18-500 Design Project Report: Team A6 - 03/04/2022

Touch TrackIR

Matthew Kuczynski, Matthew Shen, and Darwin Torres

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract—Laptops equipped with touchscreens are starting to
flood the market, however they often come at a steeper price tag.
To provide the touchscreen experience to someone who lacks such
a laptop, we are proposing the design of a frame equipped with
LEDs and photodiodes that can be slipped onto the screen of a
non touch-compatible laptop to make it touch-compatible. With
the frame attached, users will be able to interact with
applications by using touch controls, mimicking the experience of
a touchscreen laptop.

Index Terms—Arduino, Infrared, LED, Photodiode, Python,
Touchscreen, Windows

I. INTRODUCTION

IN the modern world, touch screens have become an
accessibility feature that consumers expect on nearly all of
their new devices. However, laptops seem to be one set of
devices where touch screen functionality is considered
optional. Therefore, consumers are left with the need to
choose between other general laptop specifications and this
accessibility feature. We propose to solve these issues by
designing a frame that attaches to the screen of a non-touch
compatible laptop and makes it work as a touch screen. Our
product is called Touch TrackIR.

The ideal consumer for this product is someone who wants
to make their current laptop touch screen compatible, but does
not want to buy a new device, either for cost or system
specification reasons. Additionally, we would like Touch
TrackIR to have accessibility features that do not currently
exist on the market, which would increase the importance of
the product.

One of the competing technologies that exists is normal
touch screen laptops like the Microsoft Surface, however the
most similar technology is called AirBar. Since the AirBar
product is only $80 and is a simple bar that is placed across
the bottom of the screen, it is relatively cheap and lightweight.
However, our reach goal is to make our product have
programmable functionality so the user can customize the
product for their own accessibility needs. Furthermore, Touch
TrackIR removes the need to buy a new laptop if a consumer
wants touch screen functionality, and it creates a cheap
accessory instead.

The goal of Touch TracklIR is to take non-touch compatible
laptops of a specific size and make them touch screen devices.
Ideally, the product will be able to work in both indoor and
outdoor environments, and the frame will be secure enough to
allow movement of the laptop. Like any touch screen device,

we want Touch TrackIR to respond accurately and precisely to
any finger touch, and it should respond in a timely manner. In
addition to single finger touch responses, we want our product
to respond to the 2-finger zoom and scroll functions that users
are used to on their other devices. Similar to AirBar, we want
our product to remain both cheap and lightweight, however as
mentioned before, we ideally want Touch TrackIR to be able
to have programmable functionality.

II. USE-CASE REQUIREMENTS

To ensure an enjoyable user experience comparable to that
of a regular touchscreen laptop, we have decided on a set of
quantitative requirements for the use-cases tackled by our
product. For touch-precision, we want the distance between
the physical point of contact with the screen (i.e. middle of
finger) and the position registered by the OS to be within 0.2
inches of each other. This margin of error lies within the width
of the average finger tip, and will guarantee that the registered
point of contact lies directly underneath the user’s finger.

For the false-positive rate, we want to ensure that at most 1
ghost touch is detected for every 5 minutes the user is idle,
while for false-negative touches we are aiming for a maximum
rate of 5% - that is for every 100 touches, at most 5 are not
detected. Ideally, these rates would be 0, however in the early
stages of our design, false-positives and false-negatives will be
encountered frequently. The numbers we provide are low
enough such that there will be minimal interference with the
behavior that the user is expecting in response to their touches.

When it comes to the response time and refresh rate of our
system, we want to make sure that our device is fast enough so
that interactions do not feel “choppy” due to perceivable lag.
A response time that is too low would result in large delays
between a user’s touch and an application updating in
response to it. A refresh rate that is too low would make
dragged touches less continuous, resulting in them mimicking
a series of individual taps. In general, it would mean less taps
can be detected per second, giving rise to a potentially higher
number of false-negatives. To provide a good experience, we
chose target requirements of 150 ms for response time, which
is comparable to early tablets, and 15 Hz for refresh rate,
which is about the bare minimum needed before continuous
position updates, like when a finger is being dragged, become
too slow for comfort.

Finally, our requirement for the final use-case, the weight of
the frame, is a maximum of 0.5 pounds. This is the maximum
amount of force the screen of our test laptop can withstand
before it starts to rotate backward on its hinge. We want our
frame to be lighter than half a pound so it does not tilt the
screen when it is attached, especially when the user applies a
force with their finger. Anything higher than that, and the
hinge of the laptop experience high levels of torque that result
in an unstable screen.

18-500 Design Project Report: Team A6 - 03/04/2022

I11. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

LA EAARAAD ér’lééé

\ X

7

\

s
=
ra
C—
]

IR beam C=
s
C—
=]
C—
=1

TR | /7

Cpbonrd

d

Our system architecture consists of 3 main blocks:
e The Frame
e The Arduino Mega
e The Laptop

The Frame:

There are two main parts of the frame: an IR LED
section and an IR Photodiode section.

For the IR LED half, the general principle of
operation is that the Arduino will send select signals to
decoders. These decoders will then output a high signal to
some subset of MOSFETs. This signal will turn on the
MOSFETs, thus allowing current to flow through a subset of
IR LEDs, illuminating them.

For the IR Photodiode half, they utilize the same

56/ 31

select signals from the Arduino as the LED array. These select
signals control multiplexers which serve to read only from the
Photodiodes that are positioned directly across from the
illuminated LEDs.

The Arduino Mega:

The Arduino is effectively the messenger of our
architecture. It collects data from the frame and passes it to the
screen control software running on the laptop.

As mentioned above, the Arduino is responsible for
sending digital control signals to the hardware in the frame. It
is also responsible for reading the outputs of the multiplexers
mentioned above. Additionally, the Arduino lends its 5V
supply and ground to the frame.

On the other end of its operation, after a single sweep
through the arrays of LEDs and photodiodes, the Arduino will
report this data over a USB-serial interface for translation to
screen-control.

The Laptop:

The laptop will be running Python to listen on a
COM port for the serial data being sent by the Arduino. Using
this collected data, Python will calculate the position of a
finger and pass this data off to a screen-control library.

814 (Key W

7 >1§ Multiplexers 5——/— Wire quantities with slashes indicate
I [8 [long edge] / [short edge] quantities.
Photodiode Array w/ PDN SleCt Green represents hardware
X2
4 5x2 rBIue represents software
ANA A AL A
1 1 1 1 1 1 Il "
[wite | pigitai P10 | Read
Data Collection
R & USB Serial > Python UART Sampling
IR LED Array x 2 Select Logic Control
$ 56/ 31
Output 5x2 . Python S
- X Vec = 5V Arduino Mega e
Decoders 3 < f ontro
o [T

18-500 Design Project Report: Team A6 - 03/04/2022

IV. DESIGN REQUIREMENTS

Our most important design decisions are split into two main
categories - frame structure and software processing, with the
exception of one design requirement related to power. Starting
with those related to frame structure, touch-precision is
dependent on how many LEDs we can pack on each axis - the
more LEDs, the higher the resolution of our grid. To meet our
use-case requirement of a maximum error of 0.3 inches, we
have set a design requirement of 30 LED/photodiode pairs on
the vertical axis of the screen and 56 LED/photodiode pairs on
the horizontal axis. This configuration results in 5.5 mm, or
0.22 inches, of spacing between the centers of each
LED/photodiode. If the point of contact along an axis is
calculated as the average position of activated photodiodes, we
can then be precise up to 0.22/2 =0.11 inches, as we can now
register touches that occur halfway between LEDs. This is far
less than our 0.3 inch goal. Moving on to false positive and
false negative rates, these rely on the reliability and
responsiveness of our sensors. To ensure we always get the
most accurate readings, we want our frame to be strongly
secured to minimize any variation that occurs in the alignment
of LEDs and photodiodes due to the movement of the laptop.
As a design requirement, as we handle the laptop, changing its
position and orientation, we do not want deviations in values
measured to exceed 0.1% error.

The remaining use-case requirements, response time and
refresh rate, are mainly affected by the software processing
design decisions. We found that our ability to meet these
requirements depends on the speed of our code, so it is
important that we choose a good language, use the right
libraries, and maintain a high standard of quality when
optimizing. Based on this, we have set the following design
requirements: LED control and data collection will be written
with Arduino code, while finger triangulation and screen
control will be done in Python. To ensure the best
performance, we will send touch control requests to the OS via
python-compatible calls to the Win32 C++ API. Collectively,
these all contribute to the response time and refresh rate
requirements, so we can quantitatively measure their effects
through our response time and refresh rate measurements.

Our final design requirement focuses on the power
consumption of our components. We want a power source
capable of delivering 5 Volts to satisfy the needs of our
hardware. Lucky for us, this should easily be met with the
Arduino’s 5V pin.

V. DEsIGN TRADE STUDIES

One of the major trade-offs in our design is
determining a good balance between speed and sensitivity to
light. The speed of the design is governed by a time constant
7=RC, where R is the resistance tied to the anode of a
photodiode, and C is the sum of the input capacitance to the

mux and the effective capacitance of the photodiode. As for
sensitivity, there is a less well-defined governing equation, but
two major aspects are ensuring the photodiodes are sensitive
enough to detect light from a single LED operating at 100mA
from 13 inches away (the approximate distance between the
left and right edges). However, since we are turning multiple
LEDs on at a time (separated by about 14 LED widths), we
need to ensure that the circuit isn’t too sensitive, since we only
want the photodiodes to respond to the LED that is directly
across from it (we will refer to an LED 14 widths down as a
“neighboring LED”). Currently, we are using a 200kQ
pull-down resistor for each photodiode. In our tests, this
resistor makes the photodiode sensitive enough such that when
exposed to an LED 13 inches away, the worst-case voltage at
the anode was measured to be 3.2V. This comfortably exceeds
the value for VIH of the mux input (2.0V). However, this was
a noticeable drop from a worst-case of 4.0V when using a
300kQ resistor, but the 300kQ resistor proved too sensitive
when tested against a neighboring LED. Since the mux has a
VIL of .7V, we want to ensure that neighboring LED exposure
doesn’t push the pull-down resistor’s voltage above this. With
the 300kQ resistor, a single neighboring LED was enough to
induce a voltage of .6V, which is dangerously close to VIL.
Additionally, since the bottom frame runs 4 LEDs at a time, it
is possible for multiple LEDs to further increase this voltage.
So, we opeter for a smaller resistor. The 200kQ experienced a
mere .1V increase which we deemed safe. By our estimations,
we estimate that the ideal resistance to balance this sensitivity
trade-oft follows a normal distribution. Given that the 200kQ
resistor overperforms regarding the neighboring LED test, we
presume that something a little larger than 200kQ is the ideal
value. Additionally, given that the 300kQ2 resistor nearly failed
the neighboring LED test, we adjusted our standard deviation
accordingly.

. , ~ ,
optimal resistance est. = exp(— (%Zkoé‘“))

Relative Ideality
o

300
Resistance (kQ)

It is also important to keep the time constant in mind, although
it is likely that the serial communication will dominate the
time per sweep. A graph of the time constant has been plotted
below wusing a capacitance of 28pF (estimated from

18-500 Design Project Report: Team A6 - 03/04/2022

datasheets).

*

Time Constant (s)

EY

+

160000 180000 200000 220000 240000 260000 280000 300000 320000 340000
Resistance (Q)

VI. SYSTEM IMPLEMENTATION

A. Subsystem A — Hardware

For the hardware behind our project, there is a frame
consisting of a PCB and either wooden or plastic casing. We
also use the Arduino Mega to act as the brain for the frame.

The frame consists of a PCB on each edge of the
screen. The aim is to connect the four PCBs by soldering them
together with header pins at the corners of the frame. The
wires from the Arduino will be fed into the bottom-right of the
frame where they will attach to header pins on the PCB.
Signals that the left-edge PCB needs are routed through the
bottom-edge PCB. Similarly, signals that the top-edge PCB
needs are routed through the right edge PCB. Thus, the header
pins that are used to fasten the edges together also serve a dual
purpose of electrically connecting everything in the frame. We
also intend to use the header pins to attach the casing.

Regarding the actual functionality of the frame, there
are two main components as mentioned earlier in Section III.
One component consists of two LED arrays, one along the
left-edge of the screen and the other along the bottom-edge.
The other is the pair of photodiode arrays, positioned along the
top and right edges of the frame. Only two edges will be
“active” at a given time: either the top and bottom, or the left
and right. The operation of each pair is for the most part the
same, with some minor differences. The left and right edges
have arrays of 31 LEDs and photodiodes respectively, while
the top and bottom edges have arrays of 56 of each. Below is a
small subset of the left-side LED array.

The box on the left is a decoder. It receives control
signals from the Arduino and feeds a high signal to one of the
MOSFETs shown. In this case, a pair of LEDs is illuminated
(the bottom LED array illuminates 4 consecutively). Also note

the current-limiting resistor shared by the anodes of the LEDs.
The main reason for having LEDs share a MOSFET is to
reduce the number of components on-board.

Also see below a subset of the photodiode array:

Firstly, it is important to note that the diodes above
should have their terminals reversed. The image above is from
Fusion 360 PCB software, and we will just have to ensure that
we solder the LEDs in the proper direction when the time
comes. Each node atop a pull-down resistor is fed into a mux
input, and the Arduino is responsible for instructing the mux
which node to read. For the top edge, we have an additional
mux whose inputs are outputs from 8 different muxes, which
effectively creates a 64:1 mux, plenty for our array of 56. The
reason for adding this mux was to reduce the number of wire
traces. Originally, 8 wires needed to be sent back to the
Arduino to be read. With the added mux, 3 more control
signals are required but with only 1 wire to be read, thus
reducing the number of wires by 4.

For the last piece of hardware, our Arduino Mega
simply uses a USB cable to connect to the computer. As a
result, it is effectively the computer that is responsible for
powering the frame.

B. Subsystem B — Python-Arduino Software Interface

Subsystem B, which is the Python-Arduino interface,
connects the information recorded in subsystem A to the
screen control logic in subsystem C. This subsystem covers
several important components that will be explained in this
section, including the select logic control, data collection,
serial communication to Python, and finger detection
algorithms.

Since only a small subset of the LEDs and photodiodes will
be in use at any given time, the select logic control is used to
determine which LEDs are turned on and which photodiodes
are being read from. This logic is written in the Arduino
language and is uploaded directly on the Arduino board,
which we believe is the quickest way for this to be performed.
The basic idea is that we will loop over all of the LEDs and
photodiodes by setting the Arduino pins that control the
multiplexers and decoders. There are 13 select logic pins in
total, with there being four enable pins (one for each of the
two decoders on the left and bottom edges), three select pins
shared by the decoders and multiplexers on the top and bottom
edges, three seclect pins shared by the decoders and
multiplexers on the left and right edges, and an additional
three select pins going to the additional multiplexer on the top
that is used to clean up the output logic. These pins are all set

18-500 Design Project Report: Team A6 - 03/04/2022

to OUTPUT mode in the Arduino code, and they are set using
a bitwise AND and shift of the loop counter.

!

Decoders

Multiplexers l

Screen Control

Python-Arduino Interface

Select Logic Control

Serial Data
Extraction

L

Finger Detection
Algorithms

Arduino Mega — Serial —>

Data Collection

Fig. 1. Block diagram of Python-Arduino interface.

The data collection section of this subsystem requires 5 pins
to be read, which correspond to the photodiode values. The
right edge has four pins to be read, while the top only has one
due to the extra multiplexer. Unlike for the select logic, these
pins are set to INPUT mode. The photodiodes for which these
pins correspond to change with the select logic, and all of the
photodiodes are looped over.

While the data collection aspect is relatively simple, it ties
in closely to the serial communication component of the
subsystem. We have determined that the fastest way to
communicate the data from the Arduino to a Python script is
by using serial prints on the Arduino and the Python serial
library. Each serial print contains the photodiode data with
labels for the loop values, and decoding this on the Python end
becomes a string parsing task. We have primarily been testing
the serial communication at a baud rate of 9600, however
some preliminary tests show that a faster baud rate is possible
if we need to speed up our communication.

Finger detection algorithms make up the next part of this
subsystem, as they make sense of the data from the serial
communication. We should be able to determine the number of
fingers on the screen by looking at the number of paths that
are covered at any given moment, as well as any potential
space between blocked paths. From calculations of the LED
spacing and average finger width, we have determined that
either 2 or 3 paths will be blocked by a single finger at any
moment. In most cases, the blocked paths will be separated,
however in the scenario where consecutive paths are blocked
by multiple fingers, we expect that at least 4 paths will be
blocked in one dimension, or 3 paths will be blocked in both
dimensions. To determine finger location, the average of the
centers of the blocked paths on each dimension will be used
since this will minimize the mean squared error. The most
complicated algorithms will need to determine the gestures,
and these will require sampling over time. For a single touch,
we expect there to be no change in finger position over time.
For a swipe/scroll movement, we expect the movement to

occur in a constant direction. Finally, for zoom functionality,
we expect two separate blocked paths to be either moving
towards each other or further apart, for zooming out and in
respectively. A significant amount of testing will be needed to
tune these algorithms to work with actual, physical movement.

The final component of subsystem B is to create an interface
that can communicate easily with the screen control module.
With the finger detection algorithms, we should be able to
detect any number of fingers from one to three, and we should
be able to distinguish between tap, scroll, swipe, and zoom
movements. By adding the finger location to this information,
the screen control module should be able to easily perform its
job using functions specific to each action.

C. Subsystem C — Screen Control

Subsystem C is a software interface written in Python for
sending requests to the OS for emulating touch controls. This
is done via Microsoft’s Win32 C++ API. Note that this is a
C++ library and not a Python library. Although the interface
will be written in Python, by using the building ctypes library,
we can invoke C++ functions from the .dll files containing the
instruction code for Win32 without writing any C++ code.

As of now, three main commands have been proposed to be
supported by this interface: “Finger Down”, “Finger Up”, and
“Update Position”. “Finger Down” tells the OS that contact
has been made at a specified pair of coordinates, and generates
a new touch instance. A touch instance describes a continuous
contact event, and lives as long as contact is being made with
the screen. Touch instances allow us to support multi-touch
gestures, as each touch can be tracked individually. “Finger
Up” terminates a specified touch instance, signifying to the
OS that contact is no longer being made. “Update Position”
moves the point of contact of a specified touch instance to a
new set of coordinates.

These three commands provide the functionality for
supporting taps and drags among multiple fingers, though for
our MVP we want to put a focus on being able to tap/drag
with one finger. It must also be pointed out that the Win32 API
also allows for a contact area to be specified. This means
instead of contact being made at an exact point in space, it is
spread across a group of pixels. The “Finger Down” command
can take in a “radius” if a nonzero contact area is to be
specified. It is up to the Windows application to decide how to
interpret any touch command we give it, and how the contact
area affects it.

VIL

We have outlined a specific test for each of the use-case and
design requirements that were mentioned in the earlier
sections. Almost all of the tests are quantitative, with a couple
being qualitative. Tests A-F are for the use-case requirements,
while tests G, H, and I are for the design requirements.

TEST, VERIFICATION AND VALIDATION

18-500 Design Project Report: Team A6 - 03/04/2022

A. Tests for Touch Precision

For the touch precision requirement, we plan to conduct a
test where we touch the screen 10 times in 10 different precise
locations and find the maximum distance from each location
to the spot calculated by the finger detection algorithms. Our
goal for this test is to have the maximum distance be less than
0.2 inches from the desired location. The distance between the
centers of the LEDs allows for the best possible touch
precision to be 0.11 inches, so we believe that 0.2 inches is a
reasonable target given that it is nearly impossible for our
system to be ideal. A good touch precision is important so that
the user does not have trouble touching a specific location.

B. Tests for False Positive Rate

Our goal for the false positive rate is to have there be less
than one false positive touch every five minutes. In order to
test this, we plan to allow the frame to remain attached to the
screen and untouched for one hour with the script running, and
we will then count the number of touches that are detected
during that time period. Given our goal for this test, we expect
to see less than 12 touches in order to consider the test as
passing. Ideally, the false positive rate will be much lower, but
given how long this test takes to run, we consider this metric
to be reasonable. This test is important because it will ensure
that the screen does not seem to randomly register touches
even though the user is not touching the screen. If the false
positive rate is high, the product would be extremely
frustrating to use and could not satisfy any MVP.

C. Tests for False Negative Rate

To test the false negative rate, we plan to repeatedly touch
the screen 100 times and count how many touches are
registered by the system. Since our goal for this requirement is
a false negative rate of less than 5 percent, we expect to see at
least 95 touches registered with this test. Similar to the false
positive rate, a high false negative rate would make the
product frustrating to use since a large number of touches
would not receive any response. However, we feel that the
acceptable threshold for the false negative rate is much higher
than that of the false positive rate. No response is not that big
of a deal since the user can simply touch the screen again,
however a random, unwanted response will leave the user
confused.

D. Tests for Response Time

The goal for the response time requirement is for the screen
control function to occur within 150 milliseconds of the touch.
This requirement was determined based on the response time
of other touch screen devices, and since our product has
significantly less processing, we believe that we should be
able to achieve similar results. Our test for this requirement is
performed by recording a video of the touch and screen
response, and then performing a frame-by-frame analysis to
determine the exact time difference between the touch and

screen response. A successful pass of this test will ensure that
the user experience using Touch TrackIR will be similar to the
experience that consumers expect from their touch screen
devices.

E. Tests for Refresh Rate

In order to test the refresh rate, we plan to analyze a slow
motion video to determine the cursor update time. To do this,
we will need to temporarily disable the smoothing algorithm.
Our goal for this test is to achieve a refresh rate that is greater
than 15 Hz. A high refresh rate is important so that there is a
higher likelihood of a touch actually being registered since it
will be checked for more frequently.

F Tests for Frame Weight

The test for the frame weight is very simple since we can
measure the weight of the frame on a scale. We consider this
test passing if the frame weighs less than half a pound, which
is a value that we determined by seeing how much weight
could be placed on the top of the laptop screen without it
opening or closing. This test is important so that the product
does not affect the screen’s ability to stay stable.

G. Tests for Stationary Frame

A stationary frame is necessary to achieve the use-case
requirements since it will allow for the touch precision, false
positive rate, and false negative rate to remain constant with
movement of the laptop. The test for this is shaking the frame
for 15 seconds and then reperforming the tests for the three
use-case requirements mentioned in the last sentence. We
consider a passing test for the stationary frame as one where
there is less than 0.1% average change in the result of the three
tests. The idea here is that if the frame is stationary, then the
other tests should not be affected.

H Tests for Power Source

Similar to the frame weight, the power source test is also
somewhat trivial. Given that we will be using an Arduino
Mega, we can use the 5V output pin, so the quantitative goal
for this test is 5V. The test can be conducted by verifying the
voltage with a multimeter. The power source is essential for
the circuit to exist, so it is necessary for all of the use-case
requirements.

L Tests for Software Processing

While there is no quantitative metric to measure the
software processing, it is necessary in order to fulfill the
use-case requirements. Specifically, the software processing
will be considered passing its test if the response time and
refresh rate are passing their respective tests.

18-500 Design Project Report: Team A6 - 03/04/2022

VIIL PROJECT MANAGEMENT
A. Schedule
o
<& w
%
95 =
= g =
fe :
$T
=g 7] Ll AEEEEEES
i ‘
X
8 5
S< o . B
o
5T
e
NN EEEEEEEEEEEEEEEEEEE EN | EEEEEEN
G oo
g%
$s
S35
N
R
=3
S
€3
$s
S 3
w
N
$s
=3
e
i
$ o
28
g
£
H
=
s
2
£
o5
£
2 e
2 P 2
< S g s
£ S 3 H
13 al & o
e £ 3 H
8 " 8 2 $
— 2 |2 |88 cls = g
g2 EREREE g8 > €
S|E|2 = IS =
5|82 2 |5 |89 83] z
o|%5|S T |9 |gls E3 o |6 2
c| 23 c |c |8 g¢c B 8 |8 £
ol |8|E|8 & |3 |8l5/s g3 £ |3 @
8l |85 E o |® |58% 5 S % |5 H
g S|lels @ 5] a| Bl 2 2 ol 3 |2 H
5 |95 g (s |58 8 g HE H
= |glB|2 5 |elole s (3 |s5/8B = |8 5
ol |6|E|S L L [&8E 8 |2 [gl=2s o |2 °
o |£|<|F c |le |ol= 2| |§ [B|ElE o |& &
HRRRE] S |8 |Z]3|2 £ 13 |8%le & |% £
5| %% 3 |5 [§E3 2 |Z (B2g & |3 o 2
B| |23 © (v |59 B HBC R 5 |E = g
5lc|elelg S |§ |2|e< 3| |5 285|¢lu 2 H c
5 5 3 |13 |eles s |2 °3EIRE |2 §
B|2%|B|B|5 |8 |8 [BETs |mE |25 eBl&TE |£ s g
sl8lssl83 |O]x |» |B5lg 3 03 |83E|gE[SE |2 25 2
Ss|o|elg|gls |28 |8 |[E?gs |3 |03 &2®E |3 “H £
§l=| & 5|88 || 2 - |9 g 8|8 ||| |0 alE|TIN|S S 33 s
2|52 2 Rn |8lE |S |e2%m |85 |ElmndsSs |E 2| 2E 2
3E(8(828 2% |8 |58 23 (22 (s5O|2E|18e |8 | §EE- B
¢|0|¢|d|b|d |Olal |m |S]glmld |Ol<| |C|d|a|d|jx a |m 2283 U
Fig. 2. Gantt chart for week 4 to completion.
B. Team Member Responsibilities

Each team member has a different subsection of the block
diagram for which they are primarily responsible, however all
of the components work together, so there is significant
overlap. Matthew S.’s main focus is the design of the
hardware side of the project, which involves determining
which components to use, how they will be connected, and
also performing the majority of the PCB design. Matthew K.
is primarily responsible for the software interface with the
Arduino, which involves writing the Arduino code for
performing data collection, controlling the select logic, and
sending data over the serial interface to Python. This also
involves using the data sent to the Python sampling code to
determine the finger position(s) and quantity. Darwin is
primarily responsible for the Python screen control backend,
which involves interpreting the finger position as a command
that is sent to the OS, as well as allowing for programmable
multi-finger functionalities.

The secondary responsibilities for all of the team members
are the same, and they include frame design and construction,
soldering, and integration of the components that were worked
on individually by each team member. More specific

information about the secondary responsibilities can be found
in the Gantt chart.

C. Bill of Materials and Budget
See page 9 for Bill of Materials.

D. Risk Mitigation Plans

For each of our tests, we have developed a risk mitigation
plan in case the assessment fails. If touch precision is not high
enough, we can try reading multiple photodiodes for each of
the LEDs to extract more information about the finger
location. For the false positive test, we can use software to
filter out the touches that do not span across multiple
photodiodes since we know that a normal finger will cover
multiple. If our false negative rate is too high, response time is
too long, or refresh rate is too low, we may improve the
software quality by switching from Python to C++. Our
current plan for the frame is to construct it out of wood, but
we feel that a plastic frame will be a lighter option, although
more difficult to construct. We also plan for the frame to be
able to slide onto the laptop screen, however if the stationary
frame test fails, then we will add a mechanism to tighten the
frame to the screen. Since we are dependent on the Arduino
and a 5V power source based on our design, our only possible
risk mitigation plan for the power source test failing is to have
a backup Arduino Mega. As mentioned above, issues with the
software processing tests can be fixed by moving from Python
to a faster language.

IX. RELATED WORK

A similar project that provided inspiration during the early
stages of the project was an approach to providing
touch-screen compatibility using light-triangulation. This
project also used an array of LEDs, but instead utilized a CIS
scanner from a printer instead of a self-built array of
photodiodes. While his idea uses far fewer LEDs than our
design, it is compensated by the insanely high resolution and
accuracy of a CIS scanner. This high resolution and accuracy
enables him to triangulate light from the LEDs to calculate the
position of a finger. However, the low resolution of LEDs
meant that touches made close to the LEDs experienced
drop-offs in accuracy. For our approach, we wanted equal
effectiveness across the board, so we opted for a dense array
of diodes. Additionally, we decided to design our own sensor
array since a CIS sensor would be far to bulky to put on a
laptop frame.

Another similar product is Airbar, which somehow uses a
single bar along the base of the screen. Initial research for our
product aimed at a similar approach. Unfortunately, we
couldn’t find distance sensors that were small enough to
achieve this. After hours of research, the only option that
remained would be to buy an Airbar to reverse engineer. We
decided this would not be an effective use of our budget.

18-500 Design Project Report: Team A6 - 03/04/2022

X. SUMMARY

Touch TrackIR is an attachable frame intended to transform
the screens of non-touch-compatible laptops into touchscreens.
This is done via an array of Infrared LEDs and photodiodes
that detect the presence of a finger on the screen through
sweeps of LED/photodiode pair activations. To make sure the
user has the best experience, we aim to have precise contact
detection, with errors less than 0.3 inches, low response times
of under 150ms, and a refresh rate of at least 15Hz, providing
smooth screen updates and an imperceivable delay. In
addition, we want to ensure that every touch counts, with
responsive sensors that provide near-zero false-positive and
false-negative rates, removing any hiccups that may occur due
to unexpected behavior. By providing a sturdy and light frame,
we will also make the system as non-invasive as possible,
allowing for more freedom in handling and transporting the
device without having to worry about the hinges being under
too much stress or changes in sensor accuracy due to
movement.

As we work to implement our design, our main concerns
deal with accuracy and speed, as these are the biggest factors
that affect user satisfaction. Accuracy is not a complicated
issue as it mainly depends on how tight we can fit our LEDs.
A higher density of LEDs gives us a higher resolution, and
thus better accuracy. Speed, however, is a more complicated
issue as all parts of our system affect it. From our hardware, to
the Arduino, to the Python backend. The faster we are able to
transfer data along all subsystems and convert it into touch
commands, the smoother the user experience will be. Initial
tests had revealed some problems in sweeping speed and data
collection, but as we spent more time analyzing the issues, we
were able to come up with better approaches. Individually, the
speeds we measure seem to be sufficient, but we will be able
to have a better idea of where we stand once we are able to
conduct more thorough tests after integrating our subsystems.

GLOSSARY OF ACRONYMS

API - Application Programming Interface
CIS - Contact Image Sensor

GPIO - General Purpose Input/Output

IR - Infrared

LED - Light Emitting Diode

OS - Operating System

PCB - Printed Circuit Board

PDN - Pull-Down Network

USB - Universal Serial Bus

(1]

(2]
[3]

(4]

REFERENCES

Perardel, Jean. “Magic Frame : Turn Everything into a Touch Area.”
Hackaday.io, 5 Sept. 2017,
https://hackaday.io/project/27155-magic-frame-turn-everything-into-a-to
uch-area.

“Photodiode Basics.” Wavelength Electronics, Wavelength Electronics,
11 Feb. 2020, https://www.teamwavelength.com/photodiode-basics/.
Nasir, Syed. “Introduction to LM317.” The Engineering Projects, 2 July
2020,
https://www.theengineeringprojects.com/2017/06/introduction-to-lm317.
html.

Shawn. “Types of Distance Sensors and How to Select One?” Latest
Open Tech From Seeed, 29 June 2021,
https://www.seeedstudio.com/blog/2019/12/23/distance-sensors-types-an
d-selection-guide/.

Item

Arduino Mega

IR LED

IR Photodiodes

210k Resistors
Muxes

Decoders

PCB

MOSFETs

Low Ohmic Resistors
Solder Mask & Paste
Header Pins

18-500 Design Project Report: Team A6 - 03/04/2022

Price Per ($)

2 18
100 0.3272
100 0.1729
100 0.0184
15 1.051
5041
1 80
34 0.298
5 0.1
80
10 0.1
Total:

Total Price ($)
36
32.72
17.29
1.84
15.765
2.05
80
10.132
0.5
80
1

277.297

TesLe |. B oF MateriaLs

used in design Part

1
87 SFH 4555
87 INL-5ANPD80
87 ERJ-3EKF2103V
13 CD74HCT151M
4 74HC138D

1

30 PJA3430_R1_00001
?

