
Team A5 -Hit it! - Use Case
Hit It! is a drum-based rhythm game that aims to serve as a
middle-ground between other rhythm gaming alternatives.

The Rhythm gaming market:
● Few rhythm games involve hardware
● Limited demographic appeal

Hit it! solves these issues:
● Small and portable hardware
● User inputted songs

ECE Areas:
● Hardware Systems
● Software Systems
● Signals and Systems

Use Case Requirements

Portable

Ease of Use

Plays User’s Music

Latency

Accurate Beatmapping

Input Recognition

Setup should be quick and
easy (<1 min)

Hit It! should be capable of
generating beatmaps from
user provided songs

Latency between player input
and game reaction should be
< 70 ms

Generated beatmaps should
align well with (>80% accurate)
external beatmap software or
our hand-calculated beatmaps

The Drums used for player
input should recognize the
overwhelming majority
(>99%) of hits by the player

Should be small enough
to fit within an average
backpack (<15 Liters)

Technical Challenges & Solution Approach - Software
Beat Tracking Timing

○ Goal: Length of Audio Clip
○ Challenges:

■ Slow Loop-Based Analysis of FFT
■ Decoding Noisy Audio Clips
■ Audio Source Separation

○ Solutions:
■ Dynamic Programming to Limit

Loops
■ Restricted User Inputs
■ Pattern Recognition

○ Mitigation: Pre-determined
beatmaps, Restricting User Inputs

Technical Challenges & Solution Approach - Software
Beat Tracking Accuracy

○ Goal: 80% Accuracy between Externally Sourced
Beat Maps and Auto-Generation

○ Challenges:
■ False Detection of Other Noises
■ False Negatives
■ Changing Pacing of Audio Files

○ Solutions:
■ ML with a pretrained model
■ Restricted User Inputs to Consistent Beats

Used
■ Pattern Recognition

○ Mitigation: Single Sound Audio Files Used

Technical Challenges & Solution Approach - Software
Aesthetics (GUI)

○ Goals:
■ GUI updates at rate of 30 FPS.

○ Challenges:
■ All GUI updating must occur within 33.3 ms
■ We aren’t using a dedicated Game Engine

○ Solutions:
■ 33.3 ms is a lax threshold to meet
■ Use of C++ and OpenGL

○ Mitigation:
■ 24 FPS is the absolute lowest tolerable FPS
■ Usage of pre-created game structure to

improve graphic development

Testing and Verification - Software
Area Metric(s) Test

Beat Tracking Timing Time for Creation of Beat
Mapping is Length of Song
(at most)

Use Python to track code execution time

Beat Tracking Accuracy Generated beatmaps are
more than 80% Accurate to
testing/sample beatmaps

Two Tests:
● Beat overlap: Expanding each beat a

finite amount in both directions,
compare total overlap between maps

● Beat closeness: Instantaneous beat
markers must be within ½ the song’s
average beat period (1/bpm) so that
each beat is closer to its origin beat
than any other beat.

Aesthetics (GUI) > 30 FPS. Non-geometric
graphics

FPS will be hardcoded. Software can measure
FPS.

Technical Challenges & Solution Approach - Hardware
Latency

○ Goal: 70 ms (Overall) and 37 ms (Hardware Only)
○ Challenges:

■ Pressure Sensor Lag
■ Slow GPIO Detection
■ Slow Microcontroller Code

○ Solutions:
■ Fast Sensor Response Time (< 5 usec)
■ ESP32 has 300 ns GPIO turning speed
■ High-Speed Clock (up to 240 MHz)

○ Mitigation: Lower Requirement of 100 ms for
MVP

Drum Pad (x4)

Piezoelectric/Pressure Sensor (x4)

Microcontroller PCB

USB Port

Technical Challenges & Solution Approach - Hardware
Portability/Compactness

○ Goal: 15 Liters = 15,000 cm^3
○ Challenges:

■ Interconnected components may reduce
freedom of movement

■ Wide spacing between drum pads
○ Solutions:

■ Modularized Drum Pads can be unplugged
■ Wires reduce required surface area when

storing
○ Mitigation: Flat Drumming Pads, ESP32 has

wireless capabilities

Technical Challenges & Solution Approach - Hardware
Drum Recognition Accuracy

○ Goal: >99% Hit Detection
○ Challenges:

■ Large Pad Area to Small Sensor Area
■ Sensor Reliability

○ Solutions:
■ Design of Drum Pads can mitigate

issue
■ Our preferred sensor has high

reliability (< 3% deviation)
○ Mitigation: Use of buttons rather than

sensors

Technical Challenges & Solution Approach - Hardware
Ease of Setup

○ Goal: < 1 minute setup time
○ Challenges:

■ Boot times of hardware components
(microcontroller)

■ Many separate hardware components
○ Solutions:

■ ESP32 can run programs on startup
■ Latch Connectors will simplify

connections
○ Mitigation: ESP32 has full wireless

functionality (BLE & WiFi)

Testing, Verification, and Metrics - Hardware
Area Metric(s) Test

Latency 37 ms (Overall):
1 ms for Sensor, 1 ms for GPIO turn time,
and 35 ms for Code

Probing via Oscilloscope

Portability/Compactness 15,000 cm^3 (Overall):
12 cm x 12 cm x 4 cm for each modular
component (5 total, 2880 cm^3 total)

Physical Dimensions (Ruler)
Practical Test (Backpack)

Drum Recognition
Accuracy

>99% Recognition Rate Repeated Trials

Ease of Setup < 1 minute Setup Time (Overall):
No more than 12 seconds per module
(5 total)

Repeated Trials (Using random
participants)

Schedule & Division of Labor

