Team AD -Hit it! - Use (ase

Hit It! is a drum-based rhythm game that aims to serve as a
middle-ground between other rhythm gaming alternatives.

The Rhythm gaming market:
e Few rhythm games involve hardware
e Limited demographic appeal

Hit it! solves these issues:
e Small and portable hardware
e User inputted songs

ECE Areas:
e Hardware Systems
e Software Systems
e Signals and Systems

Use Case Requirements

Portahle Plays User’s Music :
y Accurate Beatmapping

Should be small Hit It! should be capable of Generated beatmaps should

enough to fit within an generating beatmaps align well with (>80% accurate)

average backpack (<15 from user provided songs

Liters) external beatmap software or
our hand-calculated beatmaps

Latency Ease of Use Input Recognition

Latency between player Setup should be quick The Drums used for player

input and game and easy (<1 min) input should recognize the

reaction should be <70 overwhelming majority (>99%)

ms of hits by the player

Solution Approach-Hardware

e ESP32 Microcontroller Development Board
o Converts analog voltage inputs into USB communication protocol
m Analog Voltage > ADC > UART to USB interface > USB protocol
o High clock speed (240 MHz) to reduce latency
e FlexiForce Pressure Sensor
o Converts physical force (user input) to analog voltage
m Allows for creation of voltage divider
o High Precision (< 3% deviation)
e Integration

o Microcontroller sends drum hit voltages to C++ program over USB-C port
o Determines when the user has hit the apparatus

Solution Approach-Software

Integration of Beat Tracking Algorithm into Gameplay Code
Python - Beat Tracking

e Use of Scipy, Numpy, Librosa and Matlab packages for BPM
e OQutput of time stamps of beats in JSON

C++ - Gameplay Code

e OpenGL for game graphics
e Soloud for game sound
e At start of game, main.cpp will execute the Beat Tracking Python code

Block Diagrams-

Hardware

Piezoresistive Sensor Drum |

Vout = -UVCC * (Rf / Rs)

Rf (100 kOhms)

Rs(200 — 1000 kOhms)

ESP32 — Development Board l

‘ Piezoresistive Sensor Drum

|
|
‘ Piezoresistive Sensor Drum |
I
|

‘ Piezoresistive Sensor Drum

uvcc |
P ADC
GND
\
GPIO | ESP32
-
Arduino UART — USB
i Code Interface

-

USB-C

N

Block Diagrams- Software

MP3 to Wav
File Conversion

Determination
of Beat in Song

Loop through wav data to
determinate beat time
stamps from BPM and

intensity

BPM Extraction

N

(Librosa)

C

Export timestamps into JSON
file

)

e

C Beatmap data (JSON file) >

/

——

Beatmap data
main.c|
“ (std :vector<BeatData> Saineprey L90p

ol O

USB from
micro-
controller

Implementation Plans

Hardware

e Piezoresistive Sensor Drum
o This module is taken from
the FSR's datasheet and
purchases through
commercial sources.
e ESP32 Development Board
o The ESP32 development
board combines several
features into one
simple/affordable board.

Software

Beat Tracking Algorithm - Python

@)

@)

Use of package Librosa to extract BPM
from wav file

Use of numpy and scipy to transform
sampling rate into time stamps

Gameplay Code - C++

©)

©)
©)

Use OpenGL for displaying graphics

m GLFW, glad, glm
Use SoLoud for playing sounds
Harfbuzz + freetype for font rendering

Bill of Materials

Hit It! Hardware Testing Supplies (Group A5 Round 1 BOM)

Remaining Budget: $600 - $73.40 = $526.60

Distributer Description Distributer URL Unit Price Shipping + Tax Total Price Shipping Notes
|Sparkfun Piezoresistive force sensor https://www. sparkfun. con$19.95 $13.68 $33.63 2 day shipping option selected
Arrow Electronics Op Amp Quad Low Power Amplifier fhttps : / /www. arrow. com/er]$0.63 $6.63 $9.80
|Amazon Cheap backup teasting piezo transdhttps : //www. amazon. com/I]$8.99 $0.00 $8.99 Free with prime
|Amazon Neoprene rubber sheets for drum padhttps : //www. amazon. com/1$9.99 $0.00 $9.99 Free with prime
;Amazon ESP32 development board https://www. amazon. com/H$10.99 $0.00 $10.99 Free with prime

$73.40

Testing, Verification, and Metrics - Hardware

Area Metric(s)
Latency 37 ms (Overall for
Hardware)

Portability/Compactness | 15,000 cm”3

(Overall)
Drum Recognition >99% Recognition
Accuracy Rate
Ease of Setup < 1 minute Setup

Time (Overall)

Test Inputs/Outputs

Inputs: Force to the FSR
Outputs: Oscilloscope Voltages with timestamps

Inputs: Module sizes
Outputs: Physical Dimensions (Measurements) and
Practical Test Results (Backpack)

Inputs: Repeated force application to the FSR
Outputs: Recognition in Software

Inputs: Random Participants
Outputs: Recorded Setup Times

Testing and Verification - Software

Area

Beat Tracking Timing

Beat Tracking Accuracy

Aesthetics (GUI)

Metric(s)

Time for Creation of Beat
Mapping is Length of Audio
File (at most)

Generated beatmaps are
more than 80% accurate to
testing/sample beatmaps

> 30 FPS. Non-geometric
graphics

Test/Inputs/Outputs

Use Python to track code execution time
Input: Code File
Output: Timings

Beat overlap and Beat Closeness

Inputs: Created Time Stamps for Map,
Auto-Generated Time Stamps for Map
Outputs: Percentage of time stamps where
some overlap existed

Add timer to gameplay render loop, find
average FPS

Inputs: Code File

Outputs: FPS

Risk Mitigation + Unknowns

Hardware: Software:
e Latency: e False Positives/Negatives
o Mitigation: Hardware selection o Mitigation: Use of BPM to limit false
o Fallback: Component replacement, code readings
optimization, backup 100ms goal o Fallback: Incorporation of false readings
e Compactness: into beat map
o Mitigation: Goal > Expectation e Communication error with microcontroller
o Fallback: Module redesign, ESP32 o Mitigation: test driven development - run
wireless features test cases for communication protocol
e Drum Recognition: o Fallback: drop communication if error is
o Mitigation: Hardware selection detected

o Fallback: Commercially available buttons

e Ease of Setup:
o Mitigation: Latch connectors
o Fallback: ESP32 wireless features

Schedule & Division of Labor

® —— 1 [Feb 2022 [Mar 2022 2022
iz Tis T T2t T4 T2z Joz Tos Jos T11 4 17 Jeo 23 Ies Tz lot Jo4 Jo7 T1o 13 Ti6 D19 Rz Ies Tes o
Project Implementation Hardware [Pupa:Ramesh:Whitfield i

Project Proposal Presentation Creation |

Creation of Initial Hardware Trial Run i BT Pupn

Creation of Basic/Trial GUI T Whidield

Creation of Montone Beat Tracker i T Rameh
| Project Design Review and Updates i B Pupa:Ramesh:Whitfield
| Improvement on Specified Parts of Design il Bl Pupa:Ramesh:Whitfield

Specification of Pressure Sensors + Pad Construction H Bl Pupa

Determination of final packages used H [l Pupa:Ramesh:Whitfield
| Implementation of Product with Final Packages T
| Integration Timing Between All Parts H : I Pupa:Ramesh:Whitfield

Reach MVP H f § Pupa:Ramesh:Whitfield

Consideration of Extra Levels i ; B Romesh:Whitfield
| Consideration of Aesthetic Additions 3 | B Pupa:Whitfield

Creation of melody tracking i i B Ramesh:Whitfield

Final Integration H i EE Pupa:Ramesh:Whitfield
| Aesthetic Changes P f EEEEEEE Pupa:Ramesh:Whitfield
| Initial User Interest Information i T Rameh:Whitfield

User Feedback i ; [Pupa:Whitfield

User Final Testing | [Pupa:Ramesh:Whitfield
| Slack Time H ' T

o
iz
=
=
iz
o
i

