
18-500 Final Project Report: Flex Dance 05/06/2022

1

Abstract—Our system attempts to improve the at-home

exercising experience, motivated by recent quarantine mandates.

The platform we provide consists of a pressure-sensitive mat that

acts as a controller and a computer game that reads the user’s

steps on the mat to simulate dancing to a choreography. Current

alternatives include large gym machines, repetitive bodyweight

routines, monotonous dumbbells, and expensive consoles that run

exercising games. Our goal, as such, is for our device to be user

friendly, easy to store, enjoyable, and comparatively cheap. For

maximum enjoyment, users can come up with and share their own

choreographies to their favorite songs.

Index Terms— Arduino, dance, design, exercise, force sensitive

sensors, game, hardware, pygame, raspberry pi, software, user

interface, mat

I. INTRODUCTION

URING the COVID-19 global pandemic, people were

unable to exercise in the conventional manner (such as

going to the nearest gym) and the indoor options were

cumbersome, hard to store, boring, and expensive. This

adversely affected the physical, mental, and emotional health of

people as feelings of isolation, fear, and loss overwhelmed

everyone. Through this project, we aim to provide an alternative

option for casual exercisers who want to stay fit indoors to

preserve, or raise, their well-being.

In the game, players follow along a choreography to a song

of their choice by stepping on directional arrows laid out on the

mat, thus making it engaging and fun. Our game is also user-

friendly as it is pre-installed in a Raspberry Pi that the user

simply connects to their TV. This requires no setup on their

part. Lastly, our game is portable as all the parts (such as

Raspberry Pi and Arduino) are small and the game mat is

foldable. This makes the whole setup compact and easily

storable for any average drawer or cupboard. We chose this

design based on comparisons with other available options

which are briefly described below and in further detail later in

Related Work.

There are a few different ways someone can exercise at

home. For example, one can purchase personal gym machines,

but these prove to be expensive, hard to install and/or too large.

Cheaper options include dumbbells, door-mounted pull-up

bars, and bodyweight routines. However, all of these can be

monotonous and inflict property damage. Finally, there are

options more similar to what we propose such as the arcade

game Dance Dance Revolution (DDR) [2,3] and the game

series Just Dance [9].

Our main advantage over DDR is that we provide an easily

storable and an indoor exercising experience that is cheaper

than the $8,495 arcade machine. As for Just Dance, the game

series requires a commercial video game console which costs

over $200 in addition to the necessary motion-tracking

equipment to play the game. The user might not be interested in

using this console for purposes other than exercising. Thus, our

goal is to provide an easy to store, enjoyable, and comparatively

cheap platform for casual at-home exercisers.

II. USE-CASE REQUIREMENTS

Based on our targeted users, the competitive products

available in the market, and our goal to leverage technology to

create a fun, engaging way of exercising, we have come up with

a few use case requirements to guide us in our design process:

A. Affordability

We want our product to be cheap so that users of all financial

backgrounds can avail its benefits. Current alternatives

(whether metallic machines or mats that require a console to

function) start from $ 300. To compete with these options, we

want to be able to create our product well under $200.

B. Storing

To accommodate our users’ diverse living conditions, we

want our product to be easily storable. The mat should be

foldable and fit in an average drawer of size 13x12x5.5 in3 and

when the mat is expanded, it should fit comfortably in a living

room space of 39x39 in2.

C. Accessibility

Our game should be able to be simply plugged into a display

screen through an HDMI cable and run. This will make it easy

for children or older people to play the game at their own ease.

D. Stepping platform size

Relating to the point above, we want this game to be

accessible to most people, so our stepping platforms have to be

large enough to accommodate them. The American men's

average foot size is 10.5 [4], while the women’s is 9 [5]. As

such, a platform with an area over 11x11 in2 will serve most

people.

Flex Dance

Caio Araujo, Spandan Sharma, and Tushhar Saha

Department of Electrical and Computer Engineering, Carnegie Mellon University

D

18-500 Final Project Report: Flex Dance 05/06/2022

2

E. False negative rate

In our case, a false negative means the player stepped on an

arrow, but the step was not recognized. We want our game to

be enjoyable, so we are aiming for a false negative rate smaller

than 1%. We will focus mostly on reducing false negatives over

false positives (observing a step when there was no step), since

false positives can usually benefit the player and thus are less

harmful to the player’s experience.

F. Scoring

Players have a subconscious requirement of receiving scores if

they get even partial overlap of arrows and do not time their

steps correctly in the game. To account for this, we need to use

a linear scoring scale that gives points to users based on the

amount of accuracy of their stepping.

G. Interface

The interface has a direct point of contact with the user and

must fit the following requirements:

1) Engaging:

In order to facilitate a pleasing experience for the players,

the interface should be stimulating but also not overwhelm

the user. None of the information on the screen should be

hard to process/absorb.

2) Beginner friendly:

Our game should have a beginner friendly interface and it

should be easy to start. The game screen thus should be a

maximum of 3 clicks away from the start of the game.

H. Durability

The game should last a long time with little to no

maintenance. Users would subconsciously expect the game to

last for a couple of years in their house without needing any

outside intervention. Based on our calculations from research

online, it should last approximately 650 sessions. The

calculations are explained further in depth in Design

Requirements.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our system comprises 3 main components in order for it to

work. As shown in Fig. 1, they are the ‘Game Mat’, ‘Raspberry

Pi’ and the ‘FlexBox’.
The Game Mat is responsible for detecting inputs from the 5

force sensitive resistors (FSRs). In the design report, we had 6

FSRs as we thought we’d need separate buttons for ‘Pause’ and

‘Confirm’. However, we decided to combine it into one to fit

our on-screen keyboard better and to save costs. The mat also

has an Arduino attached to it above the top middle square which

acts as an ADC. It takes in signals from the FSRs and then, the

relevant signals are relayed to the Raspberry Pi. The circuit

needed to read the FSRs and send it to the Arduino was soldered

onto a perfboard and is shown later in Fig 5. In the design

report, the circuit used to be underneath the mat. However,

changing the majority of the circuit to be located in the

perfboard helped us reduce our worries about components and

connections underneath the mat. Together, the Arduino and the

perfboard are located in the FlexBox, which is a laser cut box

designed to house these components and make the system look

prettier.
On the other hand, the Raspberry Pi contains everything

needed to run the game including the game files, assets, an

operating system, and pygame [10]. External software libraries

and packages used for implementing the game include

‘pygame’, ‘math’, ‘pyautogui’, ‘os’, ‘time’ and ‘tkinter’. The

mat.ino file is uploaded to our Arduino and makes the Arduino

emulate keypresses through stepping on the arrows. The

components.py file implements the basic classes (and their

subclasses) that make the game: Screen, KeyboardKey, and

AnimationHandler.

Figure 1: Subsystems overview

18-500 Final Project Report: Flex Dance 05/06/2022

3

The song_reader.py file implements a Song class that can

read and store information about a song. The constants.py file

sets all the constants needed for the game, such as FPS, sounds,

icons, and colors. Sounds and icons are stored in the Assets

folder. The main.py file runs the main loop of the game,

updating and drawing the screen using objects from the

previous files. The Saves folder holds save file data, such as

high scores for each song.
 Finally, the display screen shows the graphical user interface

and any corresponding sounds. It is important to note that the

display screen is something that we expect the user to have. The

rest of the system is designed and built by us.

IV. DESIGN REQUIREMENTS

Based on the goal of providing a smooth at-home exercising

experience to our customers and the identified use-case

requirements, we have come up with the following design

requirements.

A. Force detection:

As can be seen in Fig. 1, each button on the mat is equipped

with 2 FSRs to detect the force produced by the user’s feet. This

system of detecting force is quite complicated, so we have

broken it down in subsections.
1) Threshold:

Since the force sensors will deal with deliberate as well as

accidental triggers by the users’ feet, our force sensitive

resistors should be able to differentiate between them and

detect a force of at least 10 lbs as a threshold. This threshold

was determined through our testing of the sensors. We used

the sensors to determine the force produced by a resting foot

as well as that of a foot putting deliberate pressure.

2) Button coverage:

The force of the player’s foot, in any orientation, should

be able to be detected in any part of the button. Hence, the

buttons on the mat should provide 360° coverage of force

detection. This is a subconscious requirement of the users

and must be satisfied by our design.

3) Pressing vs. Holding:

The mat should be able to differentiate between pressing

the buttons and holding the buttons. This is necessary to

make sure that just holding the button doesn’t trigger

multiple arrow presses.

B. Error rate

In order for the best user satisfaction and in line with use case

requirements, our game should have very few errors. In

particular, we are considering false negatives, where the user

steps on the mat button but is not detected. If we have a perfect

player playing our game, we want them to be able to ace 1 in 4

games. Since the player cannot “lose” in Flex Dance, “acing” a

song means they score every arrow with perfect accuracy, so

they get the highest possible score for that song. Considering

that an average song lasts for 3 minutes and 200 arrows, our

calculations shown below give us an error rate of approximately

1%, and thus we set this value as our goal.

𝑃(𝑠𝑐𝑜𝑟𝑖𝑛𝑔 𝑒𝑣𝑒𝑟𝑦 𝑎𝑟𝑟𝑜𝑤 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦) = 0.25

(1 − 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒)200 = 0.25

𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 ≅ 1%

C. Latency

We anticipate that most of the latency in the game will occur

between the Arduino and the Raspberry Pi. This latency should

be less than 1/10th of a second or less than 100 ms as that is the

minimum time needed for humans to perceive duration. This is

a design requirement to satisfy the users requirement of having

an engaging game.

D. Game interface

 Our GUI (Graphical User Interface) will be one of the two

crucial points of contact between the game and the user (the

other one being the mat) and so the interface must be as flawless

as possible. This results in two design requirements:
1) Quick game startup:

The game should be easy to start and ready to be played

by the user to avoid losing their interest and keeping the game

engaging. The game should be pre-installed, so all the user

has to do is connect the game to a display screen using a

HDMI cable and start playing. The process of getting to the

game screen from the menu screen should not be a tedious

process and thus, the game screen should be a maximum of

three clicks away from the start of the game.

2) Engaging interface:

The interface should be engaging and have few animations

to catch the attention of the users. It should also not be

overwhelming at the same time. After doing research, we

have determined that our interface must follow the 60-30-10

rule of UI and UX design. This rule states that in order to

keep a GUI from being overwhelming, three prominent

colors in the ratio of 60-30-10 should be used. Thus, there

should be smooth animations and the visual content on the

screen should be organized in order to avoid confusing the

user.

E. Durability

We expect our game to be durable and last approximately

624 sessions without the need of maintenance. If a person

ideally exercises 4 times a week and expects a household item

to last three years, we conclude that our game should last 624

sessions of usage. This is explained in further detail in the

calculations below.

1 session = 1 hour

1 week = 4 sessions = 4 hours

1 year = 52 weeks = 52 ×4 hours = 208 hours

3 years = 3 ×208 hours = 624 hours

V. DESIGN TRADE STUDIES

A. OS for Raspberry Pi

For our operating system, we chose the Raspberry Pi OS Lite

(formerly known as Raspbian Lite). This operating system is

ideal for a device that runs one single game with limited input

since it does not implement a desktop screen with window

management capabilities. It also boots fast, has good

18-500 Final Project Report: Flex Dance 05/06/2022

4

documentation, and takes up little memory, which leaves more

space for our software and song files in the SD card. On top of

all that, it runs Python natively, which is the programming

language we chose for our software.
Other OS options we considered included the non-lite

version of Raspberry Pi OS, which takes longer to boot and has

a window manager that would get in the way of our game, and

DietPi, which has less documentation and requires apps to be

specifically optimized for it. Out of all three, RPi OS Lite was

the safest and most coherent option.

B. Pygame Vs. Unity

We chose to use Pygame for our game engine. Python, and

by extension Pygame, interfaces very well with the Raspberry

Pi. Also, since it is a widely known library, it is incredibly well-

documented. All of our team members are familiar with Python,

so we believed that we could learn Pygame on our own through

online tutorials and the documentation.
The other contender for game engine was Unity, which is

very flexible and also well documented. Unity, however, does

not interface easily with the RPi and we were concerned about

how long it would take us to learn how to use Unity as well as

we know how to use Python. Finally, since we have a better

understanding of Python through university courses, it is easier

for us to customize our game at a lower level.

C. FSRs

 To sense feet stepping on the mats, we brainstormed options

like mechanisms involving a flip of a switch or making

connections between two conducting materials. However, these

options would either not be able to handle the weight of a

human, be prone to accidental triggers, or be awkward to step

on. Therefore, we decided to go with force sensitive resistors,

which can counter the issues described above and also fulfill

our purpose.
In terms of specifics for our force sensitive resistors, we

considered various different options in terms of quantity and

coverage. Ultimately, we came down to 2 options. The first

option was to use a 2ft long FSR and bend it in a way that it

covers a lot of area. The second option was to have multiple

smaller FSRs under each square. While both were viable, the

second option would end up requiring a lot more wires and

connections to the Arduino. Therefore, we chose the 2ft long

FSRs.
Initially we had one FSR per pressure platform, and each

FSR was bent into a Z shape for maximum orientation

coverage. However, we soon found out that bending the FSRs

eventually broke them, making certain regions not sensitive

anymore. Although the Z shape provided great coverage, we

had to change it since the durability was awful. After trying a

few different layouts using two FSRs per platform, including an

“X”, a “+”, and a “=” shape, we settled for the “=” shape, so

two FSRs parallel to each other and cut so they were just 1ft

long. This layout proved very durable with reasonable

coverage.

D. GUI

For initial game interface, we first designed the grayscale

prototypes shown in Fig. 2.

For the home screen, we found that it was too text heavy. For

the high score screen, we used a lottery slot machine design to

allow users to select their player names. However, this interface

design would require the player to keep pressing arrow buttons

on the mat which would be tedious if the player wanted to use

letters such as S or Y. So, we decided against it. For our music

selection screen, we thought it was too boring and decided

Figure 2: Greyscale GUI prototypes

18-500 Final Project Report: Flex Dance 05/06/2022

5

against it. For the game screen, we liked the arrows placement

and kept the design as it was similar to the original Dance Dance

Revolution game. For the score, in the game screen, we had

designed a progress bar to show how much of the song was left.

However, we thought that was redundant. Lastly, for our screen

when the game was paused, we used the conventional screen.

But to choose options like “Restart”, the user would have to

click at least twice: once for moving towards the option and

twice to confirm the selection.
Based on our observations, we performed a second iteration.

We first sketched the ideas on paper to make sure we all agreed

upon it. The sketches are shown in Fig 4.

As you can see, we combined music selection and game

screens in order to reduce the screens needed to reach the game

screen. The music selection is designed to have smooth

animations which makes it engaging yet not overwhelming. The

high score screen was arranged to be after the game screen and

could only be landed upon if the player scored high enough

points. The game screen was left mostly intact with the only

change being in the progress bar. We decided to have a score

multiplier to give incentive to the user to continue playing

competitively. The score multiplier would collect points based

on how many arrows the player is able to score correctly.

Another change we made was in the “Pause” pop-up box. We

designed it to take inputs directly corresponding to the arrows

on the mat. This minimizes the number of clicks and makes the

interface more efficient. Lastly, the high score input screen has

been designed to have a keyboard input which makes it easier

to input names rather than having to click or hold the buttons

for a long time. Based on these changes, we have our final

interface design that can be seen in the System Implementation

section.

E. Mat materials

For the material of the mat, we considered several options.

First was a normal fabric but we thought it would not be rigid

enough and the FSRs could sense it. Then we considered

styrofoam but that could break easily. We also considered wood

but that would increase the weight of the product thus, making

it unfit to be lifted by young children if they wanted to. Finally,

after much deliberation, we settled upon using a mix of tarp,

wood, and EVA foam. The tarp is rigid and water resistant, thus

making our mat more durable. The wood provides some

stability when someone is playing the game and distributes

pressure to the sensors. The EVA foam cushions the surface for

the feet, so the player is comfortable standing on the mat even

on a hard floor surface. Fig. 3 shows the two structures we

considered for the mat.

In our final product, we chose the structure on top, since it

provided more protection for the circuits against friction from

the tarp sliding on top of it and it was more comfortable to step

on since the EVA foam was closer to the top.

F. HDMI

Since we are developing a computer game, we needed to

decide what kind of display we would use. HDMI prevailed

over other options such as DVI since it is more convenient.

Most, if not all, modern televisions have at least one HDMI

input, and we expect our users to play Flex Dance in a larger

space such as their living room on their TV. Also, the RPi

supports HDMI out of the box with no need for any adapter.

Lastly, HDMI transports both video and audio, which means we

will not have to worry about providing a speaker interface since

the user’s own display will manage that.

Figure 4: Sketches of the GUI's second iteration

Figure 3: The two mat structures we considered

18-500 Final Project Report: Flex Dance 05/06/2022

6

G. Raspberry Pi 4B

One of Flex Dance’s most important features is ease of

storage, so whichever device is running our software has to be

compact. The Raspberry Pi line of microcomputers shines in

this aspect. A Raspberry Pi is powerful enough to run the code

and it also fits inside any drawer that the user has in their home.

Some of our group members also have experience working with

RPi’s. We chose the Raspberry Pi 4B in particular because it is

the most recent model, overpowering the Raspberry Pi 3B+ in

every major aspect, and it has USB 3.0 ports which permit faster

transfer of data between the mat and the RPi, improving our

speed, even if by just a little bit. Finally, since the RPi files are

stored in a micro-SD card, it is easy to change the files in it

through our laptops.

H. Arduino Leonardo

We needed an ADC to convert analog voltages produced by

our FSRs into digital USB signals that the software can read.

We chose to use an Arduino Leonardo for a few reasons. All of

our group members are familiar with Arduino code and building

circuits using Arduinos. As such, this reduces the time we need

to invest in learning how to use this microcontroller. Also, the

Arduino Leonardo interfaces with computers through a micro-

USB to USB cable and can send information through that cable.

Finally, the Arduino Leonardo is one of the few models capable

of emulating a keyboard. This particular quality makes it easier

for us to build and test the game, since Pygame already has

functions that handle key presses.

VI. SYSTEM IMPLEMENTATION

This section will go into depth about how each of the different

subsystems work and how they are connected to the other

subsystems. Refer back to Fig. 1 for the whole system. We first

discuss the mat which receives the inputs, then the FlexBox

which houses a perfboard and the Arduino, and then the

Raspberry Pi which runs the software. Then, we explain more

abstract components of our system, namely the Graphical User

Interface and the Soundtrack File Format.

A. Game Mat

The mat is split into two types of components: a square base

made of tarp and pressure-sensitive platforms for input. The

square base is a single layer of tarp with heavy-duty velcro

strips stuck onto it. The velcro strips serve to hold the pressure

platforms in place during gameplay, but also allow easy

removal of faulty platforms for testing and replacement

purposes.

There are a total of five pressure platforms, each

corresponding to one of the inputs to the game. Each platform

is composed (from top to bottom) of a layer of EVA foam, a

12x12 in^2 masonite plate, two force-sensitive resistive strips,

and two I-shaped pieces of wood that “sandwich” the FSRs to

the square wooden plate. The platforms are wrapped around

with tarp to protect their components and to facilitate painting.

Each platform also has velcro strips stuck to its bottom so it can

attach to the square tarp base. There is a platform attached to

the center of the base as well, but that platform has no FSRs in

it and only serves to make players more comfortable when

standing on the center of the mat.
Both the square base and the platforms are painted for

aesthetic purposes. The square base is painted with white dots

and streaks to resemble galaxies, while each platform is painted

with its respective input (an arrow or a pause button).

B. FlexBox

The FlexBox (Fig. 6) houses a perfboard and the Arduino.

The pressure platforms’ FSRs are connected to the perfboard,

which has female headers and resistors soldered onto it. The

perfboard then connects to the analog pins of the Arduino,

which reads changes in voltages when the platforms are

pressed. If these voltages go above a certain threshold, the

Arduino emulates a keyboard key press corresponding to that

platform. For example, when the player steps on the up arrow,

the Arduino emulates a press on the up-arrow key of a

keyboard.

Fig. 5 how the perfboard is connected. The nodes U1, L1, R1,

D1, and P1 represent one side of the two FSRs for their

respective buttons (up, left, right, down, and pause), while the

U2, L2, R2, D2, and P2 nodes indicate the other side of the two

FSRs for each button (recall each button has two FSRs

connected in parallel to each other). Finally, the A1, A2, A3,

A4, and A5 nodes connect to the analog pins of the Arduino.

Figure 5: Perfboard pin diagram

18-500 Final Project Report: Flex Dance 05/06/2022

7

C. Raspberry Pi

The Raspberry Pi runs on the Raspberry Pi OS Lite operating

system to assist in running Python code. The RPi is also set up

to run the game on boot so that our system does not require a

keyboard to run code and the user can simply plug it into a

power source and start playing the game.

Furthermore, the Raspberry Pi contains all the files listed in

the block diagram in Fig 7. The game_components.py file

implements the basic classes (and their subclasses) that make

the game: Screen, Arrow, KeyboardKey, and

AnimationHandler. A Screen object has its own drawing and

updating methods to make it simple to draw and update the

game through main.py. An Arrow object represents the arrows

that move during the game. The KeyboardKey objects are the

keys that appear in the High Score Screen keyboard. Finally,

the AnimationHandler objects are queues (First in, first out

structures) that store which animations are currently being

played. Once an animation is over, it is dequeued and deleted.
The song_reader.py file implements a Song class that reads

one of our custom soundtrack files (which are explained in

more detail in the next subsection below) and stores relevant

information about the song, such as title, artist, album cover,

and choreography.
The constants.py file sets all the constants needed for the

game, such as FPS, sounds, icons, and colors. The Assets folder

stores sounds, icons, songs, and high score boards. Finally, the

main.py file runs the main loop of the game, using the update

and draw methods of the Screen objects from the previous files.

D. Soundtrack File Format

Each of the games’ playable songs is stored in an individual

folder for the song. These folders contain the files that are

related to this song, including its icon, its publishing

information, its MP3 sound, its scoreboard, and its

choreography. Out of all these, the most involved file is the

choreography file.
Rhythm games must specify a choreography (i.e., a sequence

of desired inputs) for each song so that the player can try to hit

those inputs at the right moment. In our case, this is a sequence

of arrows. These sequences are often encoded in a properly

formatted file. For Flex Dance, this file is a text file containing

a measure-by-measure description of when an input should be

pressed in that measure and the time-length of each measure in

the song. An example is shown is Fig. 10.

The number describes how long each measure lasts and the

second number describes how many ‘spots’ there are per

measure. The ‘spots’ are evenly spread across their measure and

an arrow can only appear in one of these ‘spots’. In the example

above, each measure lasts for 3.5 seconds and there are 8

different times during the measure when an arrow could appear,

each time being 3.5 / 8 seconds after the previous time. The

arrows are described in order (LEFT, DOWN, UP, RIGHT)

Figure 6: FlexBox with the perfboard and the Arduino

Figure 7: Raspberry Pi files and connections

18-500 Final Project Report: Flex Dance 05/06/2022

8

with a 1 indicating that the arrow in that position should be

pressed on that ‘spot’ in the measure. Using this information,

the software can properly predict how early an arrow should

appear in the screen in order to match its note in the measure.

Anything after a pound symbol is ignored when parsing the file.

The sequence “1111” is special and indicates the choreography

is over. We took inspiration from another rhythm game,

Stepmania [8], on how to encode these files.

E. Graphical User Interface (GUI)

As mentioned in the Design Trade Studies Section, the

different game screens were inspired from games similar to

Dance Dance Revolution.

The menu screen (Fig. 8) has clear instructions on how to

play the game. Navigating through everything should also be

quite intuitive. The user can scroll through the songs in this

screen using the up and down arrows to decide on which one to

play. The high scores corresponding to the song will also be

displayed there.

The game screen (Fig. 9) is similar to how real DDR have

their arrows come in. They arrive from the bottom and travel

upwards until overlapping with the arrow outlines on the top of

the screen, at which moment the user needs to hit the correct

arrow to earn points. The game also has a score multiplier based

on how long of a combo the player has. When the player hits an

arrow when it is touching the outline, they receive a base

number of points between 1 and 100 depending on how

accurate they were. This base number is then multiplied by the

player’s current score multiplier and the product is added to

their total score. Also, their combo count increases by 1. At

certain thresholds of combo counts, the player’s score

multiplier will increase. If the player misses an arrow or steps

at the wrong time, their combo count resets to zero and their

score multiplier goes back to 1.

Furthermore, the game screen has animations for when the

player hits an arrow at the right time and for how accurate they

were. Whenever an arrow is stepped on correctly, a little

explosion will play behind it. Whenever the player scores

points, they’ll see either a “Perfect!!!” or “Great!” text pop up

on the right side of their screen. Finally, if they miss an arrow,

they’ll see a “Miss…” on the right side. The animations are

implemented using an Animation class that has its own update

Figure 10: Example choreography file

Figure 8: Menu Screen

Figure 9: Game Screen

18-500 Final Project Report: Flex Dance 05/06/2022

9

and draw methods. The game screen keeps track of two queues

of animations, one for arrow explosions and one for score

feedback. Whenever an animation begins, it is added to the

queue for that specific type of animation and updated/drawn

alongside the game screen. When an animation is over, it is

dequeued.

During the game, players can also pause (Fig. 11) by stepping

on the pause button. Pressing the appropriate arrows as shown

in the pause screen will result in the corresponding actions.

Particularly, these are to restart the song, resume the song, and

to quit the game.

The last screen is the High Score screen (Fig. 13) for

inputting your name if you make it to the leaderboards. The

player can input a name up to seven characters long. They can

use the arrows to navigate to the correct symbol on the keyboard

and step on the pause/confirm button to select that symbol.

They can move to the “Delete” key to delete a character and to

the “Submit” key to submit their name.

VII. TEST, VERIFICATION AND VALIDATION

A. Results for Mat Size

After we finished building our mat, we used a measuring tape

to measure how long, wide, and tall the mat was when folded

and when unfolded.

Figure 14: Folded mat and measurements

For the folded mat (Fig. 14), we measured a volume of

13.5x13.5x2.5 in3, which is a smaller volume than our goal of

13x13x5.5 in3 but is above our goal in terms of folded width

and length. Thus, it might be harder to fit it in a drawer, and we

considered this as failing the initial folded size requirement.

For the unfolded mat (Fig. 12), we measured an area of 40x40

in2, which is also larger than our goal of 39x29 in2. Thus, fewer

living room spaces can accommodate our mat, and we

considered this as failing the initial unfolded size requirement.

Despite these failures however, we do believe that the excess

was small enough that it would not pose a considerable risk to

the success of our product.

Figure 11: Paused Game Screen

Figure 13: High Score Screen

Figure 12: Unfolded mat and measurements

18-500 Final Project Report: Flex Dance 05/06/2022

10

B. Results for Force Detection Threshold

From hands-on testing with a force gauge, we estimated that

the weight of a resting foot is approximately 10 pounds. We

wanted our mat to consider anything above this 10 lb threshold

to be an intentional button press. This involved setting a voltage

threshold for the Arduino through its code. We placed a 10-

pound weight on top of the FSRs while they were connected to

the Arduino and read the voltage value through the serial

monitor. This gave us a rough idea of what this threshold should

be. At the moment of testing, we set the value a bit higher than

what we read through the serial monitor for 10 lbs. This

threshold corresponded to approximately 10.2 lbs through

simple linear scaling. Since the force value did not need to be

exact, we were lenient with the corresponding force value.

Instead, we were stricter in terms of the values on the serial

monitor. This testing helped us get a better idea of how much

higher the threshold should be compared to the resting value,

which became valuable information for the implementation of

calibration later on.

C. Results for Arrow Button Coverage

In order to measure the coverage of our arrow buttons, we

had a simple choreography that was composed of 10 steps on

the same arrow. We danced to this choreography 5 times, each

time repeatedly stepping on the button following a different

cardinal direction. For each time, we registered how many steps

were correctly observed by the sensors. Table 1 shows the

results.
Table 1: Number of correctly detected arrows out of 10

DIRECTION OF FOOT # OF CORRECT

North 10

Northeast 10

Northwest 9

East 2

West 7

From these tests we learned that the vertical and diagonal

directions were more reliable when stepping on the arrows.

Interestingly, the west direction was noticeably better than the

east direction, although we expected both to fail similarly. We

believe this happened because the curvature of our foot was

pressing one of the sensors when trying the west direction, but

not when trying the east direction. From these results, we

estimate that we have around 270° of coverage, which is only

75% of our goal of 360°. We did not achieve this requirement

as well, but we found a way to mitigate it by laying out our

sensors in a way that players are more likely to step on them

following the vertical or diagonal directions.

D. Results for error rate

After conducting tests for coverage, we were ready to test our

error rate. Noticeably, these two requirements are somewhat

similar in the sense that they both refer to successfully observed

steps. However, we differentiate them by measuring error rate

only for steps that our arrows are capable of recognizing, hence

why we conducted this test after our coverage test. Essentially,

we measure error rate given a degree of coverage.

For our error rate tests, we had a simple choreography with

thirty-three repeating arrows. We then played this

choreography five times, making sure we always stepped in an

orientation that our system was able to recognize according to

the coverage test. Table 2 shows the number of missed arrows

in each of the five times we played.

Table 2:Number of missed arrows in each trial out of the total 33

arrows.

TRIAL NUMBER MISSES OUT OF 33

1 1

2 2

3 1

4 2

5 0

From our results, we calculated the false negative rate to be

4% on average. We were not particularly concerned with false

positives because those were usually fixed by recalibrating our

FSR thresholds.

Our initial goal for error rate was to be below 1%, so our

system did not pass this test.

E. Results for latency

In order to test for latency, we first recorded a slow-motion

video of someone playing the game and then used video editing

software to count how many frames there were between the

person applying force to a platform and seeing feedback on the

display screen.

We counted one single frame between applying force and

observing the feedback. The video in the video editing software

was 30 frames per second and 4 times slower than real-time. So,

the following equation gives us the delay:

𝐷𝑒𝑙𝑎𝑦 = 1 frame ∗
1 second𝑠𝑙𝑜𝑤

30 frames
∗

1 second𝑟𝑒𝑎𝑙

4 seconds𝑠𝑙𝑜𝑤

=>

𝐷𝑒𝑙𝑎𝑦 =
1

120
seconds = 8 𝑚𝑠

Our goal was to be under 100 ms, and we certainly succeeded

in this test. However, we only had the opportunity to run this

test once, and we recognize that there are various factors that

could influence the result, such as monitor aliasing, a

coincidentally low load in the computer at that moment, human

error, etc.

Regardless, we also want to emphasize that we ran playtests

with 10 different people, and none of them noticed a delay

between stepping on arrows and receiving feedback. As such,

we consider that we qualitatively achieved this goal.

F. Results for the scoring scale

As mentioned previously, we ran playtests with 10 different

people outside of our group. Each tester danced to one song and

then provided us with feedback. After listening to their

feedback, we asked “On a scale of 1 to 7, 1 being the lowest,

how much do you agree with the score you received?”. Table 3

shows their answers.

18-500 Final Project Report: Flex Dance 05/06/2022

11

Table 3: Ratings from 1 to 7 from play testers

TESTER RATING TESTER RATING

1 6 6 3

2 6 7 4

3 5 8 6

4 7 9 5

5 5 10 6

From the table, we notice that the average rating was 5.3 out

of 7, which is equivalent to 75.7% average rating. Our goal for

the scoring scale was to produce a user satisfaction of at least

75%, and thus we have succeeded in achieving this goal.

G. Results for cost

When we had all of our subsystems built and properly

integrated, we summed up the cost of each material and

component used in the final system to find our production cost.

Estimating this cost was somewhat tricky since for some

materials such as the tarp and pin connectors, we did not use the

entirety of what we bought. When we added the cost of the tarp,

wood, EVA foam, FSRs, Arduino, connectors, and cables, we

had a total of $310.76. This amount does not include the cost of

the Raspberry Pi 4 and of the SD card, so the actual cost of

producing a single mat would be over $400.00, which is at least

double of our initial goal of producing at a cost of $180.00. Our

project did not pass this requirement.

However, in a real-world scenario in which Flex Dance was

produced in bulk, we would have a smaller cost for a few

reasons. First, our mat needed ten 1-foot long FSRs, but we

could only purchase 2-foot long FSRs. We ended up cutting

them in half, and essentially wasted half of the money spent on

these FSRs. Should these mats be produced in bulk, it would be

possible to place bulk orders of 1-foot long FSRs, which should

reduce the cost by around $100.00. Second, large materials like

tarp, wood, and EVA foam could be purchased in bulk and

receive discounts. Third, we could create cheaper, custom

ADCs to replace the Arduino and build dedicated hardware to

run the game instead of using the RPi. As such, it is possible

that the production cost of Flex Dance is actually close to

$180.00 depending on the manufacturing scale.

VIII. PROJECT MANAGEMENT

A. Schedule

Since the design report, the new schedule (Fig. 15) should

reflect major changes in the buffer period. In particular, our

schedule to start construction of the mat got delayed by a little

more than a week. We used the buffer to account for this extra

time. As we worked on the mat, we also realized that

constructing everything needed for the mat and combining the

layers would require more than 3 weeks. The buffer helped us

do that. Lastly, we introduced testing during the last two weeks.

This also aided us in finding reliability issues and fixing it with

calibration of the FSRs. Any extra tasks we did are also listed

in the schedule attached.

B. Team Member Responsibilities

All team members contributed heavily to get ready for the

demo and meet the deadlines. Some of the specific tasks can

be found listed in the schedule. Specifically, the area of

expertise along with the specific responsibilities are given

below:

1) Spandan Sharma:

She was the presenter for the Proposal presentation and is

handling the software systems and UI design. She worked on

creating the menu screen in Pygame, designing a user-

friendly interface, painting the mat and Flexbox, and creating

the Final Video.

2) Tushhar Saha:

He was the presenter of the Design Review presentation

and is handling circuits of the game. He worked on the FSRs,

their calibration, the Arduino code, designing and soldering

the perfboard, and the making of the Flexbox.

3) Caio Araujo:

He was the presenter of the Final presentation and is

handling the software systems. He was responsible for

creating the game screen in Pygame, high score screen, pause

screen, arrow tracks for the songs, and setting up the

Raspberry Pi.

Everyone worked together to make the physical mat and

combine the various layers. Every team member was involved

with user testing as well. For the other deliverables like the

posters or presentations, it was generally a team effort from

everyone.

C. Bill of Materials and Budget

Our bill of materials is attached in the document in Fig. 16

and reflects the components we ended up not using (highlighted

blue), as well as new components we added since the design

report (highlighted green).

D. Risk Management (used to be Risk Mitigation Plans in

Design Document)

There were several problems we encountered as we started

building the mat. This section will talk about the two major

issues that we ran into and how we solved them.
As mentioned before in the design tradeoff section, we ran

into issues of durability with the Z shapes for our FSRs. We

found that after a couple of uses, the parts after the folds did not

respond. Therefore, we tested our various configurations and

got the most satisfactory results with 2 parallel FSRs per plate.

Dealing with this issue was important as it is what determined

how well our game responded to steps. We ended up losing a

bit of coverage, but we got much more durability out of it.

Furthermore, using 2 FSRs per plate would mean increasing our

costs. As a result, we decided to cut down on 1 button and have

5 instead. This would help cut down costs and save some money

in the budget in case we needed to make any other changes.
The next major risk we ran into was unreliable responses

from the FSRs after stepping on the arrows a couple of times.

Our playtesting with users helped us notice this issue, and we

were able to dedicate the last week of buffer to fixing it. We

noticed that any thresholds we set based on resting state needed

18-500 Final Project Report: Flex Dance 05/06/2022

12

to be changed at a regular interval in order to get more reliable

results. This was because the resting state values of the FSRs

changed after stepping on it. This may be because of the plates

sticking a bit more to the FSRs. Whatever the reason was, it was

an unforeseen circumstance. We diagnosed the problem and

dealt with it by adding calibration of the FSRs based on their

current resting state values. Calibration helped set the

thresholds based on these values and was made to run whenever

the game was switched on. We also added a button to manually

trigger the calibration procedure so that we can press it between

games. This helped us get much more reliable results.

IX. ETHICAL ISSUES

Generally, a foldable mat designed for dancing is not

something we expect to harbor serious ethical problems. That

being said, some of the ethical issues we considered was how

this product could affect users in ways they might not expect it

to.
 As engineers of this mat, we need to account for the potential

safety issues with the mat including possible slippage while

dancing that could result in accidents. While we made sure to

use materials that won’t slip as much, there is always a slight

risk that remains. Generally, we hope that the user will be

careful while dancing on the mat. Additionally, we would add

some fastening mechanisms if we had a little more time to work

on the mat. Potential options include velcro that can be attached

to all four corners of the mat and the floor.
 Designing a mat that can be used in small living places like

an apartment implies that this mat won’t just be affecting the

user but also the people around them. Our mat requires users to

step on the arrows quite firmly, and it also works best with

speakers. As a result, it can lead to lots of loud noises like thuds

and sound from the game. We haven’t addressed this issue in

our design, but we do recognize it to be relevant upon seeing

people play with it during user testing. We wouldn’t want the

users’ neighbors to be disturbed and complain about the sounds.

In another iteration of the design, this is something that can be

reduced by using materials in the mat that absorb sound and

distribute it away from the floor. Introducing methods like

Bluetooth to listen to the music through earbuds would also

reduce noise emitted.
 Lastly, our game is not suitable for people with walking

disabilities or who lack fast reflexes. We tried to be as inclusive

as possible so that even old people or children can play.

However, there are only so many users we can cater to. Ideally,

we would like our game to be more accessible to different

people.

X. RELATED WORK

Our game is heavily inspired by a classic arcade game called

Dance Dance Revolution (DDR). In DDR, players follow dance

steps by stepping on directional arrow buttons (up, down, left,

and right) according to the rhythm of whichever song they

chose to dance. These buttons are laid out on a metal platform.

Although DDR is a good exercising tool, its purpose leans more

towards entertainment rather than fitness. Also, a DDR machine

is too expensive and too large to be considered as an at-home

exercising alternative. As such, although we based our game on

DDR, we do not believe that DDR is one of our direct

competitors.
There are, however, other at-home exercising options that are

alternatives to Flex Dance. The one we believe is the most

competitive towards us is the game series Just Dance. Just

Dance uses motion tracking software supported by a video

game console (usually an iteration of the PlayStation or the

Xbox) to capture players’ abilities to follow a choreography

shown on the screen. This game shares many of the appeals of

Flex Dance: it occupies little space, only requires the console to

be installed, and also provides a fun workout through dancing.

The advantages of Just Dance are that it does not require a mat

since it uses a camera to track motion and that it allows for more

diverse choreographies since it tracks the players entire body

and not just whether they step on a specific place. Just Dance,

however, proves to be a poor alternative for a casual exerciser

who cannot justify buying a video game console solely for

exercising, as the entire setup would cost at least $300.00

(console + motion tracking hardware + Just Dance software).

Also, for someone who is not used to console menu interfaces,

they can be overwhelming at first since the console offers much

more than Just Dance. Flex Dance aims to provide an intuitive

and simple interface without the multiple other apps that

consoles throw at their users.
Another digital competitor is Stepmania, a free DDR-like

computer game that allows users to create and share their own

choreographies to songs. Unlike Just Dance, and similar to

DDR and Flex Dance, Stepmania uses a directional mat, so it

has the same limitations in terms of choreography as our

platform. Although Stepmania is a heavily supported software

with a large community, it still requires a reasonable computer

to run it, which once again might prove unjustifiable to buy for

the casual exerciser who does not need an overly powerful

computer. Also, Flex Dance is intended to be played on a TV,

and not everyone has their desktop or laptop connected to a TV

in their living room.
Finally, there are the non-digital alternatives. The most

preferred ones are usually small exercise tools, such as

dumbbells, kettlebells, and elastic bands. These options are on

the cheaper side and are quite easy to store. The main caveat

with them is that they are usually not particularly enjoyable

(aside from the mental reward of exercising), especially for

beginners. On the other side of the spectrum, there are home

gyms and wall-mounted exercise machines. These are usually

quite expensive and hard to assemble and/or install. They are

usually quite flexible, which is a clear advantage, but in most

cases are too extravagant for the casual exerciser.
With all these options in mind, Flex Dance finds a niche with

casual exercisers who are looking for budget options to

enjoyably exercise at home.

XI. SUMMARY

Our design provides an enjoyable, comparatively cheap, easy

to store, and beginner-friendly alternative to people who want

to exercise at home. Our platform consists of a foldable,

pressure sensitive mat that acts as a controller for a rhythm

game running on a Raspberry Pi which can connect to any

18-500 Final Project Report: Flex Dance 05/06/2022

13

HDMI display the user already possesses, such as a modern TV.

The player follows a sequence of directional arrows shown on

the screen by stepping on the corresponding arrow on the mat.

This formula has been tested and proven by existing games such

as Dance Dance Revolution and we have converted it into a

convenient household product. Now, any casual exerciser who

wants to stay fit from the comfort of their home, be it because

of quarantine or just inclement weather, can have a small device

that assists on their workouts. Our journey of creating this game

was filled with milestones and obstacles which we will briefly

summarize below.
The first challenge that we overcame was latency. To reduce

latency, we meticulously coded our software to minimize

unnecessary simultaneous actions (such as clearing data

between each screen after drawing images, reading USB input,

and playing music) which can all slow down the software,

especially in a small device like the Raspberry Pi. As talked

about in our testing, our users were satisfied with the

responsiveness of the mat and our own qualitative testing also

yielded good results.
The second challenge was coverage and durability. After

trying multiple options such as the “Z”, “+”, and “x” shape, we

settled on using two parallel force sensitive resistors that were

both durable and provided practical coverage of a user’s step.

Though the buttons provided 270° out of 360°-degree coverage,

our usability testing proved that the users were still mostly

satisfied with our game.
Our last critical challenge was staying within our desired

budget. The main components that were expensive were the

Raspberry Pi and the force sensitive resistors. Though our

overall cost came out to be more than we aimed for, we now

know that through bulk ordering and using different alternatives

for our game components (such as using an old Raspberry Pi or

using different sensors) could greatly reduce our cost of the

product.
In conclusion, our project was a fun and learning experience,

both academically and personally. We learned how to

effectively communicate, how to meet deadlines, and lastly,

how to enjoy ourselves while reinventing a product to fit

popular needs.

GLOSSARY OF ACRONYMS

DDR – Dance Dance Revolution

RPi – Raspberry Pi

FSR – Force Sensitive Resistor

ADC – Analog to Digital Converter

FPS – Frames Per Second

GUI – Graphical User Interface

UI – User Interface

UX – User Experience

EVA – Ethylene-Vinyl Acetate copolymer

DVI – Digital Visual Interface

REFERENCES

[1] Babich, N. (2022). 5 Simple Tips On Using Color In Your Design.

Medium.
[2] Dance Dance Revolution Arcade game for sale- Vintage Arca. Vintage

Arcade Superstore. (2022).

[3] Dance Dance Revolution for Wii, PS2, PS3, Xbox 360, & PC.
Ddrgame.com. (2022).

[4] Healthline, Average shoe size for men, healthline.com (2019)

[5] Healthline, Average shoe size for women, healthline.com (2019)
[6] Last Minute Engineers, ‘Interfacing Force Sensing Resistor (FSR) with

Arduino’, https://lastminuteengineers.com/fsr-arduino-

tutorial/#:~:text=Force%20Sensing%20Resistors%20are%20also,pressur
e%2C%20squeeze%2C%20and%20weight.

[7] NextFab, ‘Making a USB Game Controller’,

https://www.instructables.com/Making-a-USB-Game-Controller/
[8] News - StepMania. Stepmania.com. (2022).

[9] Nintendo Switch Gray Joy-Con Console Set, Bundle With Just Dance

2022, Walmart.com. (2022).
[10] Pete Shinners, et al. (2011). PyGame - Python Game Development.

Retrieved from http://www.pygame.org

https://uxplanet.org/5-simple-tips-on-using-color-in-your-design-40916d0dfa63
https://uxplanet.org/5-simple-tips-on-using-color-in-your-design-40916d0dfa63
https://www.vintagearcade.net/shop/arcade-games/dance-dance-revolution-arcade-game/
https://www.vintagearcade.net/shop/arcade-games/dance-dance-revolution-arcade-game/
https://www.ddrgame.com/
https://www.ddrgame.com/
https://www.healthline.com/health/average-shoe-size-for-men
https://www.healthline.com/health/average-shoe-size-for-women
https://lastminuteengineers.com/fsr-arduino-tutorial/#:~:text=Force%20Sensing%20Resistors%20are%20also,pressure%2C%20squeeze%2C%20and%20weight
https://lastminuteengineers.com/fsr-arduino-tutorial/#:~:text=Force%20Sensing%20Resistors%20are%20also,pressure%2C%20squeeze%2C%20and%20weight
https://lastminuteengineers.com/fsr-arduino-tutorial/#:~:text=Force%20Sensing%20Resistors%20are%20also,pressure%2C%20squeeze%2C%20and%20weight
https://lastminuteengineers.com/fsr-arduino-tutorial/#:~:text=Force%20Sensing%20Resistors%20are%20also,pressure%2C%20squeeze%2C%20and%20weight
NextFab,%20‘Making%20a%20USB%20Game%20Controller’,%20https:/www.instructables.com/Making-a-USB-Game-Controller/
NextFab,%20‘Making%20a%20USB%20Game%20Controller’,%20https:/www.instructables.com/Making-a-USB-Game-Controller/
https://www.stepmania.com/
https://www.walmart.com/ip/Nintendo-Switch-Gray-Joy-Con-Console-Set-Bundle-With-Just-Dance-2022-And-Mytrix-Accessories/720830584?wmlspartner=wlpa&selectedSellerId=360&&adid=22222222227429399545&wl0=&wl1=g&wl2=c&wl3=512933848027&wl4=pla-1215863733242&wl5=9005925&wl6=&wl7=&wl8=&wl9=pla&wl10=111839986&wl11=online&wl12=720830584&veh=sem&gclid=CjwKCAjwjtOTBhAvEiwASG4bCF2aAzfjyL_tVdLSSVN9soF9W5S9SRHyHJbiG7C4U-snn4BKCWn5NxoCtFAQAvD_BwE&gclsrc=aw.ds
https://www.walmart.com/ip/Nintendo-Switch-Gray-Joy-Con-Console-Set-Bundle-With-Just-Dance-2022-And-Mytrix-Accessories/720830584?wmlspartner=wlpa&selectedSellerId=360&&adid=22222222227429399545&wl0=&wl1=g&wl2=c&wl3=512933848027&wl4=pla-1215863733242&wl5=9005925&wl6=&wl7=&wl8=&wl9=pla&wl10=111839986&wl11=online&wl12=720830584&veh=sem&gclid=CjwKCAjwjtOTBhAvEiwASG4bCF2aAzfjyL_tVdLSSVN9soF9W5S9SRHyHJbiG7C4U-snn4BKCWn5NxoCtFAQAvD_BwE&gclsrc=aw.ds
https://www.pygame.org/news
https://www.pygame.org/news

18-500 Final Project Report: Flex Dance 05/06/2022

14

Figure 15: Final schedule

Figure 16: Final BOM

