
0.70 [5 7 vagetable-oll chia-seeds, brownies, tuna,
ziplocs.
tein-powder, cats, milk,
protein-powder, oats, milk, chia-seeds, (s q
0.75 5 6 10 e i el peanun-butter, brownies, tuna,
ziplocs, vegetable-oll
protein-powder, oats, milk,
protein-powder, oats, milk, cereal, chia-seeds, cereal, chia-seads,
0.80 8 0 17 peanun-butter, brownies, tuna, ziplocs, peanun-butter, brownies, tuna,
vegetable-oil ziplocs, vegetable-oil,
paper-towels
protein-powder, oats, milk,
protein-powder, cats, milk, cereal, chia-seads, cereal, chia-seads,
0.85 1 o 35 peanun-butter, brownies, tuna, ziplocs, peanun-butter, brownies, tuna,
vegetable-oil ziplacs, vegetable-oil,
paper-towels
protein-powder, oats, milk,
protein-powder, oats, milk, cereal, chia-seads, cereal, chia-seads,
0.90 " 0 49 peanun-butter, brownles, tuna, ziplacs, peanun-butter, brownies, tuna,
vegetable-oil ziplocs, vegetable-oil,
papar-towels
protein-powder, oats, milk,
protein-powder, oats, milk, cereal, chia-seeds, cereal, chia-seeds,
0.95 11 0 96 peanun-butter, brownles, tuna, ziplacs, peanun-butter, brownies, tuna,
vegetable-oil ziplocs, vegetable-oil,
paper-towels
protein-powder, oats, milk,
protein-powder, oats, milk, cereal, chia-seeds, cereal, chia-seeds,
1.00 1 0 127 peanun-butter, brownies, tuna, ziplocs, peanun-butter, brownies, tuna,
vegetable-oil ziplocs, vegetable-oil,
paper-towels

Lowes Ratio Threshold Test with Number of Good Point Threshold Fixed at 10

— Present Objects Correctly Detected (INT) == Present Objects Not Detected (INT) ~— False Positives (INT)

100

Items Detected

020 040 060 080 1.00

Lowe's Ratio Threshold

Fig. 5. This table and graph shows the number of matches produced as the
Lowe’s Ratio threshold was increased from 0.00 to 1.00. The blue line is
the number of good correct matches. The red line is the number of
missed items i.e. items that were present but not detected. The yellow
line represents the number of false positive matches, i.e. matches to
incorrect items

C. Results for the Web Application

Recall that our design specification for the web application
revolves around user experience and security. To achieve this,
we ensured that at each step of the development process we
succeeded in the following: User authentication/password
encryption, cross-checking/cleaning form inputs, no HTTP
errors, limiting visibility of pages based on user credentials,

ease of access/UX on each page, and more. Namely, the
cross-checking/cleaning form inputs was achieved by
comparing item values to our global data set of items that only
the developers see. This way, users using the inspect tool on
browsers or by hacking the form inputs cannot successfully
have those items be stored in aisles as they will not be inside
our global set of items.

VIIL

A. Schedule

Our scheduling changed by a large amount from the design
to the final project report. We had initially allocated the last
three weeks of the semester (up until the final presentation) for
integration and testing, but we did not get to integration stages
until roughly the final presentation week. From there,
integration took much longer than expected and we eventually
could not resolve our bugs in time. Additionally, there were
miscommunications about how the design/functionality of the
website should have been during the final week of the
semester, and we ended up running out of time to implement
all of the changes we agreed upon during those last few days.

PROJECT MANAGEMENT

B. Team Member Responsibilities

Please refer to the below paragraphs that detail the
responsibilities and tasks that each team member completed
over the course of the semester.

Lucky was in charge of the object detection subsystem and
he was able to research and test different object detection

18-500 Final Project Report: Team B0 05/07/2022

algorithms, as well putting SIFT (the algorithm that he went
forward with) into practice. He wrote a completely modular
codebase to be used easily with just a few function calls that
Allen was able to test with his website during the integration
stages. Eventually, due to integration problems with the RPI,
Lucky integrated the motion detection code with his existing
object detection code. Additionally, Lucky would take charge
in coming up with overall design ideas. During integration
time, he assisted Allen in trying to get integration working
with the RPI and he made the motion detection code more
modular. Lastly, this project idea stemmed from an initial idea
that he had.

Allen was in charge of developing and designing the web
application, he set up the RPI/ARDUCAM with the
background subtraction code, and had initial integration in
place with the website and the wireless system. Together with
Lucky, they tested the wireless system and further
implemented it from the original background subtraction code
they used as a resource online to account for the sensitivity of
detecting moving objects. Additionally, Allen and the rest of
the team would bounce ideas off each other and eventually,
Allen and Lucky would have further talks in design and
implementation.

Lucky and Allen also spearheaded the presentations, which
included creating the slides. Additionally, the both of them
wrote nearly the entirety of both the design/final reports, the
poster, and the video.

Takshsheel was originally in charge of the wireless system,
but that trailed off mid-semester. He developed a people
counter with the existing background subtraction code he
found online that was not tested fully and was not involved in
our final demo/video, or for much of the semester.

C. Bill of Materials and Budget
Please see Table II below

In our final demo, we did not end up using either RPI or
ARDUCAM, but rather we used a wired USB camera that we
had prior to this course and the Macbook pro as described in
V. Design trade Studies due to issues when transitioning to the
wireless system and properly relaying HTTP responses and
requests between the wireless camera system flask server and
the main flask web app. We also had lighting issues in the
gymnasium that we did not account for in testing.

D. Risk Management

The main risks that our team faced dealt within the realm of
design and each person’s schedule.

To combat design issues (i.e. how many cameras should we
use? What is the best method of integration? What is the best
object detection algorithm?), we focused on trying to make
our processes as fast as possible to reach our ussr

requirements, while also simplifying the integration process.

For the number of cameras, we took into account the ethics
talk that we had and condensed the number of cameras from
two to one (i.e. both motion and object detection would be run
on the same camera) thereby halving the overall camera usage
in a fully implemented version of our system

As for integration, an example of mitigation was how Lucky
wrote his object detection code. He wrote it in a modular and
object-oriented manner, so that Allen would be able to
seamlessly import the necessary functions. This step cut down
integration since it was like using a python module / package.
Additionally, we were unsure of how to connect our wireless
system with the web application. To mitigate this, we realized
that the simplest form of triggering the website to run object
detection was to send over an image of the shelf after someone
has walked through. We achieved this through HTTP requests,
although we quickly realized that communication from the
website back to the RPI did not go as smoothly as the reverse
direction. Therefore we p[ivoted to creating a flask server on
the RPI, but did not finish a working implementation on time.

As for the choice of the object detection algorithm, Lucky
had many to choose from: SIFT, SURF, ORB, BRISK, etc. To
mitigate the risk of which one would be best suited for our
purposes, he ran a series of tests to compare the accuracy and
runtimes of each program. Once Lucky determined that SIFT
was the best algorithm out of the ones he analyzed for our
project, he further improved on the algorithm by implementing
a sliding-window technique to segment items to be analyzed
on a shelf, as well as other features.

In terms of scheduling, we underestimated the amount of
time that it would take to integrate, along with design changes
along the way with the website and wireless system. This
coupled with other assignments and exams from other classes
proved to show faultiness in our time management. To
mitigate this, we had placed in a week to two weeks maximum
of slack time, but we had ended up taking more than that
especially when hitting unforeseen hurdles towards the end as
we integrated and ported to the RPI’s. This portion was not
handled in the best manner and showed us clearly how for
future projects, adhering to a schedule is extremely critical to
the project’s success. Communication also became an issue as
teammate(s) went on long series of unresponsiveness when
they felt overwhelmed.

IX. ETHIiCcAL ISSUES

As with any project, ethical issues will arise and as
engineers, it is our job to plan to mitigate those issues during
the development process.

The main issue involves the camera in our setup. As of right
now, we have one camera that is used for both motion and
object detection. This issue is inevitable because our project

18-500 Final Project Report: Team B0 05/07/2022

depends on the use of a camera. A possible case that would
spark trouble would be if a user is tampering with the camera
(i.e. using it for inappropriate purposes). To mitigate this, we
could potentially have the camera placed on a robotic stand or
something similar. When motion detection is running, the
stand could be titled towards the lower part of the shelf,
meaning that the camera would only be scanning below the
knees. The task of motion detection would still be fulfilled,
but the risk of invasion of privacy would decrease.
Afterwards, the stand would move up so that that camera
would be in position to take a picture of the opposite shelf for
object detection. Lastly, the camera would go back into its
original position.

Another potential concern stems from the fact that our
system will most likely not be 100% accurate. As the store
manager sees that items are not present, they may want to send
someone to replenish the shelf. Ideally, this does not sound
hazardous, but consider the flip side: the website displays
false-positives generated from the object detection code.
Should the manager trust the code more than the employees,
the employees may face trouble for a “misstocked shelf” or for
not stocking a shelf in time. To help mitigate this, besides
improving the performance of the object detection, we could
include a disclaimer in our product about the accuracy and
also serve the website on multiple platforms. This way,
employees running the aisles can have the same amount of
time as the manager once they see that an item is out of stock
on the shelf.

X. RELATED WORK

Throughout the web, there are many standalone projects or
products that implement human detection or object detection.

Currently, there are no projects or products that are using
computer vision, wireless transfer, and a web application for
the purpose of keeping track of store inventory.

From our research, there was a product that was similar to
ours in the sense that it uses openCV to examine objects in an
inventory system before it leaves the factory. This product is
called the Smart Factory Defect Detection System. [8]

In summary, this product continuously monitors the
products in the manufacturing process and searches for
defects. For the detection algorithm, this product mainly uses
YOLO with an CNN to find flaws (i.e. defects on metal
surfaces, such as scratches, dents, etc). The size and location
of the defect(s) are then reported. [8]

We observe here that there are underlying similarities not
just in our software and hardware, but in the use case as well
for inventory. While we are not looking for defects in a
product, we are both examining inventory and using openCV
to do so.

10

XI. SUMMARY

In summation, our system met most of the user
requirements, namely: object and motion detection accuracy
rates. User experience tests for the web application were also
met. However, due to issues with integration, we were unable
to have all three subsystems running together to test the
overall runtime requirement (i.e. <= 15 seconds). When we
were testing a partially integrated system (Web
application/object detection receiving an image from the
wireless transfer system), we ran into issues with
displaying/saving the image to the website. Speed was
relatively fast though, we clocked in at around ~10 seconds
before the image failed to upload to the website, meaning that
the user should have been able to see the image in roughly
~11-12 seconds.

By ensuring that processed images were saved to the
database and uploaded to the website properly, we believe that
our base integration would have been complete. From there,
we would have optimized our code and tested different
methods of integration to potentially speed up our overall
runtime.

A. Future work

Yes, as a team we have discussed progressing this project
even further. After working together for a semester, we have a
much better understanding of what the design requirements
and vision of the project should be.

For motion detection, similarly to object detection, we
would turn the code into a reusable library that other systems
can just plug in easily. Additionally, we would ensure that the
connection going to the website is flawless, and vice versa.

For object detection, we would recommend experimenting
and adding additional detection pathways such as a color
detection to enable detection of a wider array of items. Also,
other segmentation techniques besides sliding windows might
be faster and more accurate. One idea we recommend while
still incorporating the sliding window is potentially a dynamic
sliding window in which the window changes size as it passes
over the test image to better fit the desired items.

As for the website, we would make it much more robust by
giving the user the options to edit/delete aisles, improve the
Ul, allow users to request for new items to be analyzed,
review forms that the user can send to the developers,
implement AJAX, deploy the website, make this website
accessible to phones and tablets, and more.

Overall, we have discussed including a customer component
as our product is mainly for the business side right now. We
would essentially build an app for the user to interface with.
Similarly to the web application, users would be able to view
the status of all items in all aisles in real-time. Additionally,
they will be able to put in a shopping list (format of the list is

18-500 Final Project Report: Team B0 05/07/2022

TBD) and a pop-up of the existence and location of each item
would be displayed. Lastly, we would have a navigation
system that given a list of items, would generate a shortest
path algorithm that would minimize the distance traveled by
the customer in the store. Other features would be included of
course, but the aforementioned features would be some of the
main ones.

B. Lessons Learned

For other student groups looking to address this application
in future semesters, we would advise them to spend a
dedicated 30-40 hours to research and design, as a group. Yes,
they will end up writing block diagrams and presenting a
number of times during the semester, and groups cannot
prepare for everything, but having as much detail as possible,
especially during the beginning, will be crucial. Additionally,
we would recommend teams to start testing and integration at
around the halfway point of the semester. We know that is
early, but teams should aim to finish their MVP by
mid-semester break and give themselves lots of slack time. We
would recommend testing integration on a small level (i.e.
sending HTTP signals to a server) and working their way up to
more advanced topics like websockets. With multiple systems,
coordination is key, and we recommend that each team meet
up once a week for a detailed team status report. This in
addition with the status report meetings with their assigned
professor and TA will decrease chances of error in the design
process.

One more thing that we have learnt is that instead of focusing
on subsystems in the later part of the project, getting correct
successful integration is far more important. For eg: instead of
focusing on completing the counter, our time might have been
better spent getting a more correct and fully integrated system
together.

GLOSSARY OF ACRONYMS

AJAX - Asynchronous JavaScript and XML

BRISK - Binary Robust Invariant Scalable Keypoints
CNN - Convolutional Neural Network

FLANN - Fast Library for Approximate Nearest Neighbors
HOG - Histogram of Oriented Gradients feature descriptor
ORB - Oriented FAST and Rotated BRIEF

SIFT - Scale Invariant Feature Transform

SUREF - Speeded Up Robust Features

YOLO - You Only Look Once feature descriptor

REFERENCES

[1]1 IEEE, IEEE Author Center: Author tools, Accessed on Jan 17,2022,
[Online]. Available: Source Link

(2]

(3]

(5]

(6]

(7]

(8]

(9]

[10]
[11]

[12]

[13]

11

Wahba, Phil. “Another 80,000 Retail Stores Will Close by 2026, Says
UBS.” Fortune, Fortune, 5 Apr. 2021, Accessed on February, 7, 2022,
[Online]. Available: Source Link

Campbell, Jeff. “How Do Grocery Stores Keep Track of Inventory?: The
Grocery Store Guy %.” The Grocery Store Guy, 29 Aug. 2021, Accessed
on February, 7, 2022, [Online]. Available: Source Link

Gallucci, Nicole. “Marty the Robot: Non-Essential Worker.” Mashable,
Mashable, 23 Nov. 2020, Accessed on February, 7, 2022, [Online].
Available: Source Link

Karami, Ebrahim et al. “Image Matching Using SIFT, SURF, BRIEF and
ORB: Performance Comparison for Distorted Images, ” Faculty of
Engineering and Applied Sciences, Memorial University, Canada,
Accessed on February, 7, 2022, [Online]. Available: Source Link

Sun, Yan Li et al.”Performance Analysis of SIFT Feature Extraction
Algorithm in Application to Registration of SAR Image,” Department of
basic experiment, Naval Aeronautical and Astronautical University,
Yantai264000,China, [Online]. Available: Source Link

Marcomini, L. A. et al.”A Comparison between Background Modeling
Methods for Vehicle Segmentation in Highway Traffic Videos,”
[Online]. Available: Source Link

Park, Sang-Hyun, et al. “Deep Learning-Based Defect Detection for
Sustainable Smart Manufacturing.” MDPI, Multidisciplinary Digital
Publishing Institute, Accessed on February 25, 2022, [Online].
Available: Source Link.

Tareen, Shaharyar, et al. “A comparative analysis of SIFT, SURF,
KAZE, AKAZE, ORB, and BRISK,” IEEE, Accessed on March 1, 2022,
[Online]. Available: Source Link

“Flask vs Django in 2022: Which Framework to Choose?” Hackr.io,
Accessed on March 2, 2022, [Online]. Available: Source Link.

“Sqlite Reviews & Ratings 2022.” TrustRadius, Accessed on March
2, 2022, [Online]. Available: Source Link

“Appropriate Uses For SQLite.” Appropriate Uses for SQLite,
https://www.sqlite.org/whentouse.html#:~:text=SQLite%20supports %20
databases%20up%20to,will%20support%20281%2Dterabyte%20files.
Available: Source Link

Kaplan, Avi “Interpreting the Ratio Criterion for Matching SIFT
Descriptors” Technion - Computer Science Department - M.Sc. Thesis,
2016, Accessed on March 2, 2022, [Online]. Available: Source Link

https://newauthors.ieeeauthorcenter.ieee.org/author-tools/
https://fortune.com/2021/04/05/retail-real-estate-brick-and-mortar-stores-online-shopping-malls-store-closures-ubs/
https://thegrocerystoreguy.com/how-do-grocery-stores-keep-track-of-inventory/
https://mashable.com/feature/marty-grocery-store-stop-and-shop-robot-covid-pandemic#:~:text=Marty%20was%20introduced%20by%20Ahold,throughout%20the%20U.S.%20in%202019
https://arxiv.org/pdf/1710.02726.pdf
https://www.matec-conferences.org/articles/matecconf/pdf/2016/07/matecconf_iceice2016_01063.pdf
https://arxiv.org/pdf/1810.02835.pdf
https://www.mdpi.com/2071-1050/14/5/2697/htm
https://ieeexplore.ieee.org/document/8346440
https://hackr.io/blog/flask-vs-django
https://www.trustradius.com/products/sqlite/reviews?qs=pros-and-cons#product-details
https://www.sqlite.org/whentouse.html#:~:text=SQLite%20supports%20databases%20up%20to,will%20support%20281%2Dterabyte%20files.
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2016/MSC/MSC-2016-16.pdf

18-500 Final Project Report: Team B0 05/07/2022

10

11

12

13

14

15

16

17

18

19

Task

Initializing Web Application

RPl and ARDUCAM configuration
Detecting one person

Matching one shelf item

Designing Front-End to MVP

Testing people detection (one person)
Testing object detection (one item)
Display people/object data onto web page
Slack

Repeat steps 6-7 but with up to 5 objects
Repeat steps 4-5 but with multiple people

Repeat step 10 but with up to 10 objects

Uploading all data to Web App and finalizing Ul

Testing complete people/object detecting and matching

Testing complete Web Application
Testing complete integration

Final Presentation Prep

Slack

Final Video

Owner

Allen

Allen

Takshsheel

Lucky

Allen

shsheel

Lucky

Allen

Everyone

Lucky

Takshsheel

Lucky

Allen

Everyone

Allen

Everyone

Everyone

Everyone

Everyone

Fig. 4. Schedule: Milestones and Team Responsibilities

v Status

~ Done

v In Progress
In Progress
In Progress

v In Progress

In Progress

In Progress

B
-

(o]
(]

Start Date

02/21/2022

02/21/2022

02/21/2022

02/21/2022

02/27/2022

02/28/2022

02/28/2022

03/02/2022

03/05/2022

03/12/2022

03/12/2022

03/20/2022

03/27/2022

03/28/2022

04/03/2022

04/11/2022

04/16/2022

04/19/2022

05/01/2022

Due Date

02/23/2022

02/26/2022

02/27/2022

02/27/2022

03/05/2022

03/02/2022

03/02/2022

03/05/2022

03/12/2022

03/19/2022

03/19/2022

03/27/2022

04/03/2022

04/04/2022

04/10/2022

04/15/2022

04/18/2022

04/24/2022

05/07/2022

12

Notes -
Initializing Front-End and Back-E...
Ensuring that the hardware (i.e.R...
Allen and Lucky will assist

Allen and Takshsheel will assist

Allen and Lucky will assist

Allen and Takshsheel will assist

Things potentially won't be on sc...
Allen and Takshsheel will assist
Allen and Lucky will assist

Allen and Takshsheel will assist

alw N =

o

18-500 Final Project Report: Team B0 05/07/2022

A
Product
Raspberry Pi 4
Raspberry Pi Power Adapter
Raspberry Pi USB-C Power Supply

ARDUCAM

Raspberry Pi High Quality Camera

Raspberry Pi Camera Cable Set

ARDUCAM Tripod
Raspberry Pi 4

Samsung Mirco SD Card
Raspberry Pi 4 Micro HDMI Cable

Shelf

Logitech HD Pro Webcam

Tage I, Bl oF MeTERWLS

B ®
Part/Model Number ~ Manufacturer
Model B Raspberry Pi

Raspberry Pi 4 Model B Raspberry Pi
Raspberry Pi 4 Model B Raspberry Pi

LN05101 ARDUCAM
FB2 Bicool
B0177 ARDUCAM
N/A ARDUCAM
Model B Canakit
MB-MC32D
Samsung
N/A Canakit
N/A Amazon
A25 Logitech

D

Description
Board only - 8GM RAM
Power Supply
Power Supply
120 Degree Ultra Wide Angle CS LENS for RPi HQ
Camera - 3.2mm Focal Length with Manual Focus
Raspberry Pi HQ Camera Module for Raspberry Pi
4B/3B+/3B/2B/A+/Zero/WiZero WH,12.3MP IMX477

Arducam for Raspberry Pi Camera Ribbon Flex
Extension Cable Set (7Pcs), 5.9” 7.87” 11.8” 19.69" 39.37"
for Raspberry Pi, 2.87” 5.91" for Pi Zero
Arducam Tripod for Raspberry Pi HQ Camera,

Mini Lightweight Portable Camera Tripod Stand
Extreme Kit - 8GB RAM, 128GB Storage
SAMSUNG 32GB EVO Plus Class 10 Micro SDHC
with Adapter 80mb/s (MB-MC32DA/AM)

CanaKit Raspberry Pi 4 Micro HDMI Cable - 6 Feet (Pack of 2)
Amazon Basics 5-Shelf Adjustable, Heavy Duty Storage
Shelving Unit on 4" Wheel Casters, Metal Organizer Wire
Rack, Chrome (30L x 14W x 64.75H)

Logitech HD Pro Webcam C920, 1080p Widescreen Video
Calling and Recording (960-000764)

E

Source
CMU ECE Department
CMU ECE Department
CMU ECE Department

CMU ECE Department

Amazon

Amazon

Amazon
Canakit

Amazon
Amazon
Amazon

Amazon

Cost
$0
$0
$0

$0

$88.80

$10.59

$9.53
$214.90

$10.02

$15.85

$71.41

Free
421.1

13

Notes

(owned prior to class)

