
1
18-500 Final Report: Team A5 Hit It! May 7, 2022

Hit It!

Stephen Pupa, Shreya Ramesh, George Whitfield

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract — Popular rhythm games such as Rock Band
or Guitar Hero do not incorporate both portable hardware
and/or have pre-defined music libraries that cannot
account for the large variety of music genres. Hit It! aims
to rectify both these issues by introducing an involved
game interface, an active hardware apparatus for users to
interact with, and the ability to have beat maps be
automatically generated at the user’s request. These
features enable Hit It! to give players an engaging
experience in which they hit drums to the beat of any song
they choose while being scored higher or lower based on
their performance.

Index Terms — Beat Maps, Digital Signal Processing,
Embedded Systems, Entertainment, Graphical User
Interface, FSR

I. INTRODUCTION

"Hit It!" is a drum based rhythm game that offers a middle
ground between other rhythm games on the market. Currently,
the market is filled with rhythm games that either do not
involve hardware or rely on a cumbersome and expensive
setup that is inaccessible to some audiences. Furthermore,
these games typically do not provide the user the ability to
import their own songs, further limiting the demographic it
appeals to based on the songs they offer.

Our project, Hit it!, offers a small and portable drum
apparatus and the ability for users to input their own song. Hit
It! analyses the frequency content of the player’s song to
generate a beatmap, allowing the user to play to the rhythm of
their favorite songs. By incorporating the creation of beat
maps based on user-inputted songs, the demographic can
extend to all ages.

II. USE-CASE REQUIREMENTS

We identified 6 use case requirements that have helped us
better define success in meeting our objectives.

A. Compactness

The hardware should fit into a standard 15 liter backpack.
The ability to fit within standard carrying devices (backpacks)

is crucial for enabling users to transport the system with ease.
The convenience of transportation also factors into the user’s
impressions of the game outside of their experience with the
game itself.

B. Effective Beat mapping

The game should play user provided songs and generate
beatmaps to go along with them. The beatmaps are accurate to
the input song; an accuracy of at least 80% will feel true to the
provided song. The duration of beat mapping relates back to
initial impressions and encumbrances to the user. If the game
requires a lengthy and tedious setup process when trying to
use certain in-game features, users will avoid that feature
altogether. The beat mapping also needs to be accurate,
otherwise it would be dishonest to call it a beatmap, as an
inaccurate beatmap defies the whole point of having the
beatmap to start with.

C. Frame Rate

The game should run faster than 30 frames per second.
Frame Rate is an important factor relating to user enjoyment,
as a slow frame rate will lead to “choppy” visuals and a
worsened user experience. This factor will likely conflict
directly with graphical quality, as higher quality graphics will
require more time to modify each frame.

D. Latency

The latency between the user hitting the drum and the
game recognizing the input should be less than 70 ms. Latency
is a combined criteria that assesses the total delay within both
hardware and software from the time a user provides input to
the time that input is displayed back to the user. This is an
extremely important criteria as rhythm games are
fundamentally reliant on timing, so delays in those timings
will be very noticeable

E. Ease of Setup

The user should be able to set up the game in less than one
minute. The ease of setup characterizes the user’s initial
impressions of our game. A cumbersome and tedious setup
process will establish a negative opinion of new users from the
start.

F. Drum Recognition Accuracy

The hardware should correctly identify user drum hit
inputs 99% of the time. Drum recognition accuracy is the
number of times the drum module registers a hit and passes

2
18-500 Final Report: Team A5 Hit It! May 7, 2022

that information to the computer divided by the total number
of times the drum is hit. This criteria most accurately defines
the “consistency” of our system by assessing how often the
system performs as it has been defined to.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

There are two main components of the software as
illustrated by the block diagram (Appendix Figure 12): beat
tracking in Python and gameplay code in C++. For the C++
portion, Open Graphics Library (OpenGL) is used to create
the gameplay code. OpenGL is a relatively low level tool used
for creating video games that adds technical complexity to the
development process.

The Python code analyzes all of the songs that have been
placed into the songs folder, and exports their beatmap data as
JSON files. Then, when the player selects a song to play, the
corresponding JSON is read by the C++ code and loaded into
the game.

The primary goal of the beat tracking Python script is to
export a series of timestamps where the supposed beats are
detected. In order to do this, the audio file must be provided as
an uncompressed wav file. Which beat is mapped to a
particular drum is dependent on the frequency of the beat
detected. The time stamps, the BPM, and the drum mappings
are then entered into a JSON. This data is read by the
gameplay code at runtime.

Figure 1: Overall System Architecture (Hardware System).

The hardware portion of this design is focused upon a
series of “Piezoresistive Sensor Drum” modules, each of
which consists of a 3D printed drum housing and a custom
PCB upon which all the drum’s circuitry is soldered.

In addition to these 4 drum modules, there is also a
separate “Central Module” that houses the ESP32
microcontroller development board and its supporting
circuitry soldered to a perf board. This module serves as the
interface between the drums and the computer by modifying
the raw data received by the drums into a more digestible form
for the game program. Furthermore, the central module also
has a 3D printed outer shell, however its form factor is much
simpler than the drums, as it is effectively just a small box
with holes for connectors, whereas the drum housings need a
large circular opening for the drum pad and smaller holes in
the corners for their several feedback LEDs. The interaction
between these 5 total modules is depicted below in Figure 1.

The design of both these modules has shifted since the
design report. For the central module, we originally planned
for it to be similar in width/length to the drum modules, which
would’ve aided in easy storage, however after gaining more
experience with the costs of 3D printing, we decided this
convenience wouldn’t be worth doubling the module’s cost.
Regarding the drum modules, the only changes that have
occurred to the housing were the addition of corner holes to
account for the feedback LEDs and the removal of the
crossbar that supported the FSR in the prototype drum design.
The custom PCB already serves this purpose, so having the
crossbar in addition would be redundant.

3
18-500 Final Report: Team A5 Hit It! May 7, 2022

The circuitry within both these modules is depicted in
Appendix Figure 13. The “Piezoresistive Sensor Drum”
module contains the FSR and a 1 MOhm resistor that acts in
tandem with the FSR to form a voltage divider, which is core
to the drum’s operation in creating analog voltage changes.
Additionally, each drum module has been outfitted with 4
green feedback LEDs since the design report. These LEDs
receive signals from the ESP32 when the drum’s output
voltage is high, which allows them to turn on and provide
visual feedback to the user when the drums are hit.
Furthermore, these LEDs serve an excellent debugging
purpose, as both developers and users can observe the LEDs
upon hitting the drum to verify the drum is working properly
and that their hit was registered.

The voltage outputs from these drum modules feed into the
“Central Module” also shown in Appendix Figure 13. These
voltages connect to the GPIO pins of the ESP32, which has
access to an internal Analog to Digital Converter, allowing it
to convert the analog voltages received from the drums into
digital signals. The results of this conversion are then
transmitted out of the ESP32 chip using the UART serial
communication protocol into a UART-USB interface chip,
which then sends that information to the connected computer
using the USB serial communication protocol. As mentioned
above, the incorporation of feedback LEDs since the design
report necessitated additional functionality from the ESP32.
Most of these changes occurred within the ESP32’s Arduino
code, however a new 220 Ohm resistor was also needed for
each LED power line to limit the current sourced from the
ESP32 to the drum LEDs.

IV. DESIGN REQUIREMENTS

Each of the use-case requirements specified earlier has an
associated quantitative metric that defines what it means for
this project to “succeed” at satisfying the user requirements.
However, the design side of the project’s implementation
provides additional restrictions and specifications on those
requirements:

A. Latency

The goal duration between drum hit (input) and GUI
response (output) is no more than 70 milliseconds. For the
software stream, the frames per second goal of 30 has the
consequence of increasing the software latency to 33
milliseconds by default, as any inputs received after a frame
update can not be displayed through the GUI until the next
frame update, which at worst could occur 33 milliseconds later
(33 milliseconds = 1/30 seconds). 33 milliseconds is much
higher than the expected runtime of the gameplay loop, so this

stream’s latency is constrained to 33 millisecond as long as the
FPS remains 30.

Therefore, the hardware stream has the remaining 37
milliseconds to work with, which is divided up between the
FSR, the ESP32’s ADC, and the UART-USB interface. Based
on the hardware specifications of the FSR,5 latency should be
negligible as its rise time is on the order of microseconds.
Therefore, the ADC and UART-USB interface need to be
under those 37 milliseconds when combined.

B. Drum Recognition Accuracy

The drums should recognize over 99% of valid drum hits.
This requires a definition of “valid hits,” which when coming
from a user perspective should only be anything the user
wanted to portray as a hit. During the design report, we used a
study of forces on drumsticks19 to reach a target of 10 N for
this goal. The reason we thought this value would be good is
because within said study, they provide a graph of force vs.
time while striking a drum, and following the initial force
peak, there are several smaller force peaks caused by
vibrations. None of the secondary force peaks reached 10 N,
so we believed considering all forces above this threshold to
be valid would maximize our recognition rate without gaining
any false positives.

The problem with this study is that the swing velocity used
by the drummer in the force test (7 m/s)19 was much higher
than the swing speeds some users were actually applying to
the drums during user testing. Therefore, we had to rethink
this metric. After watching an instructional drumming video,17

we found that drumsticks should be resting a few inches above
a drum while at rest for optimal performance. As such, we
chose a new metric of 3 inches for our swing distance, rather
than the 10 N metric from before. Having a distance metric is
more useful as well, as measuring force applied from contact
with a moving object can be quite difficult, and with a height
metric, we can simply use gravitational force from the optimal
height as a stand-in for what the lightest user hits should apply
in terms of force. Furthermore, regarding the issue of
unintended vibrations creating false positives, we
implemented solutions within the code to ignore such hits that
occur too close in proximity to each other to be valid,
eliminating that concern altogether.

The metric of over 99% recognition is most heavily
correlated to the reliability of our FSR and the design of our
drum pad modules. Assuming our FSR works to the
specifications provided in its datasheet,5 there should be no
issues with it recognizing forces so long as they are properly
applied.

4
18-500 Final Report: Team A5 Hit It! May 7, 2022

C. Ease of Setup and Compactness

The system should take no longer than 1 minute to set up.
This duration starts from when the user touches the modules
and finishes when the game is operating and interactable for
the user. The system should also be small for ease of
portability.

There are two main aspects to this setup time, physical and
electrical. The physical setup time is primarily defined by
factors such as untangling wires and connecting modules
together. The solution we incorporated was to bundle the
cables together, reducing the likelihood of cords becoming
tangled. Furthermore, setup time also depends on portability
of the hardware apparatus, which further increases the
importance of satisfying that use-case requirement.

Regarding the electrical setup time, this includes the laptop
and microcontroller boot times. For the laptop, we expect it to
be turned on either prior to setup or during the physical setup
process above. Regarding the ESP32 module, all it needs is to
be connected to a powered computer to fully boot and connect
to the computer. Furthermore, the ESP32 has a boot time on
the millisecond to second range,3 which is far quicker than the
minute goal we have from the use case requirements, so this
shouldn’t pose an issue.

D. Effective Beat mapping

The game should be capable of transforming provided
songs into playable beatmaps. These beatmaps should take no
longer than the song’s duration to produce and should match
sample beatmaps with over 80% accuracy.

The first challenge is the time it takes to create a beatmap
from the user's song. Having it take several hours would
severely decrease the user’s enjoyment of the game, so the
goal is to create a beat map from a user-inputted song in the
length of the audio clip or one iteration over the song. To
achieve this, an amplitude threshold-based onset beat
detection algorithm is used. The suggested algorithm is to
determine the consistent noise spikes and consider the beat
amplitude. However, user inputs may have to be restricted
with the usage of this algorithm. Coupled with dynamic
programming to lessen the recalculation time for similar
calculations, there is only a need to loop through the audio file
once. These factors should assist in ensuring the time it takes
to create the beat map is at or below the length of the song.

The second goal is having the beat map accuracy over 80%
when compared to the beat maps created by the industry

standard package (Librosa). There are several challenges with
this. There is a high potential to detect beats where there are
none, and the algorithm may also miss some beats. To meet
this criteria, the aforementioned algorithm will also be used.
By also using the BPM to ensure that counted beats roughly
have the expected timings, the beat accuracy should be above
80%.

E. Frame Rate

The game should run at 30 frames per second (FPS). 30
FPS was the target goal set by what potential users have come
to expect from the gaming market. However, from a design
perspective, this means that the gameplay loop of the main
codebase, including the communication with the user’s
hardware, must take no more than 33 milliseconds. This
shouldn’t be a difficult goal to attain under the right
circumstances, however certain other game design criteria
could potentially limit the system’s ability to reach this goal.
The most concerning tradeoff is likely going to be that
between frame rate and the graphical quality/intensity.

Due to how the GUI displays images to the user, creating
more visually engaging graphics often requires greater code
complexity and as a result more calculations to be performed
by the code each cycle of the gameplay loop. As such, going
into the project we expected there may come a point where
further increasing the visual quality of the game results in the
framerate dropping below the 30 FPS target.

V. DESIGN TRADE STUDIES

A. Beat Mapping

The main package that the beat mapping algorithm
depends on is Librosa, an audio-processing package tool. The
primary use of this package is to determine the beats per
minute (BPM) of the audio file.14 This package was used
instead of a manual beats per minute determination due to
latency concerns. Because a majority of BPM tracking
algorithms depend on a combination of fourier transformations
and loops into the transformations, the expected latency would
have doubled the time for the total beat mapping computation.

Determining the beat mapping algorithm requires the
calculation of the average energy throughout the audio file 2.
This is calculated through the summation of the squared
intensities over the audio file. This is then normalized and
compared to an instantaneous energy. This does require
looping throughout the wav files.

5
18-500 Final Report: Team A5 Hit It! May 7, 2022

Because the algorithm for determining the time stamps of
the beats is a loop based approach, one of the tradeoffs in this
algorithm is accuracy for speed. Ordinarily, these strategies
should be avoided due to the desire for a lesser time of
computation. However, because a majority of these values
within the loop are recalculated, dynamic programming can be
used to lessen the computation time. Accuracy was prioritized
over speed because the inclusion of the dynamic programming
should allow for a faster computation time than otherwise.
While this does sacrifice efficiency in space, the use case
requirements for the project do not set a limit for drive space.
This approach maximized time savings as well as accuracy.

B. Graphics Programming Tradeoffs

The gameplay for Hit It! is implemented in C++ with
OpenGL. Video games are typically created nowadays using
game engines such as Unity or Unreal. OpenGL is a more
low-level tool for displaying video game graphics compared to
game engines, which adds technical complexity to our project.
Although OpenGL stands for “Open Graphics Library”, it is
not actually a library but rather a specification for the interface
between the software and GPU.

There are several alternatives that we could have used
instead of OpenGL for graphics displaying. One popular
alternative is PyGame, which is a Python library for making
games. PyGame also comes with built-in sound support,
which OpenGL does not. We also could have used DirectX or
Metal, which are graphics interfaces for Microsoft and Apple
platforms. OpenGL was chosen over these alternatives
because 1) the team has experience with OpenGL, 2) there are
numerous cross-platform OpenGL libraries available (this is
not the case for DirectX and Metal because they are
OS-specific), 3) programs in C++ with OpenGL run faster
PyGame (due to Python being a slower language), and 4) C++
is common for development in the video games industry.

C. Hardware Trade Studies

For the hardware portions of this project, there were
several comparisons that needed to be made. However, the
most important decisions were centered in five areas, the drum
pad material, the FSR, the microcontroller, the drum housing
material, and the circuitry base.

Neoprene vs. Natural Rubber

Regarding the choice of drum pad, our team looked at
several options with good elasticity and eventually settled

between two materials, those being Neoprene and Natural
Rubber. Neoprene is a synthetic version of rubber known for
its resilience and elasticity, which makes it an excellent
material for products like bouncy balls. Natural rubber has
many of the same positive qualities regarding its elasticity,
however it doesn’t have the same resilience as Neoprene,
although this isn’t an issue since it will not be subjected to
extreme temperatures or conditions for our purposes. Our
team’s original goal was to purchase samples of both, allowing
their differing functionalities to be tested in a prototype drum
firsthand, however, the cost ended up being the deciding factor
here, as purchasing natural rubber sheets through Amazon was
an order of magnitude higher than obtaining Neoprene rubber
sheets. This circumstance made the decision between the two
quite easy, as our team couldn’t justify spending half of our
budget on a material we may or may not end up using in the
final product.

Flexiforce Pressure Sensor vs. Interlink Electronics FSR

The main qualities needed in the FSR for this project were
response time and reliability, which derive from the design
requirements of latency and drum recognition accuracy
respectively. Our team’s two main FSR candidates, those
being the Flexiforce Pressure Sensor and the Interlink
Electronics FSR 402, both satisfied these criteria, however
there were also important secondary considerations.4-5

Specifically, the Flexiforce Pressure Sensor had the benefits of
high precision and a large force sensing range of
approximately 0 to 445 Newtons, whereas the Interlink
Electronics FSR 402 had the benefits of being much cheaper
as well as having a larger sensing area. However, the FSR 402
has a much smaller sensing range than the Flexiforce sensor,
as it can only reliably measure from 0.2 to 20 N, and in case
the project needed to use different levels of force during a
post-MVP stage of the project, our team opted to prioritize the
Flexiforce sensor. However, after performing some
preliminary tests on both sensors, it became clear that the
user’s force was dampened to such an extent through a layer
of Neoprene that the vast majority of the Flexiforce sensor’s
measuring range was going unused. This eliminated the
primary reason for selecting the Flexiforce sensor, and as such
our team decided to focus our further efforts on the FSR 402
sensor instead since it performed similarly for a much cheaper
price.

ESP32 vs. Arduino

Regarding the selection of microcontroller, our team
narrowed down the choices to two options. The first was the
ESP32 designed by Espressif and the second was the Arduino
Zero made by Arduino. These two boards share many

6
18-500 Final Report: Team A5 Hit It! May 7, 2022

similarities, as both are 32-bit microcontrollers that operate at
3.3 Volts, and which are programmable using the extremely
accessible and user-friendly Arduino IDE. However, there
were a few defining factors which ultimately solidified the
ESP32 as the preferable microcontroller.1,3 Firstly, the Arduino
Zero uses an ATSAMD21G18 which gives it a clock rate of 48
MHz, whereas the ESP32 uses a Tensilica Xtensa LX6
microprocessor chip, giving it a clock rate between 160 MHz
and 240 MHz depending on the operating mode. Due to how
having low latency is a core design requirement of this project,
the ESP32 is the preferable option here. Secondly, the ESP32
is overall much cheaper to purchase at around $11 for some
development boards whereas the Arduino Zero is closer to
$40. There are certainly cheaper Arduino options available,
but even the cheapest Arduino boards tend to be around $20,
which is still higher than the ESP32 development board.
Lastly, our team also has great deal of experience working
with the ESP32 microcontroller, which would result in time
savings of the course of the project. These three factors are
what ultimately solidified the ESP32 microcontroller as the
preferred option for this project.

3D Printing vs. PVC Piping

One tradeoff that our team experienced was between 3D
printing and using available materials such as PVC pipes for
developing our drum module housings. The original idea was
to use 3D printing for all of the drum modules and the central
module, however the first round of prototype printing came
back more expensive than we originally anticipated, as 3D
printing one prototype module cost approximately $55. When
we extrapolated this to 5 more modules, we expected to incur
an additional $275 in expenditures. This prompted an
exploration of alternatives, specifically the use of PVC piping
and wood for our drum module housings. This alternative
would’ve been an order of magnitude less expensive, however
it had the substantial downside that our team would need to
invest much more time and energy to achieve an inferior
product. The primary tradeoff here wass price vs. time and
effort, and in the end, we decided to make due with 3D
printing as we valued the additional time and energy much
higher. Luckily, smart revisions to our 3D designs allowed us
to trim a significant amount of the expected printing costs,
shrinking the original $275 estimate down to only $164, which
further validated our choice to take this route.

Custom PCB vs. Solderable Perf Board

Custom PCBs were used within the drum modules due to
the large space between the several components and need for
an exposed solder pad to attach the FSR to. However, the price
of these PCBs was slightly higher than expected

(approximately $54 for 1 set) and the manufacturing/shipping
delay took around 3-4 weeks. As such, when the need arose
for a circuit board within the ESP32 module, another custom
PCB wasn’t an appealing option. Instead, we chose to use a
solderable perf board, which had the two main benefits of
being far cheaper ($5 or less) and quicker to assemble/solder
by hand (2 days). This saved much time during the final days
of this project, during which a custom PCB likely wouldn’t
have arrived in time. A depiction of this solderable perf board
can be seen below in Figure 2.

Figure 2: FSR resting on Neoprene square at center of PCB.

VI. SYSTEM IMPLEMENTATION

Hardware System Implementation

As mentioned within Section III, the “Piezoresistive Sensor
Drum” circuitry is soldered to a custom PCB and placed
within the 3D printed drum housings depicted in Figure 1. The
way the drum modules operate is by having the FSR leads be
soldered to the PCB while its sensor rests on a small square of
neoprene attached to the PCB center. This is depicted below in
Figure 3.

Figure 3: FSR resting on Neoprene square at center of PCB.

7
18-500 Final Report: Team A5 Hit It! May 7, 2022

The sensor being raised on this square creates a lever
system with the drum pad and the FSR, as when force is
applied to one end of the drum, the adhesive attachment of the
drum pad’s far end keeps the pad from rising. This redirects
the majority of the force applied to the drum pad through the
FSR no matter where on the drum pad the user hits. This
system is not perfect however, as the neoprene’s elasticity
allows for some flexibility on the drum’s far end, meaning not
all of the force will go into the FSR. Furthermore, forces
applied very close to the drum’s edge will also have much of
their force lost through the load-bearing walls of the drum
module. A brief diagram depicting this can be seen below in
Figure 4.

Figure 4: Force redirection into the FSR.

Each drum pad consists of two materials, Neoprene rubber
and wood. The Neoprene slightly dampens the applied force,
giving the drum a more satisfactory feeling when hit while
also protecting the FSR from direct contact with the user,
whereas the wood provides the necessary rigidity needed to
perform the lever effect described previously, as otherwise the
Neoprene would simply bend without redirecting the forces
into the FSR as desired.

Regarding the circuitry within the drums, the FSR forms a
voltage divider with a 1 MOhm resistor, so that when the FSR
receives a force and its resistance drops (from approx. 10
MOhm to near 0 Ohm), the voltage at the node between the
FSR and the resistor will change drastically. This changing
analog voltage, as well as the GND and VCC (3.3 Volt) nodes
which participate in the voltage divider are passed through the
opening in the modules base. However, since the design report
an additional node has been added to this group, specifically
the LED voltage line which powers the drum’s feedback
LEDs. Originally, it was planned that the voltage divider
output would also be responsible for driving these LEDs, so
that another line wouldn’t need to be fed between each drum

and the central module, however due to issues sourcing the
required amount of current through the FSR and issues related
to LED illumination duration (discussed more below) we
decided that having the ESP32 handle these power lines would
be the preferable option. Therefore, each drum has 4 nodes
(GND, VCC, LED Power, Voltage Output) that are passed out
of their base through a locking pin header, which reduces the
possibility of suddenly disconnecting with a module during
use. A depiction of this pin header can be seen below in
Figure 5.

Figure 5: Locking Pin Header within drum module

The voltage divider outputs from the drum modules each
feed into the ESP32 development board module through its
GPIO pins, specifically those which can be used with the
ESP32’s internal Analog to Digital Converter. This allows the
ESP32 to read said pins and get their respective voltages
represented as digital values. From here, the ESP32 will then
package that information into a single byte and transmit it
using the UART serial communication protocol to the
UART-USB interface chip present on the development board,
which allows for the message to be converted to the USB
communication protocol before being forwarded through the
board’s USB-C port to the connected computer. The only
component in this stream that requires programming is the
ESP32 microcontroller chip, which is programmed using the
Arduino IDE due to the ease of use and convenient helper
functions that IDE provides. As mentioned previously, the
ESP32 has also gained responsibility for powering the drum
LEDs since the design report, which it also performs using its
GPIO pins. Each drum’s respective LED power pin is turned
on once the ESP32 reads a high voltage from the drum’s
output line, however, the changes within the drum voltage
dividers happen near instantaneously and disappear just as
fast. As such, if these LEDs power pins were to turn off as
soon as the voltage divider voltage disappeared then the LEDs
would hardly be turned on for a perceivable amount of time
for the user. To remedy this, the Arduino code simply sets a
timer for each drum’s LED power pin whenever a high voltage
is read from that drum, and once that timer reaches zero the
LED power will be set low again. This allows the LEDs to

8
18-500 Final Report: Team A5 Hit It! May 7, 2022

remain on for a long enough period of time for users to react
to their presence.

Software System Implementation

There are several criteria that must be met for a song to be
imported into the game. Otherwise, the song will either fail to
load in the game properly or the generated beatmap will feel
awkward and it will not follow the music properly.

● The song must be encoded as a .wav file with 44.1
kHz sample rate

● The song must have a constant tempo
● The song can not have strong impulse aperiodic

noises

Beat Map Generation

Figure 6: Overall Pipeline for Beatmap Generation

Multiple packages were used to create the beat map
generation script. Firstly, Librosa is an audio-processing
software package written in Python.14 This package was used
to obtain the beats per minute (BPM) of the audio file. A
majority of the remaining digital signal processing was done
with relatively simple python packages, including Numpy,
Scipy, and MatPlotLib 10,13. The BPM was then used to
determine the approximate amount of time between beats in
the audio file. In this case, twice the amount of time of
seconds per beats according to the BPM was required to detect
a note

The game has four drums. Originally, four filters were used
to divide the audible frequencies into four categories: low,
medium-low, medium-high, and high. Respectively, the trial
frequencies were in the ranges: 60 Hertz to 250 Hertz, 250
Hertz to 500 Hertz, 500 Hertz to 2000 Hertz, and 2000 Hertz
to 4000 Hertz. These values were largely guided by referenced

online resources as well as testing that had been conducted16.
However, after various playtesting sessions, it was found that
the division of the audio file into four bands was too difficult
to play. To remedy this, the audio file was divided into two
frequency bands using Scipy filters: low pass filter that filtered
for frequencies below 500 Hertz and a high pass filter that
filtered for frequencies above 500 Hertz. This division allowed
a pseudo-melody tracker to be created. By regarding the
division of the audio files as two separate files, individual
intensity analyses could be performed on both files to create
beat tracking and melody tracking. The intensity analysis is
described below.

The expected amplitude is determined using an amplitude
threshold-based onset beat detection algorithm. Currently, the
assumption is that the audio files have a static BPM. By
determining the average energy over the entire file and
comparing it to the instantaneous energy, beat energy can be
calculated as a larger change between intensities when
compared to other points in the audio file. This can then be
mapped to the time 2. One issue with this method is the
implicit assumption that the BPM is static, as well as the
constant scalar value by which average energy is multiplied by
that the instantaneous energy must be greater than. However, a
predictive algorithm can be implemented in which the genre of
the audio file can be determined, allowing for a more accurate
scalar value. In order to send the timestamps of the beat
tracking algorithm to the main gameplay loop, the time stamps
themselves were exported into a JSON format that is able to
be read by the game code.

Gameplay Code

The gameplay is implemented using C++. CMake is used
to compile and link source files, as well as all of the external
libraries used. The graphics were created using OpenGL,
which is a popular interface for rendering graphics. Additional
libraries are used for reading files and playing audio. C++ was
chosen as the language for the gameplay code because it is
common in the video game industry, and the members of the
team are personally interested in using C++ with OpenGL.

9
18-500 Final Report: Team A5 Hit It! May 7, 2022

Figure 7: Diagram of gameplay code flow. This is not a
comprehensive list of all of the files in our project but rather
an overview of how the most important files interact with each
other. For a complete list of our gameplay files, please refer to
our GitHub page.

Hit It! uses several external libraries for writing graphics
code:

● GLAD - Implementation OpenGL functions
● glm - Math utility library for graphics programming
● GLFW - Cross platform window creation

For file I/O and playing audio, the following libraries are
used:

● libaudiodecoder - reading WAV files
● jsoncpp - reading beatmap files encoded as JSON
● PortAudio - real time sound rendering

Figure 8: Screenshot of gameplay GUI.

The GUI for the song selection and gameplay was heavily
inspired by Dance Dance Revolution (DDR). The current
design for the song selection screen is very similar to the song
selection GUI from DDR. The health bar in our gameplay
screenshot is placed at the same location as the health bar in
DDR.

Figure 9: Screenshot of song selection GUI

VII. TEST, VERIFICATION AND VALIDATION

Most of the use case requirements and design requirements
outlined previously were defined through some form of
quantitative metric. Keeping these in mind, we performed a
series of tests to verify the extent to which our final design
met our target goals. The methods we used to test, the results
we achieved, and how they compared to our expectations are
described for each metric below.

Tests for Latency

There are two primary intervals which constitute the
latency within our design, that from the instant the drum is hit
to the moment that information is sent out from the hardware,
and that from the moment the software can read that
information to the point it can act accordingly. As discussed
previously in the design requirements section, our target goal
for latency overall was 70 ms, with 33 ms being dedicated to

https://github.com/gcwhitfield/18-500-ECE-Design-Experience

10
18-500 Final Report: Team A5 Hit It! May 7, 2022

the software assuming operation at 30 FPS and the remaining
37 ms being available to the hardware.

Regarding the hardware testing, we used an iPhone camera
under the “slow-mo” setting to record at a rate of
approximately 100 frames per second (10 ms intervals). Using
this high-frame count, we were able to count the frames from
the instant the drumstick made contact with the drum pad to
the point an oscilloscope could read the message being sent.
This is slightly less precise than we expected it to be, as in the
design report we expressed that we hoped the frame rate
would be closer to 240 fps, however this rate was still
serviceable, and the results can be seen in Table 1 below.

Trial 1 Trial 2 Trial 3 Trial 4

Response Time (ms) 40 40 30 40

Table 1: Hardware response times

Using these results, we had an average response time of
37.5 ms for the hardware, give or take 5 ms in either direction
due to the somewhat low precision of the measurements. This
is higher than we were expecting, as we believed the high
clock speed of the ESP32 would easily be able to perform the
simple Arduino loop quickly. However, within these trials we
also observed that the feedback LEDs turned on near
instantaneously, no more than 1 frame after the drumstick
made contact. Since the LEDs turning on was the final action
performed within the code, this informed us that reading the
voltages GPIO pins did not have a significant delay and that it
was the act of sending the data from the ESP32 causing the
delay. This unfortunately meant that code optimization
wouldn’t be capable of reducing this latency by a significant
amount.

However, we were able to make up for some of this delay
on the software side of the project, as our gameplay code
could run at 60 FPS rather than the 30 FPS we originally
planned. This meant that only 17 ms were being consumed by
the software side of the design, and therefore when we add the
42.5 ms worst case hardware latency to that value our full
system latency comes out to around 60 ms, which is below our
desired target of 70 ms.

Playtesting

Since Hit It! is a video game, playtesting is critical to test
the system in front of users to ensure that the game is easy to
play. The team conducted playtesting sessions during the week
of April 18. During these sessions, the team asked CMU

students who have never played the game to play several
rounds of Hit It! and also connect wired to the microcontroller.
After the test session, students completed a survey asking
them about their experience.

According to the survey, 75% of playtesters felt that the
drums were behaving strangely. This was a concerning piece
of feedback and as a result, we focused on enhancing the drum
hit recognition more before performing our official
recognition tests. As a result, the drums were much more
responsive during testing and during the public demo on May
6, 2022. Since the data collected from the survey is qualitative,
we cannot use this data to directly measure whether we have
met a use case requirement.

Tests for Drum Recognition Accuracy

To test the drum recognition accuracy, our original goal in
the design report was to test specific force quantities in a
variety of different locations along the drum to ensure that all
forces above a target threshold of 10 N counted whereas those
below that threshold would not. However, as discussed in the
design requirements section, we realized this metric was
problematic once we began testing. As such, we defined our
tests to instead validate the accuracy of swings beginning at a
height of 3 inches above the drum, as that is an optimal resting
position while drumming normally.17 To evaluate the drum’s
using this new metric, we hit the drums in two different ways.
The first was manually from the height of 3 inches above the
drums, as this would be the most accurate representation of the
forces the drum would experience from an average user. The
other way we hit the drum was using exclusively gravity’s
effect on the drumstick from the 3-inch height, as this
simulated the weakest forces we might expect a user to apply.
Additionally, we also hit the drum in two different locations,
the center and the edge, which represented our expected most
and least optimal use scenarios respectively, as hits near the
center would likely have higher recognition rates since they
occur directly above the sensor. The results of this testing can
be seen in Table 2 below.

Drum 1 Drum 2 Drum 3 Drum

Manual -
Center

250/250 250/250 250/250 250/250

Gravity -
Center

250/250 250/250 250/250 250/250

Manual -
Edge

242/250 235/250 236/250 247/250

11
18-500 Final Report: Team A5 Hit It! May 7, 2022

Table 2: Drum recognition accuracy results

Each category of testing received 1000 trials across all 4
drums. The averages didn’t vary based on the way the drum
was hit, however they did vary based on location. The
averages for the different locations are 100% for centered hits
and 96% for edge hits. This aligned well with our expectations
as we had little fear that hits near the center would be
recognized properly and it was hits near the edge that
concerned us. However, although 96% is less than our target
of 99%, we still considered this to overall be a successful
showing by the drum modules, as the most concerning failure
would be in which one has no way of guaranteeing that their
hits will count. As long as the user has a reasonable and near
guaranteed way of ensuring that their inputs will register
(hitting near the center) then the use case requirement
regarding the consistency of the recognition accuracy will be
satisfied.

Tests for Ease of Setup

To test this criterion, we had random participants with no
prior experience with our project attempt to setup our system
during one of our user-feedback and playtesting sessions.
These results were recorded and averaged, which can be seen
in Table 3 below.

Trial 1 (s) Trial 2 (s) Trial 3 (s) Trial 4 (s) Trial 5 (s)

119.00 26.50 36.08 32.00 44.92

Trial 6 (s) Trial 7 (s) Trial 8 (s) Trial 9 (s) Trial 10 (s)

25.20 38.30 38.40 37.40 27.94

Table 3: User testing set-up times

Averaging these results yields 42.57 seconds, which is
below our target of 1 minutes and aligns well with our
estimates going in. However, one important thing to note is
that not all trials met the 1-minute target, as the first result was
nearly twice as long. During this specific trial, the user had a
lot of trouble getting the connectors into the latches. The most
probable explanation for this is that they were being overly
cautious with the system to not break it, as when we expressed
to other participants that the system was rigorous enough to
withstand moderate applications of force, they seemed to have
a much easier time. From the development perspective, this
tells us that information as to how much force one can feel
comfortable applying without fear of breaking the system
should be included within the instruction set that describes

how to set up the system.

Tests for Compactness

Testing the compactness of the system was rather simple.
All that we needed to do was measure the dimensions of each
module and sum their volumes together. Table 4 below shows
the results of these measurements.

Module Width
(cm)

Length
(cm)

Height
(cm)

Volume
(cm^3)

Drum 12 12 5 720

Central 6 6 6 216

Table 4: Drum and Central module dimensions/volume

Total Volume (cm^3) = 4 * (720) + (216) = 3096 cm^3 = ~3.1
Liters

The total volume of the entire system comes out to about
3.1 liters, which is far below our target of 15 liters we
specified during the design requirements. This lined up with
our expectations, however, we also believed a more qualitative
evaluation of this test derived from the use-case requirement
of the system fitting in a backpack would be valuable to
assess. Luckily, the system was carried within a backpack
nearly every time it needed to be transported, so once again
the design passed the test without much issue, which aligned
with our pre-testing expectations.

Tests for Beat Tracking Timing

To test for the length of the beat map generation algorithm,
a series of fifty beat maps were generated by the final

Figure 10: Beatmap generation time vs. song length

12
18-500 Final Report: Team A5 Hit It! May 7, 2022

algorithm. The “time” module from Python was used to
measure the time that the user-inputted song was identified by
the algorithm to the moment that the JSON was created. The
algorithm operated faster than its goal 96% of the time. In the
following graph, the blue line represents the user requirement
for the project. It maps the length of the audio file. The red
dots represent the duration it took for the beat map generation
for a variety of time points. One issue with this test is the
similarity of lengths of given audio files. Because there were
ranges within this testing (between 300 and 500 seconds) that
no audio files of a given length were used, the data
surrounding this range will have to be assumed to follow the
same range as the data within this range. Overall, the length of
the generation of beat maps was met for this project.

Tests for Beat Map Accuracy

Testing for beat tracking accuracy relied largely on two
different avenues. Firstly, the Librosa module has a built-in
beat tracker. The values that the algorithm for this project
creates for the beat tracker can be compared to the Librosa
model. On average, the Librosa module generates
approximately 400 beats for a three minute audio file. In
comparison, the beat tracking algorithm generates
approximately 600 beats for a three minute audio file. Notably,
the Librosa module appears to create time stamps for their
beats with a required time between seconds per beats (from
the BPM). This suggests that they are not closely following
the rhythm of a specific song. However, following the Librosa
module as a baseline, this suggests a 67% accuracy rate with
the other notes being counted as false positives.

Figure 11: Librosa timestamps vs. beatmap algorithm

The above figure represents a sample taken from an
instrumental song. The blue dots represent Librosa’s
timestamps outputs and the red dots indicate the time stamps
from the beat map generation algorithm designed for this
project. The values on the y-axis are redundant and were
created to designate some space between the two colors for
clarity for the user. As can be clearly seen, the red dots largely
line up with the blue dots. However, false positives do exist,
shown by the clustering of red dots at the 62.5 second time
stamp. This is likely caused by the project’s need to closely
track rhythms and melody changes rather than a simple beat.

Frame Rate

To test that the system is achieving the goal of 30 FPS, a
timer was added to the gameplay render loop in the C++ code.
This timer was able to record and output the time between
frames, which therefore allows for the average frame rate over
a long period of play to be easily calculated. The average
frame rate was 61 frames per second.

VIII. PROJECT MANAGEMENT

A. Schedule
The schedule for this semester can be seen in Appendix

Figure 14. Largely, the team was able to keep up with the
schedule. As the project progressed, the Gantt chart was
updated to reflect specific ideas or goals that were being
implemented at the time. Furthermore, the minimum viable
project deadline was moved to a week later than originally
anticipated due to issues with integration.

Some post-MVP goals were not included in the final
project due to time constraints. For example, initially, the
game would have been cross platform. There were various
cross platform packages that did not work as anticipated that
made this goal impossible. Similarly, the original idea for
melody tracking would have used a completely different
algorithm than beat tracking. However, through
experimentation and time constraints, the melody tracking
implemented in this project was sufficient for the user’s needs
and was used throughout the project.

The goals of the project were accomplished by the set
deadlines and the responsibilities of each member largely
stayed the same.

B. Team Member Responsibilities
Shreya
● Implementation of musical analysis algorithms for

beatmap generation
● Exporting beatmap to JSON
George
● Implementation of gameplay: placement of notes on

screen, handling player input, calculating player’s
score, song selection

● Implementation of real time playback using
PortAudio

● Game design of gameplay
Stephen
● Design and Manufacture of Drum pad/ESP32

modules
● Design of FSR circuitry
● Programming of ESP32

13
18-500 Final Report: Team A5 Hit It! May 7, 2022

C. Bill of Materials and Budget
The budget for our project can be seen in Appendix Figure

15. The most noticeable feature is that it is mostly dominated
by the 3D printing costs, which in total were around $220 and
a little more than half of our total expenditures. However, with
these expenditures the total amount spent was still only around
65% of the total $600 we had been allotted. Within the BOM,
items that were not strictly needed within the final design are
highlighted with blue and items that were not part of our plans
during the design report are highlighted in olive. The only
unplanned expenditure was the use of custom PCBs, however
that item still wasn’t entirely unplanned as it was an avenue
we were considering during the design report. All other
unplanned items were scavengable from our own personal
electronic supplies, however their costs wouldn’t have been
substantial (probably around the $20 range).

D. AWS Credits
AWS credits were not used for this project. The game is

an individual offline experience. There would be no
advantages to hosting the game on AWS.

E. Risk Management
The primary risks we anticipated from this project’s

outset were that the OpenGL library would fail, the drums
would not be able to recognize a majority of the hits, and the
beat map generation would be unable to generate any valid
beats. Luckily, these failures were for the most part
unencountered, so many of the risk mitigation strategies held
in the design report were not necessary. However, throughout
the implementation of the project, there were several other
risks that occurred that needed to be accounted for.

One such example is the implementation of the drum
modules, as after soldering one of the PCBs, it was discovered
that we made a mistake that were not easily correctable.
Without risk management, this would have meant that another
PCB would’ve needed to be ordered. However, we ordered
extras PCBs initially to mitigate this risk and were able to
avoid long shipping delays. In the case of PCBs, ordering
extra is often not too much of a financial cost, as they are
produced in batches anyways, so we viewed this extra cost as
worthwhile insurance.

Another concern was with computer failure, or human
error and losing the code written. To manage this risk, we used
GitHub consistently throughout the project. By implementing
version control, any changes made that may have caused
damage to the game or any changes that would lose important
progress were easily reversible. Overall, by using GitHub,
there was no chance that the entire project would be lost.

Overall, there were a variety of risks that the project
posed. Although none of the major risks we predicted in the
design report did not happen, they helped us to predict issues
that may have occurred and mitigate these risks. Because of
the risk management conducted, the project was successful.

IX. ETHICAL ISSUES

As a product intended for solely recreation purposes, Hit
It! is not predisposed to serious adverse ethical impacts.
However, there are certain qualities of this game that could
create minor ethical concerns to certain people, although other
games in the market also have similar concerns..

One example is the inclusion of custom hardware for
playing our game. Although custom hardware makes a rhythm
game more engaging, custom hardware could also exclude
those who can’t use that hardware. For example, some people
with physical disabilities may struggle using drums, especially
when compared to using a keyboard or controller. However,
this potential concern is not isolated to Hit It!, as it's
ubiquitous within all games that use custom hardware. For
example, someone in a wheelchair clearly can’t play DDR nor
could an amputee play Guitar Hero in the intended fashion.
These aren’t concerns that can be engineered away using
clever design, as these custom input methods are core to the
identity and experience of those games. Mitigations could
certainly be implemented alongside these custom controllers.
The way this has been accounted for in Hit It! is to have a
secondary input option of keyboard presses which also map to
the beats in-game. This broadly widens the forms of
acceptable inputs, as most USB controllers allow for button
remapping, which allows for the user to play the game in the
way most comfortable to them if they so choose.

Another possible ethical concern is addiction, a common
problem with video games. Once a product is in the
customer’s hands there is little the producer can do to ensure it
is used properly, making it difficult to mitigate. However,
some games do take steps to limit the amount players can play
in one sitting. The most notable examples of this are games
such as Clash of Clans or FarmVille. They use stamina meters
that recharge slowly over time, which prevents users from
performing too many actions at once. However, these systems
are almost always accompanied by predatory
microtransactions and/or addictive gambling, which are
generally considered to be worse. One could of course
implement such a feature without predatory financial
practices, however there are many other factors that must be
considered when adding such a system, such as the
inconvenience to responsible players and the ease at which
addicted players could surmount these artificial hurdles. As

14
18-500 Final Report: Team A5 Hit It! May 7, 2022

such, we haven’t opted to include any mitigation measures for
this issue within our game for two primary reasons. Firstly,
there is little precedent for these features in other rhythm
games, which much of our design inspiration comes from, and
secondly, we don’t feel addiction is particularly problematic
within Hit It! due to the lack of online features that stimulate
competition within the game itself.

X. RELATED WORK

One game which shares a lot of similarities with our
product is the franchise rhythm game Rock Band.9

Specifically, both our design and Rock Band have controllers
modeled after drums, in which there are 4 drum pads that the
user is meant to hit in rhythm with the notes appearing on the
screen.

However, while our designs share the same number of
drum pads, the Rock Band controller also has an additional
input in the form of a bass pedal. This bass pedal adds extra
complexity and difficulty to the game as users need to split
their focus between their foot on the bass pedal and the drums
they hit with the drumsticks in their hands. During the design
report, we considered taking inspiration from this secondary
mode of user engagement, however we ultimately chose to
prioritize other features post-MVP.

One notable downside of Rock Band is the lack of song
flexibility their product has, as although they provide a large
and varied list of popular songs, such as “Caught Up In You”
by .38 Special and “I Bet My Life” by Imagine Dragons, their
website also has a tab where users can request songs to be put
in the game. The presence of this tab highlights the major
limitation of their product which our design is aiming to solve,
as when a user wants to experience a specific song in game,
the best they can do is message the developers of the product
themselves and hope that they’ll be able to obtain the rights.
The fact that Rock Band felt the need to accept this input also
proves the importance of our system’s beat mapping
functionality, as by avoiding this process altogether our
product saves users the significant and unreliable hassle of
messaging developers directly.

Additionally, there exists another project this semester that
shares many similarities with ours, specifically Team A3’s
project Flex Dance. The two core similarities between our
projects are that both use custom hardware setups based on
Force Sensitive Resistors and how both are rhythm games.
The main differences between our projects though is that our
project has the additional features of beat mapping software
whereas their project has a much greater emphasis on their
hardware setup.

XI. SUMMARY

In summary, Hit It! is a rhythm game where the user hits
drums to the beat of a song. The game design is inspired by
popular rhythm games such as Rock Band and Dance Dance
Revolution. The technical complexity of our project comes
from our implementation of the drum hardware, signal
processing algorithms, and use of low level graphics libraries.
The user interest in this game is primarily because of the
active and engaging hardware and software experience.
Furthermore, because users are able to input their own songs
into the game, the game creates a more personalized
experience. Because some of these design traits are currently
lacking in the market, the introduction of this fun,
personalized experience allows users of all ages to play the
game.

The system was able to meet a majority of our design
requirements, although there were some issues with the beat
mapping accuracy. Noticeable limits on the beat mapping
accuracy were in terms of the type of audio file submitted. A
file had to have a wav extension or the tracker would be
unable to analyze it. Furthermore, although no wav input
could have caused the program to crash, pop songs and
instrumental audio files were better suited to the beat tracking
algorithm.

There are several ways in which the game aesthetics and
functionality could be improved in the future. As of now, the
score tracking is dependent on how closely the user hits are to
the beat. However, in a different iteration, score calculations
could also be tied to intensity of the hit, double hits, or a
variety of other factors. In general, the gameplay could be
enhanced by adding visual and auditory feedback based on the
user’s drum hit force. Finally, the beat map generation
algorithm could also be improved. The current version only
has one level of difficulty. However, in a different iteration,
users could be able to choose multiple different difficulty
levels for each individual song. Unfortunately, because the
members of our team are moving to different parts of the
country post-graduation, it would be extremely difficult to
continue working on the project in the future. As such, the
project is complete for our team.

The lessons learned in this project were numerous. We
found communication was extremely important in the success
of the project. Mediums such as Discord and GitHub allowed
the team to keep track of progress made. Open source software
and tutorials helped us become familiar with languages and
technical aspects of the project that we would have been
unable to do alone or with previous classwork done.
Overall, the creation of Hit It! was an informative and
entertaining experience for us to create. Each of us learned far

15
18-500 Final Report: Team A5 Hit It! May 7, 2022

more about our various disciplines than we had known before
and we hope to carry these lessons into our future endeavors.

GLOSSARY OF TERMS

Beatmap - the sequence of notes that fly towards the user
during the game

Rhythm game - games (typically video games) which
require the player to move their body in time with music

Beats - The groove of a song. These are the musical
rhythmic hooks that the listener feels when listening to a piece
of music.

BPM - Beats per minute. This is also referred to as the
tempo. The term “beat” as used in BPM does not refer to the
“beats” as defined above, but rather it refers to the steady
musical pulse that the listener feels when hearing music.

Judgment Notes - In rhythm games, the “judgment notes”
are the notes on the GUI that the beatmap notes fly towards;
the player must strike the game hardware when the beatmap
notes align with the judgment notes.

FSR - Acronym for Force Sensitive Resistor. These
resistors are usually made of piezoresistive materials, which
give them the property of having different resistances under
different levels of pressure/force. Generally, the resistance of
FSRs decreases as more force is applied.

ADC - Acronym for Analog to Digital Converter, which
converts an analog signal into a digital one.

REFERENCES

[1] “Arduino Zero.” Arduino Online Shop, Arduino,
<https://store-usa.arduino.cc/products/arduino-zero.>

[2] “Beat Detection Algorithms.” GameDev.net,
http://archive.gamedev.net/archive/reference/programmin
g/features/beatdetection/index.html.

[3] “ESP32 Series Datasheet.” Rev. 3.8. Espressif Systems.
Pg. 8-14.
<https://www.espressif.com/sites/default/files/documentat
ion/esp32_datasheet_en.pdf>

[4] “FlexiForce® Standard Model A201.” ZFLEX A201-100.
Rev. A. Tekscan. Pg. 1-2.
<https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/
FLX-A201-A.pdf>

[5] “FSR® 400 Series Data Sheet.” PDS-10004-C. Rev. 2.
Interlink Electronics. Pg. 2-3.

<https://cdn2.hubspot.net/hubfs/3899023/Interlinkelectron
ics%20November2017/Docs/Datasheet_FSR.pdf>

[6] Glad used for implementation of OpenGL functions. Feb
2022 https://github.com/Dav1dde/glad

[7] GLFW used for creating OpenGL context and window.
Feb 2022 https://www.glfw.org/

[8] glm used for mathematical helper functions with
OpenGL. Feb 2022
https://github.com/g-truc/glm/releases/tag/0.9.9.8

[9] “Harmonix Music Systems, Inc..” Rock Band Rivals,
Harmonix Music Systems, Inc.,
<https://www.rockband4.com/.>

[10] Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array
programming with NumPy. Nature 585, 357–362 (2020).
DOI: 10.1038/s41586-020-2649-2. (Publisher link).

[11] jsoncpp used for reading JSON beatmap files. Feb 2022
https://github.com/open-source-parsers/jsoncpp

[12] libaudiodecoder used for decoding music files. Feb 2022
https://github.com/asantoni/libaudiodecoder

[13] McFee, Brian, Colin Raffel, Dawen Liang, Daniel PW
Ellis, Matt McVicar, Eric Battenberg, and Oriol Nieto.
"librosa: Audio and music signal analysis in python." In
Proceedings of the 14th python in science conference, pp.
18-25. 2015.

[14] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, et al.
(2020) SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17(3), 261-272.

[15] PortAudio used for audio playback. Feb 2022
http://www.portaudio.com/docs/v19-doxydocs/index.html

[16] Smoot, Jeff. “Understanding Audio Frequency Range in
Audio Design.” CUI Devices, 4 June 2020,
https://www.cuidevices.com/blog/understanding-audio-fre
quency-range-in-audio-design#:~:text=The%20generally
%20established%20audio%20frequency,octave%2C%20y
ou%20double%20the%20frequency.

[17] Sutherland, Jeff, director. Drums - Hand Position and
Approach. YouTube, YouTube, 5 Aug. 2011,
https://www.youtube.com/watch?v=A1rbnMsy7F8.
Accessed 22 Apr. 2022.

[18] Vries, Joey de. Learn Opengl - Graphics Programming
Learn Modern Opengl Graphics Programming in a

https://cdn2.hubspot.net/hubfs/3899023/Interlinkelectronics%20November2017/Docs/Datasheet_FSR.pdf
https://cdn2.hubspot.net/hubfs/3899023/Interlinkelectronics%20November2017/Docs/Datasheet_FSR.pdf
https://github.com/Dav1dde/glad
https://www.glfw.org/
https://github.com/g-truc/glm/releases/tag/0.9.9.8
https://www.rockband4.com/
https://doi.org/10.1038/s41586-020-2649-2
https://www.nature.com/articles/s41586-020-2649-2
https://github.com/open-source-parsers/jsoncpp
https://github.com/asantoni/libaudiodecoder
http://www.portaudio.com/docs/v19-doxydocs/index.html

16
18-500 Final Report: Team A5 Hit It! May 7, 2022

Step-by-Step Fashion. Kendall & Welling, 2020. Feb
2022.

[19] Wagner, Andreas. “Analysis of Drumbeats: Interaction
between Drummer, Drumstick and Instrument.” Master's
thesis at the Department of speech, music and hearing,
Kunglia Tekniska Högskolan, 2006, pp. 19–23.

17
18-500 Final Report: Team A5 Hit It! May 7, 2022

Figure 12: Block Diagram of the Software information stream

Figure 13: Block Diagram of the Hardware information stream

18
18-500 Final Report: Team A5 Hit It! May 7, 2022

Figure 14: Gantt chart depicting the progress over project
lifespan

19
18-500 Final Report: Team A5 Hit It! May 7, 2022

Figure 15: Bill of materials (BOM) showing total expenditures
and areas of expenditure over project lifespan. Item name
refers to the name depicted on the purchase website.

