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Abstract—Laptops equipped with touchscreens are starting to
flood the market, however they often come at a steeper price tag.
To provide the touchscreen experience to someone who lacks such
a laptop, we are proposing the design of a frame equipped with
LEDs and photodiodes that can be slipped onto the screen of a
non touch-compatible laptop to make it touch-compatible. With
the frame attached, users will be able to interact with applications
by using touch controls, mimicking the experience of a
touchscreen laptop.

Index Terms—Arduino, Infrared, LED, Photodiode, Python,
Touchscreen, Windows

I. INTRODUCTION

IN the modern world, touch screens have become an
accessibility feature that consumers expect on nearly all of
their new devices. However, laptops seem to be one set of
devices where touch screen functionality is considered
optional. Therefore, consumers are left with the need to choose
between other general laptop specifications and this
accessibility feature. We propose to solve these issues by
designing a frame that attaches to the screen of a non-touch
compatible laptop and makes it work as a touch screen. Our
product is called Touch TrackIR.

The ideal consumer for this product is someone who wants
to make their current laptop touch screen compatible, but does
not want to buy a new device, either for cost or system
specification reasons. Additionally, we would like Touch
TrackIR to have accessibility features that do not currently
exist on the market, which would increase the importance of
the product.

One of the competing technologies that exists is normal
touch screen laptops like the Microsoft Surface, however the
most similar technology is called AirBar. Since the AirBar
product is only $80 and is a simple bar that is placed across the
bottom of the screen, it is relatively cheap and lightweight.
However, our reach goal is to make our product have
programmable functionality so the user can customize the
product for their own accessibility needs. Furthermore, Touch
TrackIR removes the need to buy a new laptop if a consumer
wants touch screen functionality, and it creates a cheap
accessory instead.

The goal of Touch TrackIR is to take non-touch compatible
laptops of a specific size and make them touch screen devices.
Ideally, the product will be able to work in both indoor and
outdoor environments, and the frame will be secure enough to
allow movement of the laptop. Like any touch screen device,
we want Touch TrackIR to respond accurately and precisely to
any finger touch, and it should respond in a timely manner. In

addition to single finger tap responses, we want our product to
respond to scroll functions that users are used to on their other
devices. Similar to AirBar, we want our product to remain
both cheap and lightweight, however as mentioned before, we
ideally want Touch TrackIR to be able to have programmable
functionality.

II. USE-CASE REQUIREMENTS

To ensure an enjoyable user experience comparable to that
of a regular touchscreen laptop, we have decided on a set of
quantitative requirements for the use-cases tackled by our
product. For touch-precision, we want the distance between
the physical point of contact with the screen (i.e. middle of
finger) and the position registered by the OS to be within 0.2
inches of each other. This margin of error lies within the width
of the average finger tip, and will guarantee that the registered
point of contact lies directly underneath the user’s finger.

For the false-positive rate, we want to ensure that at most 1
ghost touch is detected for every 5 minutes the user is idle,
while for false-negative touches we are aiming for a maximum
rate of 5% - that is for every 100 touches, at most 5 are not
detected. Ideally, these rates would be 0, however in the early
stages of our design, false-positives and false-negatives will be
encountered frequently. The numbers we provide are low
enough such that there will be minimal interference with the
behavior that the user is expecting in response to their touches.

When it comes to the response time and refresh rate of our
system, we want to make sure that our device is fast enough so
that interactions do not feel “choppy” due to perceivable lag.
A response time that is too low would result in large delays
between a user’s touch and an application updating in response
to it. A refresh rate that is too low would make dragged
touches less continuous, resulting in them mimicking a series
of individual taps. In general, it would mean less taps can be
detected per second, giving rise to a potentially higher number
of false-negatives. To provide a good experience, we chose
target requirements of 150 ms for response time, which is
comparable to early tablets, and 15 Hz for refresh rate, which
is about the bare minimum needed before continuous position
updates, like when a finger is being dragged, become too slow
for comfort.

Finally, our requirement for the final use-case, the weight of
the frame, is a maximum of 0.5 pounds. This is the maximum
amount of force the screen of our test laptop can withstand
before it starts to rotate backward on its hinge. We want our
frame to be lighter than half a pound so it does not tilt the
screen when it is attached, especially when the user applies a
force with their finger. Anything higher than that, and the
hinge of the laptop experience high levels of torque that result
in an unstable screen.
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III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our system architecture consists of 3 main blocks:
● The Frame
● The Arduino Mega
● The Laptop

The Frame:
There are two main parts of the frame: an IR LED section

and an IR Photodiode section.
For the IR LED half, the general principle of operation is

that the Arduino will send select signals to decoders. These
decoders will then output a high signal to some subset of
MOSFETs. This signal will turn on the MOSFETs, thus
allowing current to flow through a subset of IR LEDs,
illuminating them.

For the IR Photodiode half, they utilize the same select

signals from the Arduino as the LED array. These select
signals control multiplexers which serve to read only from the

Photodiodes that are positioned directly across from the
illuminated LEDs.

The Arduino Mega:
The Arduino is effectively the messenger of our

architecture. It collects data from the frame and passes it to the
screen control software running on the laptop.

As mentioned above, the Arduino is responsible for sending
digital control signals to the hardware in the frame. It is also
responsible for reading the outputs of the multiplexers
mentioned above. Additionally, the Arduino lends its 5V
supply and ground to the frame.

On the other end of its operation, after a single sweep
through the arrays of LEDs and photodiodes, the Arduino will
report this data over a USB-serial interface for translation to
screen-control.

The Laptop:
The laptop will be running Python to listen on a

COM port for the serial data being sent by the Arduino. Using
this collected data, Python will calculate the position of a
finger and pass this data off to a screen-control library.

Since the design report, no changes were made to the
architecture and/or principal of operation.

IV. DESIGN REQUIREMENTS

Our most important design decisions are split into two main
categories - frame structure and software processing, with the
exception of one design requirement related to power. Starting
with those related to frame structure, touch-precision is

dependent on how many LEDs we can pack on each axis - the
more LEDs, the higher the resolution of our grid. To meet our
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use-case requirement of a maximum error of 0.3 inches, we
have set a design requirement of 30 LED/photodiode pairs on
the vertical axis of the screen and 56 LED/photodiode pairs on
the horizontal axis. This configuration results in 5.5 mm, or
0.22 inches, of spacing between the centers of each
LED/photodiode. If the point of contact along an axis is
calculated as the average position of activated photodiodes, we
can then be precise up to 0.22/2 = 0.11 inches, as we can now
register touches that occur halfway between LEDs. This is far
less than our 0.3 inch goal. Moving on to false positive and
false negative rates, these rely on the reliability and
responsiveness of our sensors. To ensure we always get the
most accurate readings, we want our frame to be strongly
secured to minimize any variation that occurs in the alignment
of LEDs and photodiodes due to the movement of the laptop.
As a design requirement, as we handle the laptop, changing its
position and orientation, we do not want deviations in values
measured to exceed 0.1% error.

The remaining use-case requirements, response time and
refresh rate, are mainly affected by the software processing
design decisions. We found that our ability to meet these
requirements depends on the speed of our code, so it is
important that we choose a good language, use the right
libraries, and maintain a high standard of quality when
optimizing. Based on this, we have set the following design
requirements: LED control and data collection will be written
with Arduino code, while finger triangulation and screen
control will be done in Python. To ensure the best
performance, we will send touch control requests to the OS via
python-compatible calls to the Win32 C++ API. Collectively,
these all contribute to the response time and refresh rate
requirements, so we can quantitatively measure their effects
through our response time and refresh rate measurements.

Our final design requirement focuses on the power
consumption of our components. We want a power source
capable of delivering 5 Volts to satisfy the needs of our
hardware. Ideally, the Arduino’s 5V pin should be able to get
the job done.

V. DESIGN TRADE STUDIES

A. Number of LEDs Illuminated vs. Sensor Sensitivity
One of the major trade-offs in our design is determining a

good balance between speed and sensitivity to light. The speed
of the design is governed by a time constant 𝜏=RC, where R is
the resistance tied to the anode of a photodiode, and C is the
sum of the input capacitance to the mux and the effective
capacitance of the photodiode. As for sensitivity, there is a less
well-defined governing equation, but two major aspects are
ensuring the photodiodes are sensitive enough to detect light
from a single LED operating at 100mA from 13 inches away
(the approximate distance between the left and right edges).
However, since we are turning multiple LEDs on at a time
(separated by about 14 LED widths), we need to ensure that
the circuit isn’t too sensitive, since we only want the
photodiodes to respond to the LED that is directly across from

it (we will refer to an LED 14 widths down as a “neighboring
LED”). Currently, we are using a 200kΩ pull-down resistor for
each photodiode. In our tests, this resistor makes the
photodiode sensitive enough such that when exposed to an
LED 13 inches away, the worst-case voltage at the anode was
measured to be 3.2V. This comfortably exceeds the value for
VIH of the mux input (2.0V). However, this was a noticeable
drop from a worst-case of 4.0V when using a 300kΩ resistor,
but the 300kΩ resistor proved too sensitive when tested
against a neighboring LED. Since the mux has a VIL of .7V,
we want to ensure that neighboring LED exposure doesn’t
push the pull-down resistor’s voltage above this. With the
300kΩ resistor, a single neighboring LED was enough to
induce a voltage of .6V, which is dangerously close to VIL.
Additionally, since the bottom frame runs 4 LEDs at a time, it
is possible for multiple LEDs to further increase this voltage.
So, we opeter for a smaller resistor. The 200kΩ experienced a
mere .1V increase which we deemed safe. By our estimations,
we estimate that the ideal resistance to balance this sensitivity
trade-off follows a normal distribution. Given that the 200kΩ
resistor overperforms regarding the neighboring LED test, we
presume that something a little larger than 200kΩ is the ideal
value. Additionally, given that the 300kΩ resistor nearly failed
the neighboring LED test, we adjusted our standard deviation
accordingly.

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑒𝑠𝑡. =  𝑒𝑥𝑝(− ( 𝑥−220𝑘Ω
30𝑘Ω )2)

It is also important to keep the time constant in mind, although
it is likely that the serial communication will dominate the
time per sweep. A graph of the time constant has been plotted
below using a capacitance of 28pF (estimated from
datasheets).
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B. Layout Area vs. Hardware Complexity
Our design was massively limited by the narrow dimensions

of the PCB. Especially on the LED arrays, which needed
several thicker high-current traces, routing needed to be
manually done, as the autorouter was never able to complete a
job on its own. Thus, in order to fit all the necessary
components onto the boards, considerations were taken into
how we could reduce the footprint. For instance, in order to
remove the need for 8 digital traces to be run back to the
Arduino from the top edge and through the right edge, we
decided to add another multiplexer to the top edge. For this,
we would need 3 more control signals, but also 7 fewer output
signals.

Another tradeoff involving area had to do with the number
of LEDs illuminated in parallel. Since our decoders couldn’t
directly power the LEDs, we needed an additional stage of
power NMOS transistors to act as switches. To avoid the need
for 87 of these FETs, we decided that we should power several
at once. This didn’t come without its own set of drawbacks,
however. Since our LEDs project IR at some nonzero angle off
the ideal beam, we needed to ensure that a negligible amount
of light from one LED would feed into the photodiodes across
from any of the other illuminated LEDs.

To tune the sensitivity of our IR sensor arrays, we would
have to modify the values of the pull-down resistors. This
required a lot of trial-and-error before we finally arrived at a
good balance of sensitivity from the intended LED, while
rejecting light from other LEDs.

C. Programming Language vs. Speed
Another tradeoff that we had to consider was the

programming language semantics and writability versus the
speed of the language. A language like Python is known for
being slower than lower-level languages, but it is much easier
to write and has better APIs. In the end, we decided to use
Python for the majority of our processing, and we would keep
other languages in mind as part of a risk mitigation plan. As
you can see in the testing results later, Python proved to be
sufficiently fast for our use-case requirements.

D. Number of Serial Messages vs. Processing Speed
Another tradeoff that we chose to study was the number of

serial messages we should send in each collection frame
versus the combined Arduino and Python processing speed.
Based on the processing that was done in the Arduino code,
the data that needed to be sent over serial changed. Through
initial testing, we noticed that serial communication would
likely be a bottleneck in our processing speed, so we decided
the minimize the total number of serial messages sent. In the
end, we found that sending one value for protocol purposes
followed by 3 encoded 32-bit integers that represent the 87
photodiode values would be best. This also allowed for
calculations like the pixel location to be done in the Python
code, which made our code much simpler overall.

E. Refresh Rate vs. Sensitivity
One design tradeoff that we are unaware of until we start

testing was the sensitivity of finger movement versus the
refresh rate. We found that our system had trouble
distinguishing many simple taps, and it was instead
interpreting them as small drags. This hurt the overall
performance of our system because it made it quite difficult to
perform a simple task like clicking on a new tab in a browser.
We found that this could be fixed by creating a drag threshold
distance that the finger needed to move in order for the touch
subsystem to update the finger position. Additionally, we
discovered that averaging multiple frames together and
sending fewer updates helped this issue as well. As you can
see in the system implementation, we made two settings for
this that could be controlled at the command line so that the
user could have the device fit their use-case as perfectly as
possible.

VI. SYSTEM IMPLEMENTATION

A. Subsystem A – Hardware
For the hardware behind our project, there is a frame

consisting of a PCB and either wooden or plastic casing. We
also use the Arduino Mega to act as the brain for the frame.

The frame consists of a PCB on each edge of the screen. The
aim is to connect the four PCBs by soldering them together
with header pins at the corners of the frame. The wires from
the Arduino will be fed into the bottom-right of the frame
where they will attach to header pins on the PCB. Signals that
the left-edge PCB needs are routed through the bottom-edge
PCB. Similarly, signals that the top-edge PCB needs are routed
through the right edge PCB. Thus, the header pins that are
used to fasten the edges together also serve a dual purpose of
electrically connecting everything in the frame. We also intend
to use the header pins to attach the casing.

Regarding the actual functionality of the frame, there are
two main components as mentioned earlier in Section III. One
component consists of two LED arrays, one along the left-edge
of the screen and the other along the bottom-edge. The other is
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the pair of photodiode arrays, positioned along the top and
right edges of the frame. Only two edges will be “active” at a
given time: either the top and bottom, or the left and right. The
operation of each pair is for the most part the same, with some
minor differences. The left and right edges have arrays of 31
LEDs and photodiodes respectively, while the top and bottom
edges have arrays of 56 of each. Below is a small subset of the
left-side LED array.

The box on the left is a decoder. It receives control signals
from the Arduino and feeds a high signal to one of the
MOSFETs shown. In this case, a pair of LEDs is illuminated
(the bottom LED array illuminates 4 consecutively). Also note
the current-limiting resistor shared by the anodes of the LEDs.
The main reason for having LEDs share a MOSFET is to
reduce the number of components on-board.

Also see below a subset of the photodiode array:

Firstly, it is important to note that the diodes above should
have their terminals reversed. The image above is from Fusion
360 PCB software, and we will just have to ensure that we
solder the LEDs in the proper direction when the time comes.
Each node atop a pull-down resistor is fed into a mux input,
and the Arduino is responsible for instructing the mux which
node to read. For the top edge, we have an additional mux
whose inputs are outputs from 8 different muxes, which
effectively creates a 64:1 mux, plenty for our array of 56. The
reason for adding this mux was to reduce the number of wire
traces. Originally, 8 wires needed to be sent back to the
Arduino to be read. With the added mux, 3 more control
signals are required but with only 1 wire to be read, thus
reducing the number of wires by 4.

For the last piece of hardware, our Arduino Mega simply
uses a USB cable to connect to the computer. As a result, it is
effectively the computer that is responsible for powering the
frame.

B. Subsystem B – Python-Arduino Software Interface
Subsystem B, which is the Python-Arduino interface,

connects the information recorded in subsystem A to the
screen control logic in subsystem C. This subsystem covers
several important components that will be explained in this
section, including the select logic control, data collection,

serial communication to Python, and finger detection
algorithms.

Since only a small subset of the LEDs and photodiodes will
be in use at any given time, the select logic control is used to
determine which LEDs are turned on and which photodiodes
are being read from. This logic is written in the Arduino
language and is uploaded directly on the Arduino board, which
we believe is the quickest way for this to be performed. The
basic idea is that we will loop over all of the LEDs and
photodiodes by setting the Arduino pins that control the
multiplexers and decoders. There are 13 select logic pins in
total, with there being four enable pins (one for each of the
two decoders on the left and bottom edges), three select pins
shared by the decoders and multiplexers on the top and bottom
edges, three select pins shared by the decoders and
multiplexers on the left and right edges, and an additional
three select pins going to the additional multiplexer on the top
that is used to clean up the output logic. These pins are all set
to OUTPUT mode in the Arduino code, and they are looped
over to ensure that all LEDs are turned on in a cycle. Then, for
all LEDs that are turned on at once, the code takes turns
reading from the opposing photodiodes.

Fig. 1. Block diagram of Python-Arduino interface.

The data collection section of this subsystem requires 5 pins
to be read, which correspond to the photodiode values. The
right edge has four pins to be read, while the top only has one
due to the extra multiplexer. Unlike for the select logic, these
pins are set to INPUT mode. The photodiodes for which these
pins correspond to change with the select logic, and all of the
photodiodes are looped over. To our surprise, the data could be
read accurately without any delays in the Arduino code.

While the data collection aspect is relatively simple, it ties in
closely to the serial communication component of the
subsystem. We have determined that the fastest way to
communicate the data from the Arduino to a Python script is
by using serial prints on the Arduino and the Python serial
library. As mentioned in the design trade studies, we send four
integer values over serial for each collection frame. The first is
the value -1, which is used for protocol purposes and is
expected by the Python code at the beginning of a data
sequence for each collection frame. The second value is half of
the 56 photodiode values on the top array encoded into the
lower 28 bits of a 32-bit integer, and the third value the other
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half encoded the same way. The fourth integer is the 31
photodiode values from the right array encoded into the lower
31 bits. Since the most significant bit is always 0 for these
data-encoded integers, -1 works as a good value for the first
value in the protocol. In the end, we were able to achieve a
maximum baud rate of 115200.

Next, the Python code receives the integers and converts
them into bit arrays. First, it checks that the protocol
mentioned before has been satisfied by looking for a -1
followed by 3 positive integers. Next, it checks if the data is
valid since there is occasionally information lost over serial
communication in general. The data is then converted into bit
arrays, and then it checks whether there is valid touch, which
occurs when there are photodiodes covered on both
dimensions.

Calculating the pixel location of the finger is done by taking
the average position of the LEDs covered. Using the screen
size in pixels and number of LEDs, we can determine which
pixel locations correspond to which LEDs. Keep in mind that
this device only works for single finger touch commands,
which is a limitation of the system.

When the finger first touches the screen, a down command,
which is mentioned in the next subsystem, is called.
Subsequent touches following a down command will trigger
an update command to be called. Another point that was
mentioned in the design trade studies is that there is a drag
threshold that must be met in order for an update command to
be called. Therefore, the code checks the finger position
against the position from the initial down command to decide
whether or not to send an update. This drag threshold value
can be set at the command line.

Another value that can be set at the command line is the
number of frames to average for smoothing. By averaging
more frames, we send update commands less frequently, which
makes actions like drawing much smoother. To do this, we
simply average the pixel location over the specified number of
frames before sending any command.

One component that failed in this subsystem was the
detection of multiple fingers. This is because it was very
difficult to pair covered pixels on the horizontal dimension
with those on the vertical dimension. For example, if two
fingers were down, we found two clusters of covered LEDs on
the horizontal dimension and two on the vertical dimension,
but we did not know which two clusters belonged together,
and therefore we could not determine the positions of the two
fingers.

C. Subsystem C – Screen Control
Subsystem C is the software interface that is responsible for

using the coordinates detected by the hardware to tell the
Operating System where to emulate touch inputs. In order to
perform this task, we must communicate with the Win32 API
provided by Microsoft for Windows application developers.
This API provides a set of functions for injecting touch inputs
through software, however our code is written in Python,
while the library’s functions are written in C++. Luckily,

Python has a foreign function library called ctypes that allows
Python code to make calls to the C++ functions in the Win32
.dll libraries.

Microsoft’s Touch Injection API supports 2 states, the hover
state and the interactive state. In the hover state, a touch input
is in close range with no physical contact being made, and
applications cannot be interacted with. This is mainly meant
for Windows-specific electronic styluses, which do not apply
to our use case. Thus, we focus only on the interactive state, in
which physical contact is being made and applications can be
interacted with. With our touch control interface, we hide the
existence of the hover state, allowing us to simplify the
commands we send to the OS.  It should also be noted that the
Win32 API also allows for a contact area to be specified. This
means instead of contact being made at an exact point in
space, it is spread across a group of pixels.

The three main commands supported by our interface are
touchDown, touchUpdate, and touchUp. touchDown tells
the OS that contact has been made at a specified pair of
coordinates, and generates a new touch instance. A touch
instance describes a continuous contact event, and lives as
long as contact is being made with the screen. touchUp
terminates a specified touch instance, signifying to the OS that
contact is no longer being made. touchUpdate moves the
point of contact of a specified touch instance to a new set of
coordinates.

The interface’s main job is to relay information about the
location of the point of contact and how it moves across the
screen. It is up to each Windows application to determine what
happens in response to each sequence of touch events. In a
web browser, a drag across the screen may correspond to
scrolling through a webpage, while in an application like
Microsoft Paint, it may correspond to drawing a line on a
canvas. Examples of Windows gestures that many applications
take advantage of are taps, holds, and drags. Taps are generally
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recognized when touch contact starts and then immediately
ends without a change in coordinates. To emulate a tap with
our interface, a touchDown can be sent followed by a
touchUp within a short time frame. Given our high refresh
rate, we may send multiple touchUpdates in between due to
the detection of continued contact across multiple frames, but
all that matters to the application is that the finger stays on the
same coordinates for a very short time. To emulate a hold, a
touchDown is sent followed by a series of touchUpdates at
the same coordinates for a prolonged period of time. A drag is
similar to a hold, except that subsequent touchUpdates result
in a change of coordinates. With the support of these principal
gestures, a user can navigate through most touch-compatible
applications with ease.

VII. TEST, VERIFICATION AND VALIDATION

We have outlined a specific test for each of the use-case and
design requirements that were mentioned in the earlier
sections. Almost all of the tests are quantitative, with a couple
being qualitative. Tests A-F are for the use-case requirements,
while tests G, H, and I are for the design requirements.

A. Results for Touch Precision
To test the touch precision, we measured the distance

between the center of the finger and the position of the click.
One method for doing this initially was to create really small
boxes in Microsoft Excel, touch them, and see which boxes
were actually clicked on. Our goal was to have a touch
precision that was less than 0.3 inches, and we ended up
achieving a touch precision around 0.13 inches. This makes
perfect sense because the distance between two LEDs is ¼ of
an inch, so ⅛ of an inch would be the position found if two
neighboring LEDs were averaged together. Therefore, this test
passed.

B. Results for False Positive Rate
Our false positive rate was tested by leaving the laptop

unattended for 1 hour with the script running and checking
how many touches were detected. Our false positive rate goal
was an average of 1 false positive per 5 minutes, or less than
12 total false positives for the hour. When running the test, we
received 0 false positives, which means we had a false positive
rate of 0%. This likely happened because the environment of
the system did not change at all for that hour, however we also
have never noticed any false positives when testing. In the end,
we consider this a successful test.

C. Results for False Negative Rate
For the false negative rate, we touched the screen 100 times

and counted the number of touches that were not recognized
by the system. To provide diversity to the touches, we touched
all different areas of the screen. We found that all 100 touches
were detected by the system, which gave us a false negative
rate of 0%. Since our original goal for the false negative rate
was 5%, this test passed.

D. Results for Response Time
In order to test the response rate, we took a slow motion

video of a finger tapping an online stopwatch, and we looked
at the difference in time between when the finger touched the
screen to when the stopwatch stopped. Our goal for this test
was 150 ms based on the performance of other touch screen
devices. Repeating this test a couple of times, we found that
the mean response time was around 120 ms, with very little
variation. Since our system performed better than our goal, we
consider this test to be passed successfully.

E. Results for Refresh Rate
To test the refresh rate, we removed all smoothing

algorithms, and we calculated the time that it took to run a
collection frame using software. Our goal for this test was 15
Hz, and we were able to measure a refresh rate of 66 Hz for
our system. As mentioned previously, the system is not very
user friendly when all smoothing algorithms are disabled, so
the performance is better with a lower refresh rate in practice.
However, since our system was able to pass our goal, the test
was successful.

F. Results for Frame Weight
In order to measure the weight of our frame, we simply

placed the frame on a scale. We set our goal for this test at ½
lb since we determined that this was the weight that we could
place at the end of the laptop screen and have the screen
remain open. In practice, the weight is distributed across the
screen, so we could have had a heavier frame. However, we
measured a weight of 0.4 lb, so we met our goal.

G. Results for Stationary Frame
To test for a stationary frame, we decided to shake the laptop

with the frame on for 15 seconds and recalculate the false
positive and false negative rates. Our intuition here was that
the light may not be properly detected on all of the
photodiodes if any of the components move while the frame is
shaking. We performed the false positive and false negative
rate tests again after shaking and saw no change in error. We
set a goal of <0.1% error change on both tests, so the test
passed.

H. Results for Power Source
The power source test was run by simply using a multimeter

to check the voltage that came out of the Arduino. We
measured a voltage of 4.73V, despite 5V being expected..
Since the system still worked properly, we found the results of
this test to be insignificant.

I. Results for Software Processing
For our software processing to be sufficient, we wanted to

ensure that our combination of languages, libraries, and
algorithms were efficient enough to have our response time
and refresh rate tests passed. Since both tests passed, we
consider our software processing to have met its goal.
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VIII. PROJECT MANAGEMENT

A. Schedule
For the most part, our schedule didn’t change. There were

some tasks that took longer than planned and some that took
shorter than expected, but the end result was as expected. For
instance, the hardware debugging took a few days less than
expected, but some of our software algorithms took more time
to iron out than expected.

Some of our less important tasks were dropped to focus on
improving the actual functionality of our product, such as
making the hardware look nicer.

Fig. 2. Gantt chart for all weeks

B. Team Member Responsibilities
Each team member has a different subsection of the block

diagram for which they are primarily responsible, however all
of the components work together, so there is significant
overlap. Matthew S.’s main focus is the design of the hardware

side of the project, which involves determining which
components to use, how they will be connected, and also
performing the majority of the PCB design. Matthew K. is
primarily responsible for the software interface with the
Arduino, which involves writing the Arduino code for
performing data collection, controlling the select logic, and
sending data over the serial interface to Python. This also
involves using the data sent to the Python sampling code to
determine the finger position(s) and quantity. Darwin is
primarily responsible for the Python screen control backend,
which involves interpreting the finger position as a command
that is sent to the OS, as well as allowing for programmable
multi-finger functionalities.

The secondary responsibilities for all of the team members
are the same, and they include frame design and construction,
soldering, and integration of the components that were worked
on individually by each team member. More specific
information about the secondary responsibilities can be found
in the Gantt chart.

Since the design review, the responsibilities of the team
members have not changed

C. Bill of Materials and Budget
See page 9 for Bill of Materials.

D. Risk Management
For each of our tests, we developed a risk mitigation plan in

case the assessment fails. If touch precision was not high
enough, we would have tried reading multiple photodiodes for
each of the LEDs to extract more information about the finger
location. For the false positive test, we planned to use software
to filter out the touches that do not span across multiple
photodiodes since we know that a normal finger will cover
multiple. If our false negative rate was too high, response time
was too long, or refresh rate was too low, we would improve
the software quality by switching from Python to C++. If the
stationary frame test failed, then we would add a mechanism
to tighten the frame to the screen. Since we are dependent on
the Arduino and a 5V power source based on our design, our
only possible risk mitigation plan for the power source test
failing was to have a backup Arduino Mega. As mentioned
above, issues with the software processing tests could have
been fixed by moving from Python to a faster language.

As we worked on our project, we discovered that many of
the risks we faced had to do with our PCB potentially not
working. We also did not have too many of the hardware
components that needed to be soldered, so we needed the ones
that we did have to work properly. In the end, we were
fortunate enough to have everything work, but that did not
come without encountering any problems along the way.

When we soldered the components to one of the boards, we
realized too late that there was a misprint in the board.
Therefore, we had to develop a mitigation plan on the spot,
which was to reconnect the board properly using wires.
Another option would have been to desolder the components,
however that would have been extremely time consuming
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given the time it took the solder the components onto the bad
board in the first place. We were fortunate enough to not have
problems large enough to make the PCB completely unusable,
but we certainly had to come up with risk mitigation plans on
the spot.

Once everything was integrated, we were able to
successfully pass all of our tests, so we did not need to
implement any of the risk mitigation plans mentioned
previously. In an absolute worst case scenario where the frame
did not work, we had mentioned potentially creating the
necessary circuit with a breadboard and having a touch pad on
the side of the laptop. Similarly, if the frame did not fit onto
the screen, we would have kept the frame to the side of the
laptop and used that as a touch pad.

IX. ETHICAL ISSUES

Touchscreens on laptops can provide a more user-friendly
experience to certain individuals who have impaired motor
control and struggle to use a mouse to interact with the
computer. For example, individuals suffering from Parkinson’s
Disease often prefer touch screens as computer mice can be
very sensitive to fine movements. In this case, such users are
extremely vulnerable to even a minor hardware/software
failure as malfunctioning touch controls might limit their
ability to use the laptop. In these situations, it is important that
the quality of the product meets the needs of such individuals,
otherwise it will severely limit their ability to communicate
with others given that they have a very limited set of options
due to their condition. Quality assurance is an important step
in the development and manufacturing process, and it is
crucial that no shortcuts are taken just for the sake of
convenience, otherwise it can negatively affect the end user in
ways that do not seem obvious at first.

A more general situation that can affect anyone who uses the
product is being able to obtain the ability to track or control a
user’s inputs. As designed, Touch TrackIR does not collect and
store data about the user, only using any data received about
finger positioning and movement to instantly construct
commands to send to the OS. If someone is able to
successfully modify the software or hardware, they could, in
theory, intercept the touch commands sent by Touch TrackIR,
and possibly even send commands of their own. This would
not only be a major invasion of privacy as it can expose
information about the user to the attacker, but it would also
allow the attacker to take full control of a user’s laptop to
perform malicious actions. An example of a common attack
that can be deployed through such means is ransomware, in
which the files on the victim’s machine are encrypted and the
only means of getting them back is to pay a ransom to the
attacker, and even then there is no guarantee that they will
comply. To prevent such an incident from happening, it is
imperative that shipped software is equipped with
anti-adversarial measures that prevent the exposure of
sensitive information. Many programming languages today are
designed with security in mind, but it is also the programmer’s
responsibility to be knowledgeable about what is offered by

the development tools they use in terms of security.

X. RELATED WORK

A similar project that provided inspiration during the early
stages of the project was an approach to providing
touch-screen compatibility using light-triangulation. This
project also used an array of LEDs, but instead utilized a CIS
scanner from a printer instead of a self-built array of
photodiodes. While his idea uses far fewer LEDs than our
design, it is compensated by the insanely high resolution and
accuracy of a CIS scanner. This high resolution and accuracy
enables him to triangulate light from the LEDs to calculate the
position of a finger. However, the low resolution of LEDs
meant that touches made close to the LEDs experienced
drop-offs in accuracy. For our approach, we wanted equal
effectiveness across the board, so we opted for a dense array of
diodes. Additionally, we decided to design our own sensor
array since a CIS sensor would be far to bulky to put on a
laptop frame.

Another similar product is Airbar, which somehow uses a
single bar along the base of the screen. Initial research for our
product aimed at a similar approach. Unfortunately, we
couldn’t find distance sensors that were small enough to
achieve this. After hours of research, the only option that
remained would be to buy an Airbar to reverse engineer. We
decided this would not be an effective use of our budget.

XI. SUMMARY

Touch TrackIR is an attachable frame intended to transform
the screens of non-touch-compatible laptops into touchscreens.
This is done via an array of Infrared LEDs and photodiodes
that detect the presence of a finger on the screen through
sweeps of LED/photodiode pair activations. To make sure the
user has the best experience, we aim to have precise contact
detection, with errors less than 0.3 inches, low response times
of under 150ms, and a refresh rate of at least 15Hz, providing
smooth screen updates and an imperceivable delay. In
addition, we want to ensure that every touch counts, with
responsive sensors that provide near-zero false-positive and
false-negative rates, removing any hiccups that may occur due
to unexpected behavior. By providing a sturdy and light frame,
we will also make the system as non-invasive as possible,
allowing for more freedom in handling and transporting the
device without having to worry about the hinges being under
too much stress or changes in sensor accuracy due to
movement.

Overall, we feel that the project was a success because all of
the design specifications were met, and the project works quite
well. The main limiting factor for our system is the touch
precision since this depends on the spacing between the LEDs,
which was minimized. Additionally, if we were given more
time, we would try reading from multiple photodiodes per
LED in order to get a better estimate of the finger location.
The only thing that we could not achieve was multi-finger
functionality, however this would have been very difficult to
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complete successfully given our system implementation.

A. Lessons Learned
Overall, this project taught us a lot about the integration of

separate subsystems. Although we were not able to fully test
our project until the final week, we were confident that it
would work because we had already tested individual and
neighboring subsystems. As mentioned before, we would
definitely try reading from multiple photodiodes per LED if
we were to try a project using this technology again. While we
were initially not sure how well the system would respond to
different environments and user testing, we were pleased to
discover that our LED-photodiode array approach worked
extremely well. If another group were to try a project using
this technology, we would definitely encourage it, and we
would suggest that they perform additional software
processing.

GLOSSARY OF ACRONYMS

API - Application Programming Interface
CIS - Contact Image Sensor
GPIO - General Purpose Input/Output
IR - Infrared
LED - Light Emitting Diode
OS - Operating System
PCB - Printed Circuit Board
PDN - Pull-Down Network
USB - Universal Serial Bus
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