
1
18-500 Final Project Report: A4: VR Ping-Pong 05/07/2022

VR Ping Pong
Henry Yi, William Wang, Logan Herman

Department of Electrical and Computer Engineering, Carnegie Mellon University

Abstract—Our goal is to create a virtual reality table tennis
gaming system capable of resembling the real world game, using
IMU sensors (which contain an accelerometer and gyroscope), basic
kinematics calculations from a physics engine, subsystem to
subsystem communications such as Wi-Fi and Bluetooth, to create a
game experience that approximates real-time interaction with the
opponent.

Index Terms— computer vision (CV), inertial measurement unit
(IMU), virtual reality (VR)

I. INTRODUCTION

Our desired end product is a virtual reality table tennis setup,
including the actual game software, “paddles” with sensors,
VR headsets. The application/motivation is the prevalence of
social distancing during the pandemic and the implications the
isolation has on many peoples’ lives and interactions. Both
video games and sport are key avenues of socialization today
and our game aims to users in either (or both) categories. We
want to create a fun and interactive experience that approaches
real-time interaction as closely as possible in order to boost
engagement between players who may physically be far apart.
There exist similar products, such as Eleven Table Tennis, an
extremely realistic VR table tennis game. When it comes to
the accuracy metrics discussed later, Eleven Table Tennis is
undoubtedly superior. However, it is played on the Oculus
Quest 2 which costs about $300. Our product is far cheaper
and is able to accommodate those who cannot afford the Quest
2, assuming they have a smartphone that can run the game.

II. USE-CASE REQUIREMENTS

The most desired characteristic of our end product is a
realistic feeling when playing. This is difficult to quantify but
can be broken down into a handful of metrics that allow us to
evaluate this feeling in a quantitative manner. The first and
most important is latency, which consists of delay on two
separate paths. We would like our latency between each
player’s paddle and headset to amount to less than 300
milliseconds. The other path is from a player to their
opponent. We would like that to be less than 300 milliseconds.
The reason for this latency is that for the opponent to actually
see an action done by a player, the appropriate data must travel
from the player’s paddle to the server, from the server to the
opponent’s paddle, and finally from the opponent’s paddle to
the opponent’s headset. The next major metric is the accuracy

of the swing characteristics. We have decomposed the swing
into three primary components: the type (lob, slice, smash),
the power, and the direction. This differs from our previous
representation of paddle state via position and orientation.
Since each factor clearly has a major effect on the overall
nature of the swing, we have set high thresholds as goals for
accuracy: 90% for swing type and power, and 95% for swing
direction. In other aspects, as before, we would like our game
to have at least 30 frames per second, about the framerate of
most video playback and a moderate resolution (360p). We
believe that this is enough for the user to comfortably discern
what is happening without risking the video quality (which is
a lesser concern) costing us more latency time. Lastly we
require our power supply in the paddle to last for 1 hour of
continuous gameplay. This is because we do not want the
paddle to have a wired connection to an external power
supply. As for the size/weight of the paddle, most ping pong
paddles fall in the range of 200-400 grams. We believe that a
little bit of extra weight will not be detrimental as even real
paddles deviate greatly in terms of weight. For now we will
aim for 500 grams or less, and for the size to be roughly the
same size as real ping pong paddles - handle about 4 in x 1 in
x 1in, face about 6-7 inches diameter, ½ in thick. One key
metric that was missing from the design report was the user’s
swing speed, and a benchmark on how fast of a swing our
system would be able to handle. We have since decided on an
upper limit of 5 meters per second. This was done by carefully
reviewing videos of professional play. On offensive strokes
(which have by far the fastest paddle speed), professional
players consistently took between 0.2 and 0.25 seconds (or
just outside of this range) to swing. These strokes have an
estimated length of approximately 1 meter (or slightly more).
This is how we arrived at our benchmark for swing speed.
While of course it is possible that users of our product could
achieve racket speeds higher than this, we feel that users who
are playing seriously will be well in this range and that
accuracy dropoffs outside of this range are reasonable.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

The system features a central server, virtual reality devices
and paddles for each player. The paddle sensing systems track
the paddle’s motion using data from an IMU. The IMU
provides the acceleration of the paddle as well as the
orientation. Using this data, the paddle’s Raspberry Pi Zero is
able to calculate the paddle state which is sent to the server
over Wi-Fi, where it will be forwarded to the opponent’s

2
18-500 Final Project Report: A4: VR Ping-Pong 05/07/2022

headset/game client so the player’s action and its subsequent
effects can be rendered on the opponent’s VR headset display.
This process will repeat with the opponent’s shot, and so on.
Figure 1 shows the high level interaction of our subsystems.
The intricacies of each connection between the subsystems
and a breakdown of the operations required will be elaborated
upon in future sections.

Fig. 1. High level block diagram of the overall system.

IV. DESIGN REQUIREMENTS

One of the most important metrics of our system is the
latency. While it was difficult to nail down a quantitative value
without actually knowing how it feels to play on specific
latencies, we had settled on 100 milliseconds from user to user
during the design phase of our project. Later on we decided to
break down the latency into two segments, paddle-to-headset
(within a user’s scope), and user-user. We set a goal for each
of these to be less than 300 milliseconds.

Another design requirement concerns the actual physical
paddle, the overall requirement remained unchanged from our
design report (although more detail to the allocation has been
added). In Section II it is mentioned that we would like our
paddle to be less than 500 grams. As for a breakdown of this,
we first began by allocating weight to the smaller components
first, knowing that the majority of the weight would arise from
the power source and any casing used to encapsulate the
subsystem. The Raspberry Pi Zero is about 20 grams, the
MPU6050 IMU is about 2 grams. The other component

outside of the actual power source would be a Buck converter,
and only if we used batteries. Buck converters weigh about 11
grams. A normal table tennis blade (a paddle without the
rubbers) weighs about 80 grams. This would leave us with
over 350 grams to allocate towards batteries or a battery pack,
as well as the subsystem’s casing. AA batteries are about 30
grams each, 9V batteries are only slightly heavier. The
Raspberry Pi Zero Wireless draws up to 370 mA. We would
like our paddle to hold enough power for one hour without
charging or replacing batteries. An average set of table tennis
takes about somewhere between 5 and 10 minutes, and nearly
half of this is because players need to pick up the ball. Since
this is not necessary in a virtual game, a user can comfortably
10 normal sets within one hour. An AA battery holds 2850
mAh, enough energy for nearly 8 hours on the RPi. If higher
voltages are needed, a 9V battery contains 580 mAh. This
would leave over 300 grams for any necessary casing. PLA, a
common material for 3D printers, has a density of 1.25 g/cm3.
This means we comfortably have weight for 240 cm3 of PLA,

3
18-500 Final Project Report: A4: VR Ping-Pong 05/07/2022

which is approximately the volume of two entire table tennis
blades. As for the size of the paddle, the requirements have
largely remained the same, adjusting the thickness to
accommodate for hardware. The face should be around 6-7
inches in diameter and between 0.5 and 1 inch thick. The
handle should be about 4 inches long and no longer than 1
inch thick or wide.

Regarding the CV subsystem, our initial plan was for the
tracking of the paddle to be accurate to within 7.5 cm. This
distance was chosen because the diameter of a paddle face is
approximately 15cm. With this level of accuracy, we would be
able to detect any contact between the ball as long as it hit
near the center. If the accuracy was very close to this level we
would also probably introduce a small range of leeway in case
the paddle was registered to be in a location such that the ball
contacted it near the edge (when in reality it should be a
successful shot). We would also like to display at least 30
frames per second. While this is a requirement of the ultimate
output (the user’s display), without interpolation/extrapolation,
this would also require us to have at least 30 frames per
second processed from the CV subsystem. As mentioned near
the end of Section II, we were aiming to accurately track
paddles moving up to 5 meters per second.

To make the determination of swing type more accurate, we
need to make sure that the IMU performs enough samples
where it can always classify a swing if swung at the right time.
We also need to make sure that the IMU data is accurate and
that noise in the sensor’s samples does not send false positive
swings signals back to the game. Another thing that needs to
be accurate is the acceleration and orientation thresholds we
set to determine swing types and swing directions. We require
that IMU take at least 30 samples, which we derived by taking
the average swing window for a player (0.3 seconds) and
multiplying it by the sampling rate of the IMU (100
samples/second). To make sure that noise isn’t affecting false
positives, we are going to graph the IMU output of 20 swings
and make sure that 95% of them do not contain false positives.
We will also require that at least 80% of the time, our swing
thresholds output the correct swing type and direction.

V. DESIGN TRADE STUDIES

In this section I will be highlighting the tradeoffs we made in
our two main subsystems: the VR headset and the paddle.

A. VR Headset Subsystem

For further clarification, the VR headset consists of the Unity
game, Google Cardboard, Android phones, and paddle-headset
bluetooth communication. To start, we are going to talk about
why we chose these specific components for this subsystem.

● We chose to use Unity over other game engines such as
Unreal because it had features that made programming the
game a lot easier. Unity had a much larger asset store and
the active community in Unity forums made integrating

new components a lot easier. When we were
implementing the multiplayer component of the game,
Unity offered a Mirror Networking asset that abstracted
away a lot of complexity and saved time.

● We chose the Google Cardboard because it was much
cheaper than the Oculus.

● Our game was built on an Android because the setup for
the bluetooth communication with it was much simpler
compared to iOS. For iOS, we would have had to program
in complex, low-level code for bluetooth communication
whereas for Android it used more intuitive socket
libraries.

● Using Bluetooth communication was an idea we had from
the beginning, and throughout our integration and testing
process, the data transfer was fast enough where we did
not think about any alternatives.

In our Unity-created game, we had a trade-off between how
realistic the game felt versus latency of the paddle swing
reflecting in the graphics. The reason for this is that we sample
200 data points from the IMU from the point the opponent hits
the paddle, we analyze those data points, and have the paddle
send a message to the VR headset. We saw that if the paddle
was too close to the table, the message would not have enough
time to reach the VR headset and trigger a swing animation
before it made contact with the idle paddle, which is why we
made the decision to push the paddle further back than we
originally wanted.

We also had to trade-off the accuracy of how the game
reflected a player’s swing with latency. In the beginning of our
project, we were sending a stream of orientation data from the
paddle to the VR headset, which makes reflecting a player’s
swing in the graphics really accurate, but sending such a large
volume of data would cause really high latencies. To counteract
that and make the game more playable, we decided to try to
extrapolate swing characteristics from a sample of the player’s
motion and just send swing characteristics to the headset. Less
data means lower latencies, but our predictions were not always
correct. We weren’t registering swings that occurred outside of
our sampling period and sometimes our swing characteristics
were wrongly predicted. However, what we saw at the end of
the project was that with this strategy, the game had much
lower latency and it only lost 20% accuracy when it came to
swing classification, which we thought was justifiable.

B. Paddle Subsystem

Our paddle consists of a 3D-printed box containing an IMU
sensor, Raspberry Pi Zero, and 5V, 2.1A battery pack. For our
user requirements, we wanted a lightweight paddle that had
long battery life, which is why we chose the battery pack over
alternative power supplies. The Raspberry Pi had bluetooth

4
18-500 Final Project Report: A4: VR Ping-Pong 05/07/2022

capabilities which is why we chose it over a Jetson. We did not
think much about alternatives for the IMU, we just needed
something that would track orientation and acceleration data.

Just like in the VR Headset subsystem, the paddle has
tradeoffs between the latency and accuracy of the swing
classification, however in the case of the paddle, it sacrifices
latency for swing accuracy. When our paddle is done sampling
data, it uses a Butterworth filter to smooth out the data, which
prevents false positive signals that there was a swing.
However, it takes extra time to analyze the data, thus increasing
the latency. An alternative would have been to analyze the data
in real time and send signals to the player when a swing is
identified, which leads to possible false positives but better
latency. Looking back, we should have taken the alternative
method because our sampling method lowered accuracy in the
sense that swings that are too early or late do not get registered.
Also, we could have used a sliding window filter to quickly
smooth the incoming data in real time, which would have been
the best of both worlds: no false positives and no processing
latency.

VI. SYSTEM IMPLEMENTATION

A. Paddle Motion Sensing Subsystem
The paddle performs motion tracking using a MPU6050

6-degree-of-freedom inertial measurement unit (IMU)
connected to a Raspberry Pi Zero Wireless, which performs
transmission of data via bluetooth as well as mathematical
calculations to analyze the swing data. It is powered by a
battery pack that provides 2 Amperes and 5 volts to
sufficiently power the Raspberry Pi, which requires 1.5
Amperes and 3.3 Volts to run properly. In addition, the
Raspberry Pi uses bluetooth to communicate with the Virtual
Reality application on the VR phone. The bluetooth was
implemented using the python bluez library, which transmits
bits using Linux RFCOMM.

The IMU gets data regarding the acceleration and rotational
velocity regarding the X, Y, and Z axes of the IMU relative to
the frame of reference of the IMU. The data is sampled at 100
samples per second, and is sent to the Raspberry Pi in
real-time via an I2C connection. Once the data arrives at the
Raspberry Pi, it is passed through the Madgwick
Attitude-Heading Reference System algorithm, which
converts the accelerometer and gyroscope data from the IMU
to quaternions in order to determine the rotation of the paddle.
Subsequently, the quaternions are converted to roll, pitch, and
yaw to represent the orientation of the paddle relative to
Earth’s frame of reference.

This live processing of IMU data is leveraged so that we
can determine how the swing interacts with a ball in the game
in as close to real-time as possible. Our method of determining
that interaction is twofold: first, we decide when the window
in which a swing would be appropriate in order to “make
contact” with the ball, and secondly, we analyze data during
that time frame to determine if and how the swing of the

paddle will interact with the ball.
To achieve the first part of deciding the valid “swing

window”, the game application sends a signal to the Raspberry
Pi signifying the start of the swing window. When the window
starts, the Raspberry Pi begins tracking and analyzing the IMU
data. The window will gather N samples of IMU data in real
time, with N being a parameter that was tuned to help the
game have a smooth game play. While sampling, the
gyroscope data is passed into the Madgwick Algorithm as
stated earlier to get the roll, pitch, and yaw of the paddle over
time. In addition, the accelerations over time are also stored in
a list during the sampling window. These stored accelerations
are in the frame of reference of the IMU, but are also adjusted
using some quaternion arithmetic so that acceleration due to
gravity is removed from all 3 axes of measurements,
effectively “centering” the measurements around 0 when there
is no acceleration in any direction relative to the frame of
reference. When the window ends, the accelerations are
passed through a butterworth filter to smooth out the noise in
the signals, so that we have smoothed out acceleration over
time data centered at 0.

The assembled orientation and acceleration data are then
used to determine the swing of the player. Because the swing
window is a relatively short window of time (<0.7 sec), the
orientations are simply averaged to get an estimate of the
general orientation over that time. This average, especially for
the roll measurement of the paddle, is useful in determining
the angle of the swing by the user. For instance, an average
roll of 10 degrees would suggest a very shallow upward swing
that resembles a lob, whereas an average roll of 90 degrees
would suggest more of a straight angle shot such as a push.
The acceleration of the paddle during the swing window is
then used to determine if and how hard the paddle was swung,
as well as whether the swing was forehand or backhand. This
is primarily done checking the acceleration on the Z-axis of
the paddle, which goes through the plane of the paddle. A
positive spike in acceleration followed by a negative dip
resembles the paddle being moved in the forehand direction,
whereas a negative dip in the acceleration followed by a
positive spike in the acceleration suggests a backhand swing.

Given the correlation between acceleration and swing
direction, the swing direction can be determined by seeing if
during the swing window, whether the maximum of the graph
occurs before or after the minimum of the graph, which in
essence determines if the upward spike precedes the
downward dip, or vice versa.

We also can determine what direction the ball will go
following a swing. To do this, we use a design similar to that
used in Wii Sports, where if you swing a forehand early, it will
send the ball left, and if you swing a forehand late, it will send
the ball right. The inverse holds true for backhands: an early
swing sends the ball right whereas a late swing sends the ball
left. These parameters are assuming the user is right-handed.

Once the swing direction, orientation, and ball direction are
determined, it is relayed onto the game application via
bluetooth. This process repeats during the back and forth of

5
18-500 Final Project Report: A4: VR Ping-Pong 05/07/2022

the game.

Fig 2. Diagram for paddle subsystem

B. VR Headset Subsystem
The VR Headset Subsystem of the product consists of the

Google Cardboard, Android, and Unity-engine developed
game. Unity builds an apk file that allows us to run our created
game on our Android phone. The game should have
stereoscopic imaging and head tracking so that when the
player puts the phone into the Google Cardboard, they can
experience the game in an immersive environment. In the
diagram shown below, it shows how the software is organized
and how it allows all of the hardware components to interact.

Starting with the bluetooth communication system, it sends
and receives messages from the paddle, so when the ball hits
the opponent’s paddle, the game sends a message to the paddle
telling it to start sampling data from the IMU. The moment
the paddle is done sampling and analyzing the data, it sends
the swing type and direction to the game.

From the game’s point of view, the bluetooth
communication is implemented using a PaddleConnect script
that creates a Bluetooth socket to send and receive data. The
script parses the message that the paddle sends to it and it
triggers an animation that corresponds to the swing time.
There are six possible animations that can be triggered (Lob,
Spike, and Normal for forehand and backhand) and all of them
are created by us for this project. The information that
PaddleConnect receives is used to determine how the paddle
to ball interactions work in the PaddleCollision script. In the
latter script, when Unity Colliders recognize a collision
between the ball and the paddle, it adds a force vector to the
ball that is dependent on the swing type and direction. A
paddle that is classified as a lob will add a high y-component
to the force vector, a normal swing will have a lower
y-component, and a spike swing will have the lowest. Swing
direction determines the z (left and right) component of the
force vector.

Originally, our game was meant to have a camera subsystem
that kept track of the lateral position of the paddle. However
we were unable to integrate that into our game, so as a
contingency plan, we added the PaddleMovement script to the
game. This script tracks the height and lateral position of the

ball relative to the table (y and x coordinates) and uses them to
set the same coordinates for the paddle’s position. So
whenever the ball reaches the player’s end of the table, the
paddle will always be in position for the ball to be hit.
Essentially it makes the game timing based to see if a swing
will trigger as the ball is hitting the paddle. The WallCollision
and TableCollision scripts in the game are used to enforce the
rules of ping pong. So whenever a player hits the ball and it
lands on their own half of the table or if the ball lands out of
bounds and hits the ground, the game will reset back to a serve
state where the computer will start a new rally with the player.

The last two scripts involved in the game integrate the VR
headset and add multiplayer capabilities into the game, both
use external libraries that help us add functionality to the
game. For the VR script, we import the Google XR library
which displays the game with stereoscopic imaging so that it
can be viewed in an immersive environment on the Google
Cardboard as well as adding head tracking to the headset as
well. We use the Mirror Networking library for multiplayer
capabilities, which allows us to either set a dedicated server to
run the game or allow a player to host a game for other people
to join.

Fig 3. Diagram for game subsystem

VII. TEST, VERIFICATION AND VALIDATION

For testing, the main components we tested were accuracy
of the swing, effects of the latency of the swing transmission,
and also the accuracy of the graphics and “physical”
interactions on the VR application.

A. Results for Swing Direction, Type, and Ball Direction
Swing type refers to whether the swing was forehand or

backhand, or whether there wasn’t a viable swing. Swing
Direction accuracy refers to whether the shot was a lob,
straight shot, or smash. Ball direction refers to whether the
ball goes left, down the middle, or right. To determine the
accuracy for all of these metrics, we performed a large sample
of swings of all the possible combinations of swing type,
direction, and intended ball direction, and calculated the
accuracy of the classification of those factors versus the
expected type of the swing.

At the beginning, the swing directions were hitting at a 50
percent rate. This was because we were averaging the

6
18-500 Final Project Report: A4: VR Ping-Pong 05/07/2022

orientations throughout the entire swing window (from when
the ball was bouncing to the ball passing the end of the table).
We realized this was not the most reliable method, as if there
was a range of motions they swung through, the average could
not be indicative of the actual orientation of the paddle at the
point of contact. We tried to fix this by detecting when the
maximum velocity of the swing was, and then finding the
orientation at that corresponding time. However, we realized
that was much more prone to error, as we were getting some
smashes being classified as lobs, which was a gap over two
classes of swing directions, as the progression of swing
directions goes from lob to straight shot to smash. We realized
that this was because the accuracy of the orientation data from
the Madgwick Algorithm was not accurate during the course
of a swing, as the huge spikes in acceleration in short periods
of time combined with the accelerometer noise would throw
off the calculations. Thus, we realized that we probably should
sample the orientation before the swing began, to eliminate the
error coming from the duration of the swing where
accelerations are high. This method was actually quite an
improvement, as we were able to increase the accuracy to an
85 percent accuracy as is shown in the table below.

The swing type was another attribute that improved through
testing. At the beginning, we faced two primary issues: false
positives (registering a swing when the user didn’t swing), and
forehands being registered as backhands, and vice versa.

As for false positives, we had a ton of those in those to
begin with as a chain reaction of the Madgwick algorithm
taking time to converge to the initial orientation after each
swing. This was an issue as during the process of eliminating
acceleration from gravity from our accelerometer data to
center our accelerations around 0, we used the quaternions
from the Madgwick Algorithm. However, because the
Madgwick orientations did not converge to the correct
orientations yet, it would cause the adjustment of gravity to be
inaccurate, and thus, our accelerations would not actually be
centered at 0. This would propagate to the false positives, as
we would not read a magnitude of 0 for the acceleration, but a
large magnitude of acceleration even when the paddle wasn’t
moving. causing our classification to believe that the paddle
was moving and thus registering a forehand/backhand instead
of no swing. To remedy this, we increased our swing window
so that we could have a few extra samples to allow for the
orientations to properly converge before starting to use those
orientations to adjust the accelerations. This method proved
effective, as our data during the relevant time periods was
more accurate and we eliminated almost all of the false
positives.

As for the forehands and backhands being mixed up, we
realized that one cause was due to the fact that forehands
would show a positive acceleration followed by negative, and
vice versa. This was causing problems because sometimes, we
would start sampling at the tail end of a swing (e.g. for a
forehand swing, we would start sampling when the paddle is
decelerating). Thus, the data would read that there was an
initial negative dip instead of an initial positive peak, and read

a backhand instead of a forehand. To remedy this, we realized
that in addition to further expanding the data sampling
window, we would add a buffer between the time the paddle
orientation converges and the time that all swings are valid.
This way, any swings that would have been valid would have
been fully sampled, instead of being only sampled in the tail
end. The buffer is helpful as if the tail end of a swing occurred
during the buffer, it would be invalid anyways, so we wouldn’t
need to worry about it being misrepresented.

After tuning several parameters for the length of the swing
window and the duration of the buffer, the issue of false
positives and forehands and backhands being mistaken for
each other diminished greatly to get us the metric of 70
percent accuracy on swing type. This still did not meet the
requirements we set, as the issue causing the inaccuracy was
now false negatives (the user swung but didn’t register). The
cause of this issue was that the swings sometimes didn’t get
registered well by the accelerometer, as the accelerations
wouldn’t cross the threshold for determining a swing. This
was a tricky matter as we did not want to lower the thresholds
too much such that noise would cause a false positive. This is
something that would require more work in the future to
analyze and tune.

Ball direction was a huge product of tuning parameters. As
our methodology for determining the ball direction was the
timing of the swing, it was all about tuning the thresholds for
what would constitute an early or late swing. The accuracy
metric fell short here, as it was hard to actually determine
whether one truly felt like he or she hit the ball or late versus
what the sensors recorded. Because the samples have such a
high granularity, one that is hard for humans to process, it is
actually quite logical that humans may not actually have
swung the paddle at the time they expected. Thus, perhaps this
metric is a little flawed, as it doesn’t account for human error
entering the accuracy formula.

B. Results for Latency
To find the latency between the paddle and the VR device,

we took the Unix timestamp of the VR device and compared it
to the arrival timestamp at the paddle. We got a metric of 0.4
seconds, which is a little higher than the metric of 0.3 seconds
we desired. Because there is 0.15 second margin of error for
getting the Unix timestamp and because there was not a
noticeable latency between when a player swung and when the
swing was reflected in the game, we decided that a 0.4 second
latency was fine and our original goal of 0.3 seconds was too
strict. We also tested for latency between players, or how long
it takes for an opponent to see the other player’s swing and
movement. The best way we thought of testing this was
measuring the latency when the opposing player was moving
their paddle really quickly from side to side. So for our test,
one player started on the right side of the table and moved as
quickly as possible to the left side of the table. The moment
the player reached the left side of the table, it would print out
the Unix timestamp. We used ParallelSync to get the point of

7
18-500 Final Project Report: A4: VR Ping-Pong 05/07/2022

view of the opposing player. ParallelSync essentially allows
us to run two versions of the game simultaneously and let
them join the same game. So from the opposing player’s point
of view, when it sees the player’s paddle reach the left side of
the table, it also prints out the Unix timestamp. We subtracted
the two timestamps to see to latency between the players and
saw that it came out to an average of 0.1 seconds, which was a
lot better than our goal, and qualitatively, the latency seemed
just as low.

Fig 4. Obtained values and goals for testing metrics

VIII. PROJECT MANAGEMENT

A. Schedule
Our schedule changed quite a bit from the schedule

referenced in the design document. The computer vision
aspect of the project was taking a lot longer than any of us
were expecting, and we realized a lot of the features of the
game that we had originally planned were not going to make it
to the final product because the integration of the paddle took
a while and swing identification was a newly added aspect to
our project that took a lot of time as well. The updated Gantt
chart is referenced on Figure 5 below.

B. Team Member Responsibilities
Henry’s main responsibility in this project was creating the

game in Unity. He programmed all of the ball-paddle
interaction and movement scripts, created animations for each
type of swing, and added bluetooth communication with the
paddle. His secondary responsibilities included helping
William with swing identification and helping Logan out with
integrating the Jetson into the games.

William’s main responsibility in this project was analyzing
data from the IMU and using it to classify swing types and
directions. He also was in charge of designing and fabricating
the paddle as well as working with Henry to set up the
Bluetooth connection between the paddle and VR headset.

Logan was in charge of the computer vision aspect of the
product, which included setting up and integrating the Jetson
with the VR headset and using OpenCV to determine what
position the paddle was relative to the ping pong table.

C. Bill of Materials and Budget
We have included a table on Figure 6 that details what we

spent our budget on. The items shaded in the light blue are
materials used in our final product, every shaded in red are

items that we bought but never used. We ended up spending a
total of $154 on our project.

D. Risk Management
From the beginning of the project, we thought our biggest

risk in our design of the project was the latency between the
paddle and the VR headset. We ended up falling back on our
contingency plan to have the paddle project what the swing
will look like and send the paddle classification to the headset.

We had to also spend a lot of time coming up with
contingency plans for our schedule in case certain parts of the
project were unable to be completed or took too long to be
completed. The product was separated into a group of
mandatory components and non-mandatory components. We
would first try to complete the mandatory components and if it
took longer than expected, we took out a non-mandatory
component. One example would be when we were doing
swing classification. Completing this part of the project took
way longer than we expected, so we decided it was smartest to
scrap the spin capabilities that we wanted to add in the
beginning. For the mandatory items, we came up with
multiple ways to implement them so that if one way failed, we
could always have a backup. This was the case with our
paddle to VR headset connection. Our plan was to use
Bluetooth, but if that failed, we would have transitioned to
Wifi-direct. We also wanted to mention our contingency plan
for computer vision. When our group saw that there was no
way that the computer vision aspect of the project would be
completed and integrated in time, we decided to simplify the
game. So instead of the player needing to put their paddle in
the correct lateral position, the game would do that for them.

We came up with a contingency plan for if any part of the
paddle broke and actually had to use it during the final week.
When we were creating our second paddle, we realized that
our Raspberry Pi for one of the paddles was broken and we
had no time to get a new one online and there were no
available Raspberry Pi’s in the inventory. We decided for the
final demo to create an automated player that would always hit
the ball back with either a lob or a normal swing. That way,
the player could have a smooth experience with the gameplay
and be able to test out the different kinds of swing types as
well.

IX. ETHICAL ISSUES

A big ethical issue that arises from our product is safety.
Because our game is a VR game, people playing do not have
awareness of their physical surroundings. This poses a danger
for the player and the people around them as a wayward swing
could impose serious physical harm. One approach we are
using to mitigate this risk is by creating warnings in the
beginning of the game recommending that players play in an
open area to protect themselves and the people around them.
Other ethical issues that we envision include privacy risks that
originate from the game being a multiplayer game and
exclusion of players who cannot afford to buy this product and
are thus left out of good social interactions. Ways that we can

8
18-500 Final Project Report: A4: VR Ping-Pong 05/07/2022

mitigate these risks is by including single player modes to the
game and making the game as cheap as possible by using
components like the Google Cardboard.

X. RELATED WORK

We compared our game a lot to Wii Sports Tennis because
the user experience was really similar. Players would swing
with either a backhand or a forehand and depending on the
timing of the swing, the direction of the ball would be
changed. Our project was different in that players could swing
with different swing types and our timing mechanism was
different. In Wii Sports Tennis, all swings will be registered in
the game, but in our game, only swings that are swung within
a specific sampling period will be registered.

Another similar game we found was a VR ping pong game
called ELEVEN table tennis. ELEVEN wasn’t like our game
in that it made players have to place the paddle in the correct
lateral position. However, it was played on an Oculus, which
abstracts away a lot of the paddle tracking and paddle
orientation challenges that we had to deal with in our project.

XI. SUMMARY

We were able to reach the design specifications for latency
and IMU data accuracy. Qualitatively and quantitatively
speaking, we were happy with the latency between a player’s
swing to the graphics reflecting it. And during our testing, we
saw very little false positives and false negatives when players
swung within the sampling period. However, our biggest issue
was matching our sampling period with when a player would
swing. From our experience and the experience of players
who tested it, timing the swing so that the sampling period
registered it was really difficult to get. If we had more time,
we would have implemented a sliding window filter to smooth
out the data in real time so that all swings at all times could be
registered by the paddle and reflected on the graphics. We
also had a bit of trouble with swing classification accuracy
where sometimes a normal swing would be classified as a lob.
If we had more time there, we would have worked on tuning
thresholds and even adding a few more variables into our
algorithm to make swing classification more accurate.

A. Lessons Learned
We all agree that the biggest lesson learned from this

experience was focusing more on the integration aspect of the
project. At the beginning of the project, we figured out how to
partition the project into three chunks: paddle, VR headset,
and camera. However, we did not spend nearly enough time
talking about how these subsystems were going to be
integrated with each other. We needed to talk more about
what information needed to be sent and received between each
subsystem and clearly define dependencies where progress
could not move ahead without another subsystem. Potential
problems and contingency plans were not discussed nearly
enough from the beginning.

Also, we underestimated the difficulty of tasks too much,

which caused us to bite off more than we could chew when we
were creating a schedule for the project and talking about what
we needed to do in future weeks. In planning, we needed to
brainstorm potential problems that could have occurred and
assign deadlines based on them.

GLOSSARY OF ACRONYMS

MQTT – Message Queuing Telemetry Transport
OBD – On-Board Diagnostics
RPi – Raspberry Pi
VR – Virtual Reality
CV - Computer Vision

REFERENCES

[1] Boer, Jonas. “Morgil/madgwick_py/Madgwickahrs.py,
Morgil/madgwick_py/Quaternion.py.” GitHub, 2015,
https://github.com/morgil/madgwick_py.

[2] mrrobles09. “Questions about MPU9250_MS5637_AHRS_t3.Ino

Script... · Issue #223 · Kriswiner/MPU9250.” GitHub, 2018,
https://github.com/kriswiner/MPU9250/issues/223.

[3] “MPU6050 (Accelerometer+Gyroscope) Interfacing with Raspberry Pi:”
ElectronicWings,
https://www.electronicwings.com/raspberry-pi/mpu6050-accelerometerg
yroscope-interfacing-with-raspberry-pi.

[4] “Raspberry Pi Bluetooth Setup and Running Rfcomm Server.” 2017,
https://www.youtube.com/watch?v=DmtJBc229Rg. Accessed 3 May
2022.

[5] Mallari, Jan. “How to Setup Bluetooth on the Raspberry Pi.” Circuit
Basics, 26 Nov. 2021,

https://www.circuitbasics.com/how-to-use-bluetooth-with-raspberry-pi/.

[6] Google. (n.d.). Quickstart for Google Cardboard for unity | google
developers. Google. Retrieved February 25, 2022, from
https://developers.google.com/cardboard/develop/unity/quickstart

[7] YouTube. (2021, June 23). Build your first 3D game in Unity | Unity
beginner tutorial. YouTube. Retrieved February 20, 2022, from
https://www.youtube.com/watch?v=n0GQL5JgJcY&ab_channel=Codin
ginFlow

[8] Vis2k/mirror: #1 open source unity networking library. GitHub. (2018).
Retrieved March 22, 2022, from https://github.com/vis2k/Mirror

[9] Technologies, U. (n.d.). Unity user manual 2021.3 (LTS). Unity.
Retrieved May 7, 2022, from
https://docs.unity3d.com/Manual/index.html

[10] YouTube. (2019, August 30). How to animate in unity 3D. YouTube.
Retrieved April 7, 2022, from
https://www.youtube.com/watch?v=sgHicuJAu3g&t=1283s&ab_channe
l=JonasTyroller

[11] Pounder, Les. “Raspberry Pi Zero 2 W Review: The Long Awaited
Sequel.” Tom's Hardware, 28 Oct. 2021,
https://www.tomshardware.com/reviews/raspberry-pi-zero-2-w-review.

[12] “Ma Long vs. Fan Zhendong, Men's Singles Table Tennis Gold Medal
Match Tokyo 2020.” YouTube, Olympics, 13 Aug. 2021,
https://youtu.be/VTCDQYYKA9o. Accessed 7 May 2022.

9
18-500 Final Project Report: A4: VR Ping-Pong 05/07/2022

Fig 5. Gantt Chart for our project

Fig 6. Bill of Materials for our project (Shaded blue items are in our project, shaded red are not in our project)

10
18-500 Final Project Report: A4: VR Ping-Pong 05/07/2022

Report Section Breakdown:
- Introduction: Logan
- Use Case Requirements: Logan
- Architecture and/or Principle of Operation: Logan
- Design Requirements: Logan

- Henry added a paragraph at the end about design requirements for swing accuracy user
requirement.

- Design Trade Studies: Henry
- System Implementation:

- Part A: William
- Part B: Henry

- Test, Verification, and Validation
- Part A: William
- Part B: Henry

- Project Management: Henry

