
WHERE'S THE
MILK?

PRESENTED BY ALLEN DING

AUTHORED BY ALLEN DING, LUCKY WAVAI , TAKSHSHEEL GOSWAMI

RECAP

Problem

Existing inventory management systems don't always have real-time analysis of

information:

traffic detection

presence of items of a shelf

Current systems typically require expensive heavy infrastructure

Technology we propose

Focus a CV camera system (Raspberry PI/ARDUCAM) to detect traffic, which then

triggers a laptop to take a picture of a shelf, which is fed into an object detection

algorithm, and the results are displayed on a web application (all done on the same

laptop).

USE-CASE REQUIREMENTS

Detect when there are people in the aisle

From various research papers, we found that experiments with people detection achieved

an accuracy rate of between 90-95%. Thus, 90% will be our threshold.

Detect the presence of objects once people have left the aisle

From various research papers, we found that experiments with SIFT achieved an

estimated accuracy of 60-70% in 5-6 seconds. Thus, 60% will be our threshold.

Information must be transmitted and displayed to the manager’s local machine within

15 seconds of someone entering/leaving the aisle

From various research papers, we found that experiments with SIFT were on average 3-6

seconds per experiment. We are detecting people, then multiple objects, so we doubled

the experiment time and added 3 seconds of leeway for the multiple object detection

and information transfer.

CURRENT DESIGN
Wireless Transfer

One set with an RPI and an ARDUCAM

People-detection System

Detects for people and triggers the web application to run the object detection

algorithm, which then will display the results on the Front-End

Computer Vision (Object Detection)

Lucky is in the process of turning his subsystem into a library for me to integrate with the

web application.

Web Application

Listens for an trigger from the wireless transfer system

Calls on Lucky's object detection code that was imported

No longer hosted on AWS (reach goal if we finish testing/integration before the final

demo)

BEFORE (DURING DESIGN REVIEW PRESENTATION)
Wireless Transfer

Two sets of Raspberry Pi's (RPI) with an ARDUCAM

People-detection System

Detects for people and triggers the object detection system (Lucky's laptop) once

a person is found

Object-detection system

Sends images to Lucky's laptop for processing

Computer Vision (Object Detection)

Takes in images from the RPI to process image

Sends results to web application

Web Application

Takes in data from the object detection algorithm

COMPLETE SOLUTION

Here, we see a makeshift
portrayal of what our final
presentation would look like.

We have the shelf of items
roughly 5ft spaced from the
laptop (which will have a
webcam attached to it) and
the RPI next to it.
(The laptop and RPI will be
placed on a table during
demo day)

What will be displayed on the
laptop will be the web
application, showing the
presence of items on the shelf
retrieved from the object
detection code.

TESTING, VERIFICATION, AND METRICS

In the upcoming slides, we will discuss the following points for the three aforementioned subsystems

(wireless system, object detection, web application):

Quantitative measurements of the goodness and functionality of the design of the subsystem

How well did our implementation perform?

Trade-offs?

WIRELESS SYSTEM

The way our people detection algorithm works is that it treats people

as objects, just like it would for any other object. That way, any

motion across the aisle will be detected.

A passing test would be detecting a human as an object (so far,

that has not failed)

In short, our user requirements for detecting a person at an accuracy

rate of 90% or higher was met

Transmission to trigger the web application to run the object

detection code is still being worked on

Have tried SSH, HTTP Requests, and we are likely sticking with

HTTP Requests

Transmission is usually instant (will time the speed once we

integrate the wireless system with the web application)

WIRELESS SYSTEM (CONT.)

Some things that we have to consider are:

Security of transmission of data to the web application

Currently, through HTTP Requests we use the IP address of the

host laptop as the endpoint, which of course poses security

issues if our code base is hacked

Sensitivity of motion through the aisle

Currently, the algorithm to detect for moving objects is very

sensitive. Therefore, we will have to determine a threshold

value (i.e. the number of times the algorithm detects a

moving object) so that the object detection algorithm is not

triggered multiple times when a user is still walking/standing

in an aisle.

That threshold value is being tested right now and will be

finalized this week.

PRESENCE TEST
As discussed in the design review, one of our testing

areas of focus was in the object detection subsystem

We proceeded with development of the subsystem in

incremental testable stages following the Presence Test

model we described in the outline

Test One parameter at a time i.e. object detection

algorithm, FLANN Matcher Parameters, Lowe's Ratio

Threshold, and number of good matches

Do multiple tests for that one parameter with all

other parameters held constant and change the

other parameters incrementally

We repeated these tests, and continue to in order to

decide on optimal settings for accuracy and speed

EXAMPLE PRESENCE

In this example we show one of the
tests we performed when deciding
which detector to use between ORB
and SIFT
We found through our tests one
intended result and one unintended
Intended Result: we found the detector
that produced the most correct good
match disparity over incorrect good
match (false positives) => SIFT
Unintended Result: We found that some
items prove difficult for all of the tested
algorithms

Items with labels resulted in more
accurate results i.e. cereals over
items without labels i.e. fruits

WEB APPLICATION
Aspects that have been tested along the way are:

Ensure all links work properly (i.e. no HTTP errors, links route where they should)

User authentication

Username/password are cross-reference with the database before sign-in/registration

Password encryption

The passwords are hashed with a randomly generated "salt" (randomly generated word) that is placed

somewhere in the password (dependent on the algorithm/user (if they created their own encryption method)) to

mitigate hackers' efforts

Visibility

Only signed-in users can view certain web pages

Only the "admin" user can view the database as a UI in the app

Security of inputs on web pages

form submissions are cross-referenced with data in the backend to ensure that even if a user tampers with the

submission (i.e. through the inspect tool), the inputs will not be processed/saved in the database

Results:

Everything thus far has been successful, but more testing will be done once integration is complete

Trade-off:

We chose the Flask framework to prioritize speed over the breadth of functionality that comes with frameworks such

as Django. Flask is very "bare-bones", meaning the user has full control on how complex the application can be.

Project Management (Final Schedule)

