
Team A5 -Hit it! - Use Case
Hit It! is a drum-based rhythm game that aims to serve as a
middle-ground between other rhythm gaming alternatives.

The Rhythm gaming market:
● Few rhythm games involve hardware
● Limited demographic appeal

Hit it! solves these issues:
● Small and portable hardware
● User inputted songs

ECE Areas:
● Hardware Systems
● Software Systems
● Signals and Systems

Use Case Requirements

Portable

Ease of Use

Plays User’s Music

Latency

Accurate Beatmapping

Input Recognition

Setup should be quick
and easy (<1 min)

Hit It! should be capable of
generating beatmaps
from user provided songs

Latency between player
input and game
reaction should be < 70
ms

Generated beatmaps should
align well with (>80% accurate)
external beatmap software or
our hand-calculated beatmaps

The Drums used for player
input should recognize the
overwhelming majority (>99%)
of hits by the player

Should be small
enough to fit within an
average backpack (<15
Liters)

Solution Approach-Hardware
● ESP32 Microcontroller Development Board

○ Converts analog voltage inputs into USB communication protocol
■ Analog Voltage > ADC > UART to USB interface > USB protocol

○ High clock speed (240 MHz) to reduce latency

● FlexiForce Pressure Sensor
○ Converts physical force (user input) to analog voltage

■ Allows for creation of voltage divider
○ High Precision (< 3% deviation)

● Integration
○ Microcontroller sends drum hit voltages to C++ program over USB-C port
○ Determines when the user has hit the apparatus

Solution Approach-Software
Integration of Beat Tracking Algorithm into Gameplay Code

Python - Beat Tracking

● Use of Scipy, Numpy, Librosa and Matlab packages for BPM
● Output of time stamps of beats in JSON

C++ - Gameplay Code

● OpenGL for game graphics
● SoLoud for game sound
● At start of game, main.cpp will execute the Beat Tracking Python code

Block Diagrams- Hardware

Block Diagrams- Software

Implementation Plans
Hardware

● Piezoresistive Sensor Drum
○ This module is taken from

the FSR’s datasheet and
purchases through
commercial sources.

● ESP32 Development Board
○ The ESP32 development

board combines several
features into one
simple/affordable board.

Software

● Beat Tracking Algorithm - Python
○ Use of package Librosa to extract BPM

from wav file
○ Use of numpy and scipy to transform

sampling rate into time stamps

● Gameplay Code - C++
○ Use OpenGL for displaying graphics

■ GLFW, glad, glm
○ Use SoLoud for playing sounds
○ Harfbuzz + freetype for font rendering

Bill of Materials

Remaining Budget: $600 - $73.40 = $526.60

Testing, Verification, and Metrics - Hardware
Area Metric(s) Test Inputs/Outputs

Latency 37 ms (Overall for
Hardware)

Inputs: Force to the FSR
Outputs: Oscilloscope Voltages with timestamps

Portability/Compactness 15,000 cm^3
(Overall)

Inputs: Module sizes
Outputs: Physical Dimensions (Measurements) and
Practical Test Results (Backpack)

Drum Recognition
Accuracy

>99% Recognition
Rate

Inputs: Repeated force application to the FSR
Outputs: Recognition in Software

Ease of Setup < 1 minute Setup
Time (Overall)

Inputs: Random Participants
Outputs: Recorded Setup Times

Testing and Verification - Software
Area Metric(s) Test/Inputs/Outputs

Beat Tracking Timing Time for Creation of Beat
Mapping is Length of Audio
File (at most)

Use Python to track code execution time
Input: Code File
Output: Timings

Beat Tracking Accuracy Generated beatmaps are
more than 80% accurate to
testing/sample beatmaps

Beat overlap and Beat Closeness
Inputs: Created Time Stamps for Map,
Auto-Generated Time Stamps for Map
Outputs: Percentage of time stamps where
some overlap existed

Aesthetics (GUI) > 30 FPS. Non-geometric
graphics

Add timer to gameplay render loop, find
average FPS
Inputs: Code File
Outputs: FPS

Risk Mitigation + Unknowns
Hardware:

● Latency:
○ Mitigation: Hardware selection
○ Fallback: Component replacement, code

optimization, backup 100ms goal
● Compactness:

○ Mitigation: Goal > Expectation
○ Fallback: Module redesign, ESP32

wireless features
● Drum Recognition:

○ Mitigation: Hardware selection
○ Fallback: Commercially available buttons

● Ease of Setup:
○ Mitigation: Latch connectors
○ Fallback: ESP32 wireless features

Software:

● False Positives/Negatives
○ Mitigation: Use of BPM to limit false

readings
○ Fallback: Incorporation of false readings

into beat map
● Communication error with microcontroller

○ Mitigation: test driven development - run
test cases for communication protocol

○ Fallback: drop communication if error is
detected

Schedule & Division of Labor

