
VR Ping Pong Team
Design Review

Logan Herman, Henry Yi, William Wang

Use Case
Problem: Long distance, virtual interactions are not as personal as physical

interactions. This makes digital social interactions less interesting and engaging to

everyone involved.

Solution: Creating a virtual reality ping pong game to play against other people around

the world in real-time. The VR aspect creates a pseudo-presence that will make the

interactions more fun.

Use Case Requirements: User Experience
- Latencies

- Ball movement latency - < 50ms to calculate ball trajectory

- Paddle movement latency - < 100 ms

- Smooth Frame Rate

- 30 FPS is acceptable, allows for 15 frames to show ball flight path of a professional-speed rally

- Moderate resolution (~360p)

- Paddle power lifespan

- Allow for 1 hour of continuous, wireless gameplay

- Accurate Paddle Motion Tracking

- +/- 3 inches in terms of position

- +/- 7.5 degrees in terms of orientation

Solution: Virtual Reality Ping Pong Game
Sensing System + Device Application

● Use a combination of Inertial Measurement Units and Computer Vision for paddle

motion sensing

● Sensing system will need to be connected to a microcontroller

● Use of battery to power microcontroller and sensing system

● Google Cardboard VR development kit for the VR mobile application

○ Can be done with Unity or Android Studio

○ Provide libraries for rendering graphics

○ Android libraries for Bluetooth communications as well

Solution Part 2: End-to-End Communications
● Sensor to Device Communication:

○ From sensor to microcontroller: wired serial communication (I2C, UART, etc…)

○ From sensing system to device: Bluetooth transmission is the obvious solution

○ Full-duplex communication between device and sensor through bluetooth

● Device to Device Communication:

○ Use networking to send data between devices (e.g. Android Sockets)

○ Potential use of a server to receive data from device and relay to other device

■ Allows for players to connect through a central server

■ Need to check how latency is affected

○ Decide what data is absolutely necessary to be sent real time, and what data is not as

urgent to be sent through network, and what data can be processed locally

○ Possibly Cache some data

System Specifications

Components and Communication Protocol Paddle System Design

System Specifications – Detailed
Paddle Sensing Subsystem

- Performs bulk of computing for the game

- Get IMU and CV data

- Perform data processing algorithms on

microcontrollers to get position and

orientation data

- Use the data on the paddle position and

orientation and combine with data about

incoming ball trajectory to determine

returning ball trajectory

- Use this data and data about opponent

paddle position to calculate parameters for

graphics rendering

Data to Server:

● User paddle location and orientation

● Did the ball get returned?

● Returning ball trajectory data over

time

Server

● Connect two

players

● Keep track of

game play data

(e.g. scores)

● Relay data from

player to player

● Perform

validation of data

to ensure both

ends are

synchronized to

an extent

Data from Server:

● Opponent paddle location and

orientation

● Incoming ball trajectory over time

Graphics Parameters

● Opponent Paddle Position data

● Player Paddle Position data

● Ball Flight Trajectory data

VR Device

● Render Graphics

● Provide user application experience

Components List:
Headset Components:

Purchasing:

- Google Cardboard

- Unity Assets

Downloading:

- Unity Game Engine

- Bluetooth Plugin

Developing:

- Graphics

- Gameplay

- Network communication

with camera

Paddle Components:

Purchasing:

- IMU

- Battery

- Raspberry Pi/Jetson

- Camera

- Wifi Card and Antennae

Downloading:

- Bluetooth Plugin

- OpenCV

Developing:

- Object tracking

- Network communication with

headset

- IMU signal processing

Server Components:

Purchasing:

- Amazon EC2 Instance

Developing:

- Code to project the ball

trajectory

- Score tracking

- Network communication

with headset and paddle

Testing, Verification, and Metrics
● Testing latency:

○ Get ping times for data from device to device

○ Measure delay from sensor to device

○ Different latencies for different connections:

■ Paddle - Headset

■ Paddle - Paddle

■ Paddle - Server

■ Headset - Server

○ Find latencies between each connection to find optimizations

○ Qualitative, easier success case: Realistic feeling gameplay

Testing, Verification, and Metrics
● Testing Paddle Sensor Accuracy:

○ Measure error of expected position and the actual physical position of paddle

○ Measure error of expected orientation and the actual physical orientation of the paddle

○ Measure how the ball trajectory reacts to real physical contact with a paddle compared to how the

graphics simulate such reactions

■ Where the ball hits on the table

■ Location of the apex of the ball

■ Time it takes for the ball to complete its trajectory

■ Reaction of the ball to spin

Division of Labor
Milestone: MVP

- Computer vision tracking for flat objects and MVP graphics- Logan

- Project ball movement - William

- Project paddle movement - Henry

Milestone: Final Product

- Build paddle, Computer vision tracking for rotating objects, Final graphics -

Logan

- Build paddle, Project ball movement - Will

- Build paddle, Headset-to-paddle communication, Long distance

headset-to-headset communication - Henry

Schedule

