
1

18-500 Design Project Report: Team A5 March 4, 2022

Abstract — Rhythm games on the market either do not

incorporate portable hardware or have obscure music that

the player does not enjoy. Furthermore, games have

predetermined beat maps, limiting song choices. Hit It!

bridges this gap, by introducing an involved game interface

and an active hardware apparatus for users to hit in time to

their favorite songs. A beat map will be automatically

generated at the user’s request. The user will then begin an

immersive experience where they hit the drums based on

the beats on the monitor and receive either a higher or lower

score based on their performance.

Index Terms — Beat Maps, Digital Signal Processing,

Embedded Systems, Entertainment, Graphical User

Interface, FSR

I. INTRODUCTION

"Hit It!" is a drum-based rhythm game that offers a middle

ground between other rhythm games on the market. Currently,

the market is filled with rhythm games that either do not involve

hardware or rely on a cumbersome and expensive setup that is

not widely available. Furthermore, these games use

predetermined songs, limiting the demographic it appeals to

based on the songs they offer. Applications outside of the game-

based realms do not accurately include the entertainment factor

that is desired by many demographics.

Our project, "Hit it!", offers a small and portable drum

apparatus that is easily carried around as well as a feature for

users to input their own song. The game will create a

customized beat map, allowing the user to play to the rhythm of

their favorite songs. By incorporating the creation of beat maps

based on user-inputted songs, the demographic can extend to all

ages.

II. USE-CASE REQUIREMENTS

While planning our goals going forward, we’ve identified

6 use case requirements that have helped us better define

success in meeting our objectives.

A. Compactness

The hardware should fit into a standard 15-liter backpack.

The ability to fit within standard carrying devices (backpacks)

is crucial for enabling users to transport the system with ease.

The convenience of transportation also factors into the user’s

impressions of the game outside of their experience with the

game itself.

B. Effective Beat mapping

The game should play user provided songs and generate

beatmaps to go along with them. The beatmaps are accurate to

the input song; an accuracy of at least 80% will feel true to the

provided song. The duration of beat mapping relates back to

initial impressions and encumbrances to the user. If the game

requires a lengthy and tedious setup process when trying to

use certain in-game features, users will avoid that feature

altogether. The beat mapping also needs to be accurate,

otherwise it would be dishonest to call it a beatmap, as an

inaccurate beatmap defies the whole point of having the

beatmap to start with.

C. Frame Rate

The game should run faster than 30 frames per second.

Frame Rate is an important factor relating to user enjoyment,

as a slow frame rate will lead to “choppy” visuals and a

worsened user experience. This factor will likely conflict

directly with graphical quality, as higher quality graphics will

require more time to modify each frame.

D. Latency

The latency between the user hitting the drum and the

game recognizing the input should be less than 70 ms. Latency

is a combined criteria that assesses the total delay within both

hardware and software from the time a user provides input to

the time that input is displayed back to the user. This is an

extremely important criteria as rhythm games are

fundamentally reliant on timing, so delays in those timings

will be very noticeable

Hit It!

Stephen Pupa, Shreya Ramesh, George Whitfield

Department of Electrical and Computer Engineering, Carnegie Mellon University

2

18-500 Design Project Report: Team A5 March 4, 2022

E. Ease of Setup

The user should be able to set up the game in less than one

minute. The ease of setup characterizes the user’s initial

impressions of our game. A cumbersome and tedious setup

process will establish a negative opinion of new users from the

start.

F. Drum Recognition Accuracy

The hardware should correctly identify user drum hit

inputs 99% of the time. Drum recognition accuracy is the

number of times the drum module registers a hit and passes

that information to the computer divided by the total number

of times the drum is hit. This criterion most accurately defines

the “consistency” of our system by assessing how often the

system performs as it has been defined to.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

There are two main components of the software as

illustrated by the block diagram (Appendix Figure. 6): beat

tracking in Python and gameplay code in C++. For the C++

portion, Open Graphics Library will be used to create the

gameplay code. OpenGL is a relatively low level tool used for

creating video games that will add technical complexity to the

development process. This loop is what will be called when the

game begins.

When the game is executed, the Python code will analyze

all of the songs that have been placed into the songs folder,

and export their beatmap data as JSON files. Then, when the

player selects a song to play, the corresponding JSON will be

read by the C++ code and loaded into the game.

The primary goal of the beat tracking Python script is to

export a series of timestamps where the supposed beats are

detected. In order to do this, the audio file is converted into an

uncompressed wav file, from which the time domain

representation of the audio file can be extracted. The time

stamps, the BPM, and a random determination of which button

the specific beat maps to are then entered into a JSON. This

will then be sent back into the game loop.

The Hardware portion of this design is focused upon a

series of “Piezoresistive Sensor Drum” modules which will be

3D printed. A 3D printed prototype of the modular housing

module is depicted in Figure 1.

Fig 1. 3D printing of prototype drum pad module.

In addition to anywhere between 2 to 4 drum pads, there

will also be a separate “ESP32 – Development Board” module

that houses the ESP32 microcontroller, which will serve as the

interface between the drum pads and the computer running the

game program. This module will be much simpler in design,

as it won’t have any need for the circular opening that houses

the drum’s rubber pad. However, it will have more openings

along the base of the module, as each opening corresponds to

a drum pad connection, and each drum pad will be connected

to the ESP32 module. The ESP32 module will also be slightly

smaller in height while retaining the same width and length of

the base, which will enable easy storage of the modules

together.

The circuitry of the “Piezoresistive Sensor Drum” module

is depicted in Appendix Figure. 7. This module contains the

FSR and its supporting circuitry which converts the user

provided force into an electrically readable analog voltage

change.

The analog voltage outputs from those modules will then

each feed into the “ESP32 – Development Board” module also

shown in Appendix Figure. 7. This module has access to an

internal Analog to Digital Converter, allowing the analog

voltages received from the drum pads to be transformed into

digital signals. The results of this conversion are then

transmitted out of the ESP32 chip using the UART serial

communication protocol into a UART-USB interface chip,

which then sends that information to the connected computer

using the USB serial communication protocol.

3

18-500 Design Project Report: Team A5 March 4, 2022

IV. DESIGN REQUIREMENTS

Each of the use-case requirements specified earlier has an

associated quantitative metric that defines what it means for

this project to “succeed” at satisfying the user requirements.

However, the design side of the project’s implementation

provides additional restrictions and specifications on those

requirements:

A. Latency

The goal duration between drum hit (input) and GUI

response (output) is no more than 70 milliseconds. For the

software stream, the frames per second goal of 30 has the

consequence of increasing the software latency to 33

milliseconds by default, as any inputs received after a frame

update cannot be displayed through the GUI until the next

frame update, which at worst could occur 33 milliseconds later

(33 milliseconds = 1/30 seconds). 33 milliseconds is much

higher than the expected runtime of the gameplay loop, so this

stream’s latency is constrained to 33 millisecond as long as the

FPS remains 30.

The hardware stream will therefore have the remaining 37

milliseconds to work with, which will be divided up between

the FSR, the ESP32’s ADC, and the UART-USB interface.

Based on the hardware specifications of the FSR,5 latency

should be negligible as its rise time is on the order of

microseconds. Therefore, the ADC and UART-USB interface

need to be under those 37 milliseconds when combined.

B. Drum Recognition Accuracy

The Drums should recognize over 99% of valid drum hits.

This requires a definition of “valid hits,” which when coming

from a user perspective should be anything the user wanted to

portray as a hit, but nothing the user didn’t want to portray as

a hit. Based on a study of forces on drumsticks,17 10 N appears

to be a good definition of a valid hit. The reason we chose this

value is because within said study, they provide a graph of

force vs. time while striking a drum, and following the initial

force peak, there are several smaller force peaks caused by

vibrations. None of these secondary force peaks reach 10 N,

so considering all forces above 10 N to be valid should

maximize our recognition rate as it maximizes what we can

consider as hits without getting any false positives.

The metric of over 99% is most heavily correlated to the

recognition reliability of our FSR and the design of our drum

pad modules. Assuming our FSR works to the specifications

provided in its datasheet,5 there should be no issues with it

recognizing forces so long as they are properly applied. This

means that properly designing our drum modules will be the

greater challenge in achieving this metric.

C. Ease of Setup and Compactness

The system should take no longer than 1 minute to set up.

This duration starts from when the user touches the modules

and finishes when the game is operating and interactable for

the user. The system should also be small for ease of

portability.

There are two main aspects to this setup time, physical and

electrical. The physical setup time is primarily defined by

factors such as untangling wires and connecting modules

together. One possible solution to this is bundling the cables

together, reducing the likelihood of cords becoming tangled.

Another possible solution is to have locking pin headers at the

connection terminals for each of our modules. This type of

connector will securely lock connections in place and make it

easier for users to know when their cables are connected

properly. Furthermore, setup time depends on a small

portability of the hardware apparatus, which is currently

planned to be 576 cubic cm for a single module. With the five

expected modules (four drums and the microcontroller), this is

well under the use case requirements.

Regarding the electrical setup time, the primary bottleneck

for this area will be the hardware boot time. Once powered,

the ESP32 module will need to fully boot and connect to the

computer before the game runs. The ESP32 has a boot time on

the millisecond to second range,3 which is far quicker than the

minute goal we have from the use case requirements.

D. Effective Beat mapping

The game should be capable of transforming provided

songs into playable beatmaps. These beatmaps should take no

longer than the song’s duration to produce and should match

sample beatmaps with over 80% accuracy.

The first challenge is the time it will take to create a

beatmap from the user's song. Having it take several hours

would severely decrease the user’s enjoyment of the game, so

the goal is to create a beat map from a user-inputted song in

the length of the audio clip or one iteration over the song. To

achieve this, an amplitude threshold-based onset beat

detection algorithm will be used. The suggested algorithm is

to determine the consistent noise spikes and consider the beat

amplitude. However, user inputs may have to be restricted

with the usage of this algorithm. Coupled with dynamic

programming to lessen the recalculation time for similar

calculations, there is only a need to loop through the audio file

4

18-500 Design Project Report: Team A5 March 4, 2022

once. These factors should assist in ensuring the time it takes

to create the beat map is at or below the length of the song.

The second goal is having the beat map accuracy over 80%

when compared to the manually created beat maps. There are

several challenges with this. There is a high potential to detect

beats where there are none, and the algorithm may also miss

some beats. To meet this criterion, the aforementioned

algorithm will also be used. By also using the BPM to ensure

that counted beats roughly have the expected timings, the beat

accuracy should be above 80%.

E. Frame Rate

The game should run at 30 frames per second (FPS). 30

FPS was the target goal set by what potential users have come

to expect from the gaming market. However, from a design

perspective, this means that the gameplay loop of the main

codebase, including the communication with the user’s

hardware, must take no more than 33 milliseconds. This

shouldn’t be a difficult goal to attain under the right

circumstances, however certain other game design criteria

could potentially limit the system’s ability to reach this goal.

The most concerning tradeoff is likely going to be that

between frame rate and the graphical quality/intensity.

Due to how the GUI displays images to the user, creating

more visually engaging graphics often requires greater code

complexity and as a result more calculations to be performed

by the code each cycle of the gameplay loop. As such, there

may come a point where further increasing the visual quality

of the game results in the framerate dropping below the 30

FPS target. To mitigate this, the graphics will need to be

improved in an intelligent fashion. Techniques such as 2.5D

graphics (or pseudo-3D) graphics are a good example of this,

as they can provide similarly engaging graphics to true 3D

graphics without as much computational cost.

V. DESIGN TRADE STUDIES

A. Beat Mapping

The main package that the beat mapping algorithm will

depend on is Librosa, an audio-processing package tool. The

primary use of this package is to determine the beats per minute

(BPM) of the audio file.14 This package was used instead of a

manual beats per minute determination due to latency concerns.

Because a majority of BPM tracking algorithms depend on a

combination of Fourier transformations and loops into the

transformations, the expected latency would have doubled the

time for the total beat mapping computation.

Determining the beat mapping algorithm requires the

calculation of the average energy throughout the audio file 2.

This is calculated through the summation of the squared

intensities over the audio file. This is then normalized and

compared to an instantaneous energy. This does require looping

throughout the wav files.

Because the algorithm for determining the time stamps of

the beats is a loop based approach, one of the tradeoffs in this

algorithm is accuracy for speed. Ordinarily, these strategies

should be avoided due to the desire for a lesser time of

computation. However, because a majority of these values

within the loop are recalculated, dynamic programming can be

used to lessen the computation time. Accuracy was prioritized

over speed because the inclusion of the dynamic programming

should allow for a faster computation time than otherwise.

While this does sacrifice efficiency in space, the use case

requirements for the project do not set a limit for drive space.

This approach maximized time savings as well as accuracy.

B. Graphics Programming Tradeoffs

The gameplay for Hit It! will be implemented in C++ with

OpenGL. Video games are typically created nowadays using

game engines such as Unity or Unreal. OpenGL is a more

low-level tool for displaying video game graphics compared to

game engines, which adds technical complexity to our project.

Although OpenGL stands for “Open Graphics Library”, it is

not actually a library but rather a specification for the interface

between the software and GPU.

There are several alternatives that we could have used

instead of OpenGL for graphics displaying. One popular

alternative is Pygame, which is a Python library for making

games. Pygame also comes with built-in sound support, which

OpenGL does not. We also could have used DirectX or Metal,

which are graphics interfaces for Microsoft and Apple

platforms. OpenGL was chosen over these alternatives

because 1) the team has experience with OpenGL, 2) there are

numerous cross-platform OpenGL libraries available (this is

not the case for DirectX and Metal because they are OS-

specific), 3) game programming in C++ with OpenGL faster

than Pygame (due to Python being a slower language), and 4)

C++ is common for development in the games industry.

5

18-500 Design Project Report: Team A5 March 4, 2022

C. Hardware Trade Studies

For the hardware portions of this project, there were several

comparisons that needed to be made. However, the most

important decisions were centered in four areas, the drum pad

material, the FSR, the microcontroller, and the drum housing

material.

Neoprene vs. Natural Rubber

Regarding the choice of drum pad, our team looked at

several options with good elasticity and eventually settled

between two materials, those being Neoprene and Natural

Rubber. Neoprene is a synthetic version of rubber known for its

resilience and elasticity, which makes it an excellent material

for products like bouncy balls. Natural rubber has many of the

same positive qualities regarding its elasticity, however it

doesn’t have the same resilience as Neoprene, although this

isn’t an issue since it will not be subjected to extreme

temperatures or conditions for our purposes. Our team’s

original goal was to purchase samples of both, allowing their

differing functionalities to be tested in a prototype drum

firsthand, however, the cost ended up being the deciding factor

here, as purchasing natural rubber sheets through Amazon was

an order of magnitude higher than obtaining Neoprene rubber

sheets. This circumstance made the decision between the two

quite easy, as our team couldn’t justify spending half of our

budget on a material we may or may not end up using in the

final product.

Flexiforce Pressure Sensor vs. Interlink Electronics FSR

The main qualities needed in the FSR for this project were

response time and reliability, which derive from the design

requirements of latency and drum recognition accuracy

respectively. Our team’s two main FSR candidates, those being

the Flexiforce Pressure Sensor and the Interlink Electronics

FSR 402, both satisfied these criteria, however there were also

important secondary considerations.4-5 Specifically, the

Flexiforce Pressure Sensor had the benefits of high precision

and a large force sensing range of approximately 0 to 445

Newtons, whereas the Interlink Electronics FSR 402 had the

benefits of being much cheaper as well as having a larger

sensing area. However, the FSR 402 has a much smaller sensing

range than the Flexiforce sensor, as it can only reliably measure

from 0.2 to 20 N, and in case the project needed to use different

levels of force during a post-MVP stage of the project, our team

opted to prioritize the Flexiforce sensor. However, after

performing some preliminary tests on both sensors, it became

clear that the user’s force was dampened to such an extent

through a layer of Neoprene that the vast majority of the

Flexiforce sensor’s measuring range was going unused. This

eliminated the primary reason for selecting the Flexiforce

sensor, and as such our team decided to focus our further efforts

on the FSR 402 sensor instead since it performed similarly for

a much cheaper price.

ESP32 vs. Arduino

Regarding the selection of microcontroller, our team

narrowed down the choices to two options. The first was the

ESP32 designed by Espressif and the second was the Arduino

Zero made by Arduino. These two boards share many

similarities, as both are 32-bit microcontrollers that operate at

3.3 Volts, and which are programmable using the extremely

accessible and user-friendly Arduino IDE. However, there were

a few defining factors which ultimately solidified the ESP32 as

the preferable microcontroller.1,3 Firstly, the Arduino Zero uses

an ATSAMD21G18 which gives it a clock rate of 48 MHz,

whereas the ESP32 uses a Tensilica Xtensa LX6

microprocessor chip, giving it a clock rate between 160 MHz

and 240 MHz depending on the operating mode. Due to how

having low latency is a core design requirement of this project,

the ESP32 is the preferable option here. Secondly, the ESP32 is

overall much cheaper to purchase at around $11 for some

development boards whereas the Arduino Zero is closer to $40.

There are certainly cheaper Arduino options available, but even

the cheapest Arduino boards tend to be around $20, which is

still higher than the ESP32 development board. Lastly, our team

also has great deal of experience working with the ESP32

microcontroller, which would result in time savings of the

course of the project. These three factors are what ultimately

solidified the ESP32 microcontroller as the preferred option for

this project.

3D Printing vs. PVC Piping

One tradeoff that our team experienced was between 3D

printing and using available materials such as PVC pipes for

developing our drum module housings. Initially, the team

wanted to use 3D printing for all of the drum modules and the

ESP32 module, however, the first round of prototype printing

for the drum modules was far more expensive than anticipated.

To 3D print a single prototype drum module, it cost

approximately $55, which when expanded to 4 more drum

modules and an ESP32 module would be an additional $275

expenditure on our team’s budget. This is theoretically an

expenditure our project can afford, as not much else within the

design requires much spending, however, it certainly has

prompted the exploration of alternatives. One possible

alternative is to use PVC piping as the circular holder for our

drum modules. This would be an order of magnitude less

expensive, however the only downside is that the team would

need to use power tools and adhesives to achieve similarly

6

18-500 Design Project Report: Team A5 March 4, 2022

designed drum pad modules. The primary tradeoff here is price

vs. time and effort, as 3D printing requires far less time and

effort whereas using other materials such as PVC pipe would

save on costs. Currently, the team is still leaning towards the

3D printing route, because as mentioned previously there are

few other expenditures we will have. However, should any

unexpected design changes or post-MVP goals be created in the

future, the option of PVC piping and other similar alternatives

will likely become the preferable option.

VI. SYSTEM IMPLEMENTATION

Hardware System Implementation

As mentioned within Section III, the “Piezoresistive Sensor

Drum” circuitry will be placed within a 3D printed drum

housing depicted in Figure 1. The way this module will work

is by having the FSR fixed to the central raised platform (as

depicted in Figure 2).

Fig 2. Top-down view of 3D rendered drum module

This will bring the sensor much closer to the force input

that it is meant to be measuring. However, between the FSR

and the user there will also be 1-2 sheets of Neoprene rubber,

which are meant to slightly dampen the force, giving the drum

a more satisfactory feeling when hit while also protecting the

FSR from direct contact with the user.

The FSR forms a voltage divider with the 1 MOhm resistor

also housed within this module, so that when the FSR receives

the force and its resistance drops, the voltage at the node

between the FSR and the resistor will change drastically. This

changing analog voltage, as well as the GND and VCC (3.3

Volt) nodes which connect with the 1 MOhm resistor and the

FSR respectively, will be passed through the opening in the

modules base, as depicted below.

Fig 3. Side view of 3D rendered drum module

As the various voltage nodes are passed through this

opening in the module’s base, they will also be fed through a

locking pin header, which will reduce the possibility of

suddenly disconnecting with a module during use.

The analog voltages from the drum modules will then feed

into the ESP32 development board module through its GPIO

pins, specifically those which can be used with the ESP32’s

internal Analog to Digital Converter. This allows the ESP32 to

read said pins and get their respective voltages represented as

digital values. From here, the ESP32 will then package that

information and transmit it using the UART serial

communication protocol to the UART-USB interface chip

present on the development board, which allows for the

message to be converted to the USB communication protocol

before being forwarded through the board’s USB-C port to the

connected computer. The only component in this stream that

requires programming is the ESP32 microcontroller chip,

which will be programmed using the Arduino IDE due to the

ease of use and convenient helper functions that IDE provides.

Regarding potential plans for once MVP is reached, our

team has discussed several times the possibility of adding

LEDs to the drum pads, which would light up upon the user

hitting the drum. This will require slight modification to the

drum pad modules, as currently there is no opening for those

LEDs to be situated upwards towards the user. Furthermore,

modifications would also need to be made to the Piezoresistive

Sensor Drum circuitry, however this wouldn’t require any

additional lines to be fed from the ESP32 module, as the VCC

power line and the changing resistance of the FSR would be

enough on their own to trigger these LED sequences.

7

18-500 Design Project Report: Team A5 March 4, 2022

Software System Implementation

Beat Tracking

Multiple packages will be used to create the beat tracking

script. Firstly, Librosa is an audio-processing software

package written in Python.14 This package will be used to

obtain the beats per minute (BPM) of the audio file. A

majority of the rest of the digital signal processing will be

done with relatively simple python packages, including

Numpy, Scipy, and MatPlotLib 10,13. The BPM can then be

used to determine the approximate amount of time between

beats in the audio file. The expected amplitude will be

determined using an amplitude threshold-based onset beat

detection algorithm. Currently, the assumption is that the

audio files have a static BPM. By determining the average

energy over the entire file and comparing it to the

instantaneous energy, beat energy can be calculated as a larger

change between intensities when compared to other points in

the audio file. This can then be mapped to the time 2. One

issue with this method is the implicit assumption that the BPM

is static, as well as the constant scalar value by which average

energy is multiplied by that the instantaneous energy must be

greater than. However, a predictive algorithm can be

implemented in which the genre of the audio file can be

determined, allowing for a more accurate scalar value. As

discussed in the design trade studies section, the loop based

structure of the algorithm has proven to take an excessive

amount of time in computation. This violates the design

requirements of the time it takes to compute the beat map. To

remedy this, dynamic programming will be used. By using

memory to recall the previous calculations, a significant

number of loop calculations will be discarded, significantly

decreasing the computation time of the beat mapping

algorithm. In order to send the timestamps of the beat

tracking algorithm to the main gameplay loop, the time stamps

themselves will be exported into a JSON format that is able to

be read by the game loop.

Post MVP, the current plan is to implement a version of

melody tracking. Based on previous work in beat tracking, this

will likely involve the determination of a consistent high

frequency pattern. By isolating this pattern in the FFT, this can

then be mapped to the already present JSON file to be read

through the game play loop.

Gameplay Code

The gameplay will be implemented using C++. CMake

will be used to compile and link source files, as well as all of

the external libraries used. The graphics will be created using

OpenGL, which is a popular interface for rendering graphics.

Additional libraries are used for reading files and playing

audio. C++ was chosen as the language for the gameplay code

because it is common in the video game industry, and the

members of the team are personally interested in OpenGL.

Hit It! Will use several external libraries for writing

graphics code:

● GLAD - Implementation OpenGL functions

● glm - Math utility library for graphics programming

● GLFW - Cross platform window creation

For file I/O and playing audio, the following libraries are

used:

● libaudiodecoder - reading WAV and MP3 files

● jsoncpp - reading beatmap files encoded as JSON

● PortAudio - cross platform real time sound rendering

Fig 4. Mockup of gameplay GUI.

The GUI for the song selection and gameplay was heavily

inspired by Dance Dance Revolution (DDR). The current

design for the song selection screen is very similar to the song

selection GUI from DDR. The health bar in our gameplay

mockup is placed at the same location as the health bar in

DDR.

Fig 5. Mockup of song selection GUI

8

18-500 Design Project Report: Team A5 March 4, 2022

VII. TEST, VERIFICATION AND VALIDATION

Most of the use case requirements and design requirements

outlined previously can be assessed through some form of

quantitative metric. Depending on whether the system succeeds

or fails in reaching each of these criteria, as well as the extent

to which it succeeds or fails, there may be a need to re-evaluate

some of the design choices currently in place. Rectifying these

issues will be discussed further in the mitigation plans (VIII.

D).

Tests for Latency

To test the system’s latency, the current plan is to use an

iPhone camera to record the entire system so that the hit to the

drum and the GUI response are both within frame. iPhones

typically have a “slow-mo” option when recording which

allows for up to 240 fps, which will be sufficiently precise for

testing values on the magnitude of 70 ms. Additionally, this

same method can be used to examine the individual latencies

throughout the system as they aren’t much smaller at around 30

to 40 ms (provided different start and end conditions of course).

Tests for Drum Recognition Accuracy

Drum recognition accuracy is the number of times the drum

module registers a hit and passes that information to the

computer out of the total times it is hit. The sample size of total

hits will need to be at least 1000 strikes, since that is an order

of magnitude larger than the percentage that defines success or

failure in this test. Furthermore, although any force above 10 N

will be considered valid from a design perspective, the accuracy

value shouldn’t be based on the lowest acceptable value, as

accuracy is likely going to be greatest near that cutoff threshold.

Instead, the accuracy should be based on expected “Average”

force levels, which can be assessed easily by recording the force

created by random participants when they are asked to hit the

drum, and then averaging the level of their forces to get an

“Average” force level to use for the further 1000 testing

iterations.

Tests for Ease of Setup

To test this criterion, the setup times of random, uninvolved

participants, will be recorded and averaged. This will give an

indication of what new users of the system will likely

experience, as these users will by design have no prior

familiarity with the system, and therefore also no experience

setting it up. For the number of trials, the aim is for anywhere

between 10-20 participants.

Tests for Compactness

To test the compactness metrics, the dimensions of the

system (or just the individual module sizes taken from their

design schematics) need to be measured and summed.

However, for a more practical implementation of this test, the

system should also be placed within a variety of backpacks.

This will demonstrate success in reaching the original

qualitative goal in addition to success in reaching the

quantitative measurement goal.

Tests for Beat Tracking Timing and Accuracy

To test the beat mapping accuracy, the beat overlap between

beats generated by the system’s beat map and those from a

sample beat map will be compared, and as long as the two are

in sync for 80% of the song, that will be considered successful.

To test the duration, the time between the script receiving a

WAV file to the time it outputs the JSON file will need to be

measured. These points mark the start and end of the beat

mapping script’s runtime respectively, so the distance between

the two is the script’s total runtime.

Frame Rate

To test that the system is achieving the goal of 30 FPS, a

timer will be added to the gameplay render loop in the C++

code. This timer will be able to record and output the time

between frames, which therefore allows for the average frame

rate over a long period of play to be easily calculated.

VIII. PROJECT MANAGEMENT

A. Schedule

The proposed schedule for this semester can be seen in

Appendix Figure. 8. At the end, there is a period for slack time

in case an extra week is needed. Earlier on, the planning phases

largely surrounded the proposal presentation. After the

feedback from the proposal presentation, the work was divided

into three main categories: signals processing, graphics

creation, and hardware. Each member worked to test out the

different packages and tools that may be used. After the design

review, the final packages will be determined. Because some

work was already done before the design review, the individual

portions of the project should be created before Spring Break.

The week after Spring Break will largely be dedicated to

integration between the members’ parts. The expected MVP

will be obtained on March 21st. Furthermore, the extra levels

and aesthetic changes made before the final deadline with a

week of slack time in case of issues in the creation process.

9

18-500 Design Project Report: Team A5 March 4, 2022

Throughout this entire process, beta testing will be used to

ensure that the game is enjoyable to the target audiences.

B. Team Member Responsibilities

Shreya

● Implementation of musical analysis algorithms for

beatmap generation

● Exporting beatmap to JSON

George

● Implementation of gameplay: placement of notes on

screen, handling player input, calculating player’s

score, playing audio, song selection, etc.

● Game design of gameplay

Stephen

● Design and Manufacture of Drum pad/ESP32

modules

● Design of FSR circuitry

● Programming of ESP32

C. Bill of Materials and Budget

The budget for our project can be seen in Appendix Figure.

9. The most noticeable feature is that it is mostly dominated by

the 3D printing costs of our individual drum pad and ESP32

modules, which will cost around $55 each based on recent 3D

prints. However, even accounting for six 3D printed modules (1

prototype, 4 for drum pads, 1 for ESP32), that still will only

total half the available $600 budget, and of the remaining $300

there likely won’t be too much expenditure after what has

already been purchased, as no more ESP32 development boards

or Flexiforce sensors will likely be needed.

D. Risk Mitigation Plans

If the OpenGL library fails to obtain the results needed or

the interface proves too difficult to be understood, Pygame will

be used in place of this. Because the team has used Pygame in

more basic programming classes before, Pygame serves as a

useful backup that can still create an engaging experience for

gameplay. However, if certain advanced features of the

gameplay fail (e.g. audio failures or latency errors), then these

will simply be accounted for and incorporated into the game as

a whole.

If the beat tracking does not have an accuracy that is

playable by the user, then predetermined beat maps will be used

in place of a user-inputted song. However, if there is some

degree of accuracy but with a significant number of false

positives or negatives, then these errors will be included in the

final beatmap. Because these false readings are likely indicative

of a melody or other part of the song, the inclusion of these false

readings should not create a discrepancy in the “mood” of the

song.

For the hardware, if issues with detection between the

microcontroller and the graphical interface do occur, this is

likely because of mechanical failures in the equipment. Again,

this can be remedied through the creation of more robust

hardware. However, if the problems with the microcontroller

and the sensors are not able to be diagnosed, then buttons will

be used to replicate the sensors. This should have the ability to

function in the same manner as the sensors, but they will be

simpler to install.

IX. RELATED WORK

One game which shares a lot of similarities with our product

is the franchise rhythm game Rock Band. Specifically, both our

design and Rock Band have controllers modeled after drums, in

which there are 4 drum pads that the user is meant to hit in

rhythm with the notes appearing on the screen.

However, while our designs share the same number of drum

pads, the Rock Band controller also has an additional input in

the form of a bass pedal. This bass pedal adds extra complexity

and difficulty to the game as users will need to split their focus

between their foot on the bass pedal and the drums they hit with

the drumsticks in their hands. Our design can take inspiration

from this style of user engagement, as having a secondary mode

of user input may be an interesting goal to have post-MVP.

While a foot-based pedal may be somewhat difficult due to the

lengthy cords it would inevitably require, we could have some

non-drum form of input that the user must also manage, such as

a switch or dial that they must adjust periodically, which would

help divide their attention and add an additional challenge for

experienced users.

One notable downside of Rock Band however is the lack of

song flexibility their product has, as although they provide a

large and varied list of popular songs, such as “Caught Up In

You” by .38 Special and “I Bet My Life” by Imagine Dragons,

their website also has a tab where users can request songs to be

put in the game.9 The presence of this tab highlights the major

limitation of their product which our design is aiming to solve,

as when a user wants to experience a specific song in game, the

best they can do is message the developers of the product

themselves and hope that they’ll be able to obtain the rights.

The fact that Rock Band felt the need to accept this input also

proves the importance of our system’s beat mapping

functionality, as by avoiding this process altogether our product

will save users the significant and unreliable hassle of

messaging developers directly.

10

18-500 Design Project Report: Team A5 March 4, 2022

X. SUMMARY

In summary, Hit It! is a rhythm game where the user hits

drums to the beat of a song. The game design is inspired by

popular rhythm games such as Rock Band and Dance Dance

Revolution. The technical complexity of our project comes

from our implementation of the drum hardware, signal

processing algorithms, and use of low level graphics libraries.

The user interest in this game is primarily because of the

active and engaging hardware and software experience.

Furthermore, because users are able to input their own songs

into the game, the game creates a more personalized

experience. Because some of these design traits are currently

lacking in the market, the introduction of this fun,

personalized experience will allow users of all ages to play the

game.

Throughout the design process and determining the

distribution of labor, we have created a communicative

process between team members. Clear communication

between each of the team members will be key to integration,

especially because each member is working on separate

components of the game. We have not started integration yet,

but we plan to make it as smooth as possible by using email

and Discord (a collaborative messaging application) regularly.

Moving forward and post MVP, our plan is to add more

aesthetic features such as flashing lights on the drum heads

and better game GUI. This seems to largely depend on the

increased complexity of the software and the increased

aesthetics of the hardware.

GLOSSARY OF TERMS

Beatmap - the sequence of notes that fly towards the user

during the game

Rhythm game - games (typically video games) which

require the player to move their body in time with music

Beats - The groove of a song. These are the musical

rhythmic hooks that the listener feels when listening to a piece

of music.

BPM - Beats per minute. This is also referred to as the

tempo. The term “beat” as used in BPM does not refer to the

“beats” as defined above, but rather it refers to the steady

musical pulse that the listener feels when hearing music.

Judgment Notes - In rhythm games, the “judgment notes”

are the notes on the GUI that the beatmap notes will fly

towards; the player must strike the game hardware when the

beatmap notes align with the judgment notes.

FSR - Acronym for Force Sensitive Resistor. These

resistors are usually made of piezoresistive materials, which

give them the property of having different resistances under

different levels of pressure/force. Generally, the resistance of

FSRs decreases as more force is applied.

ADC - Acronym for Analog to Digital Converter, which

converts an analog signal into a digital signal.

REFERENCES

[1] “Arduino Zero.” Arduino Online Shop, Arduino,

<https://store-usa.arduino.cc/products/arduino-zero.>

[2] “Beat Detection Algorithms.” GameDev.net,

http://archive.gamedev.net/archive/reference/programmin

g/features/beatdetection/index.html.

[3] “ESP32 Series Datasheet.” Rev. 3.8. Espressif Systems.

Pg. 8-14.

<https://www.espressif.com/sites/default/files/documentat

ion/esp32_datasheet_en.pdf>

[4] “FlexiForce® Standard Model A201.” ZFLEX A201-100.

Rev. A. Tekscan. Pg. 1-2.

<https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/

FLX-A201-A.pdf>

[5] “FSR® 400 Series Data Sheet.” PDS-10004-C. Rev. 2.

Interlink Electronics. Pg. 2-3.

<https://cdn2.hubspot.net/hubfs/3899023/Interlinkelectron

ics%20November2017/Docs/Datasheet_FSR.pdf>

[6] glad used for implementation of OpenGL functions. Feb

2022 https://github.com/Dav1dde/glad

[7] GLFW used for creating OpenGL context and window.

Feb 2022 https://www.glfw.org/

[8] glm used for mathematical helper functions with

OpenGL. Feb 2022 https://github.com/g-

truc/glm/releases/tag/0.9.9.8

[9] “Harmonix Music Systems, Inc..” Rock Band Rivals,

Harmonix Music Systems, Inc.,

<https://www.rockband4.com/.>

[10] Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array

programming with NumPy. Nature 585, 357–362 (2020).

DOI: 10.1038/s41586-020-2649-2. (Publisher link).

[11] jsoncpp used for reading JSON beatmap files. Feb 2022

https://github.com/open-source-parsers/jsoncpp

[12] libaudiodecoder used for decoding music files. Feb 2022

https://github.com/asantoni/libaudiodecoder

https://cdn2.hubspot.net/hubfs/3899023/Interlinkelectronics%20November2017/Docs/Datasheet_FSR.pdf
https://cdn2.hubspot.net/hubfs/3899023/Interlinkelectronics%20November2017/Docs/Datasheet_FSR.pdf
https://github.com/Dav1dde/glad
https://www.glfw.org/
https://github.com/g-truc/glm/releases/tag/0.9.9.8
https://github.com/g-truc/glm/releases/tag/0.9.9.8
https://www.rockband4.com/
https://doi.org/10.1038/s41586-020-2649-2
https://www.nature.com/articles/s41586-020-2649-2
https://github.com/open-source-parsers/jsoncpp
https://github.com/asantoni/libaudiodecoder

11

18-500 Design Project Report: Team A5 March 4, 2022

[13] McFee, Brian, Colin Raffel, Dawen Liang, Daniel PW

Ellis, Matt McVicar, Eric Battenberg, and Oriol Nieto.

"librosa: Audio and music signal analysis in python." In

Proceedings of the 14th python in science conference, pp.

18-25. 2015.

[14] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt

Haberland, Tyler Reddy, David Cournapeau, Evgeni

Burovski, Pearu Peterson, Warren Weckesser, Jonathan

Bright, Stéfan J. van der Walt, Matthew Brett, Joshua

Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R.

J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ

Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake

VanderPlas, Denis Laxalde, Josef Perktold, Robert

Cimrman, Ian Henriksen, E.A. Quintero, Charles R

Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian

Pedregosa, Paul van Mulbregt, and SciPy 1.0

Contributors. (2020) SciPy 1.0: Fundamental Algorithms

for Scientific Computing in Python. Nature Methods,

17(3), 261-272.

[15] PortAudio used for audio playback. Feb 2022

http://www.portaudio.com/docs/v19-doxydocs/index.html

[16] Vries, Joey de. Learn Opengl - Graphics Programming

Learn Modern Opengl Graphics Programming in a Step-

by-Step Fashion. Kendall & Welling, 2020. Feb 2022.

[17] Wagner, Andreas. “Analysis of Drumbeats: Interaction

between Drummer, Drumstick and Instrument.” Master's

thesis at the Department of speech, music and hearing,

Kunglia Tekniska Högskolan, 2006, pp. 19–23.

http://www.portaudio.com/docs/v19-doxydocs/index.html

12

18-500 Design Project Report: Team A5 March 4, 2022

Fig 6. Block Diagram of the Software information stream

Fig 7. Block Diagram of the Hardware information stream

13

18-500 Design Project Report: Team A5 March 4, 2022

Fig 8. Gantt chart depicting the project’s planned tasks

14

18-500 Design Project Report: Team A5 March 4, 2022

Fig 9. Bill of materials (BOM)

