
Hit It!
A5: Stephen Pupa, Shreya Ramesh, George Whitfield

18-500 Capstone Design, Spring 2022
Electrical and Computer Engineering Department

Carnegie Mellon University

System Architecture

Product Pitch
Hit It! is a rhythm game where the user hits drums to the beat of music. Hit It! has an

engaging interface; users can interact with our colorful and custom designed interface by
hitting four drum modules that correspond to buttons within the game. The drum modules were
carefully designed to be small and portable so that the player can easily set up the game
anywhere. In addition, the player can customize their experience by importing their own
music. The game uses signal processing algorithms to automatically generate a sequence of
notes called a “beatmap” that the player must hit to the beat of the music. The ECE areas used
are hardware systems, software systems, and signal processing.

System Description

System Evaluation

Conclusions & Additional Information
QR code to visit

our blog!

Software
Modern video games are typically created with video game engines, which create layers of
abstraction in the tech stack that make video game development easier for the programmer.
To enhance the educational value of this project, our team chose to create Hit It! without a
game engine, because we wanted to learn more about the technical details of game
development such as graphics programming, audio signal processing, and cross platform
compilation.

Overall, we are happy with the results from this project.
However, due to various time constraints, we had to create
a less involved game than we originally expected. We had
to compromise on some of the aesthetics as well as the
beat map cohesion with the song. If we had more time, we
would consider expanding on the functionality of the game
in regards to audio files inputted or even additional
characteristics of the game.

This above diagram shows the flow of execution of our software. Game play code begins when
the user starts the game in main.cpp. This will then call the beat map generation Python code
which filters the user-inputted audio file, runs an intensity analysis, and then outputs a JSON for
the game play code to read. The beatmap is outputted onto the screen from our ‘draw’ function,
which is called every time the game draws to the graphics window.

This block diagram depicts the hardware implementation of our system, consisting of 4 drum
modules and a central connecting/controlling module. Each drum contains an FSR-based
voltage divider and feedback LEDs. The voltage divider output is read by the ESP32, which
transmits that information to the PC and powers the LEDs.

Hardware
The drum sensors are created using Force Sensitive Resistors (FSRs), which change their
resistance by several orders of magnitude when force is applied. The ESP32 microcontroller
then reads this change through a voltage divider and respond accordingly by powering that
drum’s LEDs and transmitting that information to the PC.

A custom drum housing was also designed in Fusion 360 and 3D printed to provide a compact
and robust housing for the drum’s internal PCB. Forces applied to the drum are redirected into
the FSR using sheets of Neoprene rubber and wood to form a central supporting column,
which also provides the drum pad elasticity to achieve a satisfying bounce when struck.

Area Goal Method of Testing Results

Drum
Recognition
Accuracy

>99%
Recognition
Rate

Each drum was hit 250 times in the
center, 250 times in the center using
gravity, and 250 times on the edge

100% when
centered
96% on edge

Latency < 37 ms An IPhone’s slow-mo video feature was
used to record the difference in frames
between the drum hit and receipt of signal.

~37.5 ms +- 5 ms

Compactness < 15,000 cm^3 Each module was measured at 720 cm^3,
or 3600 cm^3 with 5 modules

3,600 cm^3 or 3.6
Liters

Ease of Setup < 1 minute
Setup Time

10 random participants were asked to
setup the game given a brief explanation.

Average of 42.57
seconds

Length of
Beat Map
Generation

Length of
Audio File

Use ‘time’ module in Python to measure
execution time

96% success rate

Accuracy of
Beat Map
Generation

80%
Accuracy

Compared the number of points created in
an average beat map to the expected
number of points from the Librosa Module

67% Accuracy Rate

FSR

Force

Neoprene Wood

C++14 - Gameplay and graphics programming
● Compiled with CMake
● Open Graphics Library (OpenGL) used for graphics

display
● PortAudio library used for realtime audio playback

Python 3 - Signal processing for beatmap generation
● Numpy and Scipy for the wav file manipulation
● Librosa to extract the BPM of the given audio file
● Scipy bandpass filters to differentiate between

buttons

View of drum module internals. The FSR and LEDs are fixed to a
PCB which routes relevant signals out through a latch connector.

Force Distribution inside module. The FSR is propped upon
a central pillar so that most force is redirected through it.

View of final system

50 beat maps were created and the
times it took to create them were
plotted. The blue line represents the
user requirement, stating that we had a
96% success rate

