
Touch TrackIR - Final Presentation

Team A6 - Matthew Kuczynski, Matthew Shen, Darwin Torres



Use Case & Use-Case Requirements

● Touch TrackIR is designed to convert non-touch-compatible laptops of a specific size 
into touchscreen laptops.

● Overview of use-case requirements:
○ Touch Precision: < 0.3 inch

○ False Positive Rate (Screen not touched, but touch detected): 1 per 5 minutes

○ False Negative Rate (Screen touched, but touch not detected): 5%

○ Response Time: < 150 ms

○ Refresh Rate: > 15 Hz.

○ Weight of frame: 1/2 lb.



Solution Approach - Overview

● Hardware
○ Use a 2D array of IR LEDs and Photodiodes to determine finger position, powered by Arduino 

Mega.
○ The circuit is designed to have the centers of the LEDs 5.5mm apart, giving us a precision of 

about 2.75mm, which is far less than our 0.3 inches (7.62 mm) requirement.
○ Hardware secured by PCB in a frame around all 4 edges.
○ 31 x 56 LED/Photodiode Arrays along short and long edges of frame.

● Software Processing
○ Uploaded Arduino code toggles LED-photodiode pairs.
○ Finger positioning and screen control via Python scripts.
○ First, photodiode values are read from digital GPIO pins on Arduino Mega, then data is passed 

via serial USB to Python backend.



Solution Approach



Block Diagram



Complete Solution

https://docs.google.com/file/d/1RjMxGYW3_HbOIt5jjflDSR9SbM4gR82j/preview


Testing & Verification - Use-Case Requirements

Requirement Testing Method Quantitative Goal Measured Results

Touch Precision Measure distance between center of 
finger and the actual click.

< .3 in 0.13 in

False Positive Rate Let frame remain attached with screen 
untouched for one hour with script 
running, and count touches detected.

< 1 per 5 mins 0%

False Negative Rate Repeatedly touch screen 100 times, and 
count how many requests were sent. 

< 5% 0%

Response Time Calculate time using frame-by-frame 
video analysis of touch and screen.

< 150 ms 120 ms

Refresh Rate Analyze slow-mo video to determine 
cursor update time (temporarily disabling 
smoothing algorithm).

> 15 Hz 66 Hz

Weight Measure on scale, and ensure screen 
stays open with frame attached.

< ½ lb 0.4 lbs



Testing & Verification - Design Requirements

Requirement Testing Method Quantitative Goal Measured Results

Stationary Frame Shake frame for 15 seconds and 
recalculate false positive and false negative 
rate.

< 0.1% error change 0% Error Change

Power Source Verify with multimeter. 5V 4.73V

Software Processing Measure response time and refresh rate as 
explained before.

Meet goals for response 
time and refresh rate

Requirements met



Testing & Verification - Design Tradeoffs (Hardware)

● Layout area vs. hardware complexity:
○ Due to narrow PCBs responsible for routing signals from 87 photodiodes, multiplexers are 

necessary to condense data flow back to the Arduino. We balance the number of traces going 
to the Arduino and the complexity of our select logic to reduce this number.

● Layout area vs. # of LEDs illuminated in parallel vs. sensor sensitivity:
○ LEDs are illuminated by switching a power FET. To reduce the 

number of FETs, we illuminate more than one per NMOS switch. 
○ This is a tradeoff regarding parallel LED interference. If an LED is 

blocked, we wanted to ensure that its respective photodiode 
was tuned to be insensitive to a parallel LED’s beam. To 
decrease the sensitivity, we would decrease the resistance tied 
to the photodiode.



Testing & Verification - Design Tradeoffs (Software)

● Programming Language vs. Speed
○ Using an interpreted language like Python on the OS side results in slower performance, 

however we found that it has intuitive, easy-to-use libraries for reading serial data
○ Despite the loss in performance, we found that our current speed exceeds our minimum 

requirements by a large margin

● # of Serial Messages vs. Python Processing Speed
○ We found that serial communication is slow and must be minimized, so we use as few 

messages as possible, which requires more Python processing rather than Arduino code 
processing.

● Refresh Rate vs. Sensitivity
○ When updating too quickly, it is difficult to distinguish between a touch and small drag.
○ Instead, it is better average small samples and send fewer updates.
○ This makes it easy to register taps, however quick drag motions might not appear as smooth



Schedule



Remaining Tasks

● Improve Single-Finger Tap Performance
○ One finger scroll works well, but taps can be mistaken for scroll/drag, often due to 

shaky fingers or slow taps.

● Multi-Finger Functionality
○ Two-Finger Taps + Zoom

● Drag smoothing
○ Smoother interpolation of position updates during finger drags
○ Requires post-processing of input signals

● Frame Construction
○ Current method works, but not visually appealing or guaranteed to be secure.


