
18-500 Design Project Report: Flex Dance 03/02/2022

1

Abstract— A system capable of Our system attempts to improve

the at-home exercising experience, motivated by recent quarantine

mandates. Current options include large gym machines, repetitive

bodyweight routines, monotonous dumbbells, and expensive

consoles that run exercising games. Our goal, as such, is for our

device to be user friendly, easy to store, enjoyable, and

comparatively cheap. The platform we provide consists of a

pressure-sensitive mat that acts as a controller and a computer

game that reads the user’s steps on the mat to simulate dancing to

a choreography. For maximum enjoyment, users can come up with

and share their own choreographies to their favorite songs.

Index Terms— Arduino, dance, design, exercise, force sensitive

sensors, game, hardware, pygame, raspberry pi, software, user

interface, mat

I. INTRODUCTION

During the COVID-19 pandemic, many exercising spaces

such as gyms and parks were closed. With people being

required to stay indoors, it became clear that at-home exercising

options were limited and cumbersome in some way or another.

Exercise is important because it not only strengthens physical

health, but also improves mental health, which saw general

declines throughout the pandemic due to isolation, fear, and

loss. Through this project, we aim to provide an alternative

option for casual exercisers who want to stay fit indoors to

preserve, or raise, their well-being.

Our platform is composed of two key components: a dance

simulator game and a pressure sensitive mat. In the game,

players follow along a choreography to a song of their choice

by stepping on directional arrows laid out on the mat. This game

is pre-installed in a RaspberryPi that the user simply connects

to their TV and is then ready to play. We chose this design based

on comparisons with other available options which are briefly

described below and in further detail later in Related Work.

There are a few different ways someone can exercise at

home. For example, one can purchase personal gym machines,

but these prove to be expensive, hard to install and/or too large.

Cheaper options include dumbbells, door-mounted pull-up

bars, and bodyweight routines. However, all of these can be

monotonous and can damage property. Finally, there are

options more similar to what we propose such as the game

series Just Dance. Our main advantage over Just Dance is that

Just Dance requires a commercial video game console which

costs over $200 in addition to the necessary motion-tracking

equipment to play the game, but the user might not be interested

in using this console for something other than exercising. Thus,

our goal is to provide an easy to store, enjoyable, and

comparatively cheap platform for casual at-home exercisers.

II. USE-CASE REQUIREMENTS

Based on our targeted users, the competitive products

available in the market, and our goal to leverage technology to

create a fun, engaging way of exercising, we have come up with

a few use case requirements to guide us in our design process:

A. Affordability

We want our product to be cheap so that users of all financial

backgrounds can avail its benefits. Current alternatives

(whether metallic machines or mats that require a console to

function) start from $ 300. To compete with these options, we

want to be able to create our product well under $ 200.

B. Storing

To accommodate our users’ diverse living conditions, we

want our product to be easily storable. The mat should be

foldable and fit in an average drawer of size 13 in x 12 in x 5.5

in and when the mat is expanded, it should fit comfortably in a

living room space of 39 in x 39 in.

C. Accessibility

Our game should be able to be simply plugged into a display

screen through an HDMI cable and run. This will make it easy

for children or older people to play the game at their own ease.

D. Scoring

Players have a subconscious requirement of receiving scores

if they get even partial overlap of arrows and do not time their

steps correctly in the game. To account for this, we need to use

a linear scoring scale that gives points to users based on the

amount of accuracy of their stepping.

E. Interface

The interface has a direct point of contact with the user and

must fit the following requirements:

1) Engaging: In order to facilitate a pleasing experience for the

players, the interface should be stimulating but also not

overwhelm the user. None of the information on the screen

should be hard to process/absorb.

2) Beginner friendly: Our game should have a beginner friendly

interface and it should be easy to start the game. The game

screen thus should be a maximum of 3 clicks away from the

start of the game.

F. Durability

The game should last a long time with little to no

maintenance. Users would subconsciously expect the game to

last for a couple of years in their house without needing any

Flex Dance

Caio Araujo, Spandan Sharma, Tushhar Saha

Department of Electrical and Computer Engineering, Carnegie Mellon University

18-500 Design Project Report: Flex Dance 03/02/2022

2

outside intervention. Based on our calculations from research

online, it should last approximately 650 sessions. The

calculations are explained further in depth in design

requirements.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our system comprises of 3 main components in order for it

to work. As shown in Fig 1, they are the ‘Game Mat’,

‘Raspberry Pi’ and the ‘Display Screen’.

The Game Mat is responsible for detecting inputs from the 6

force sensitive resistors (FSR). The relevant circuit has been

shown in Fig 3. The mat also has an Arduino attached to it

above the top middle square which acts as an ADC. It takes in

signals from the FSRs and then, the relevant signals are relayed

to the Raspberry Pi.

On the other hand, the Raspberry Pi contains everything

needed to run the game including the game files, assets, an

operating system and pygame. Fig 2 goes more into depth about

the connections between game files. Finally, the display screen

shows the graphical user interface and any corresponding

sounds. It is important to note that the display screen is

something that we expect the user to have. The rest of the

system will be designed and built by us.

Figure 1: System block diagram

Figure 2: Block diagram for code files

18-500 Design Project Report: Flex Dance 03/02/2022

3

Figure 3: Circuit schematic for mat

Figure 4: Game User Interface. In clockwise direction: menu screen, game screen, paused screen, score screen

18-500 Design Project Report: Flex Dance 03/02/2022

4

IV. DESIGN REQUIREMENTS

Based on the goal of providing a smooth at-home exercising

experience to our customers and the identified use-case

requirements, we have come up with the following design

requirements.

A. Force detection:

As can be seen in figure 1, each button on the mat is equipped

with a FSR to detect the force produced by the user’s feet. This

system of detecting force is quite complicated so we have

broken it down in subsections.

1) Threshold: Since the force sensors will deal with deliberate

as well as accidental triggers by the users’ feet, our force

sensitive sensors should be able to differentiate between them

and detect a force of at least 10 lbs as a threshold. This threshold

was determined through our testing of the sensors. We used the

sensors to determine the force produced by a resting foot as well

as that of a foot putting deliberate pressure.

2) Button coverage: The force of the player’s foot, in any

orientation, should be able to be detected in any part of the

button. Hence, the buttons on the mat should provide 360°

coverage of force detection. This is a subconscious requirement

of the users and must be satisfied by our design.

3) Pressing vs. Holding: The mat should be able to differentiate

between pressing the buttons and holding the buttons for more

time. This is necessary for navigation between menu and game

screens as well as for increasing the complexity of the game

after we are done producing a MVP.

B. Error rate

Our game should have relatively less errors, even in the

MVP. If we have a player playing our game and they are a

master at it, we want them to be able to ace and win 1 in 4

games. This gives us a 25% chance of scoring every arrow

correctly, thus giving us an error rate of approximately 1%. So,

the error rate in our scoring system should be less than 1%.

These calculations are illustrated in Fig X.

C. Latency

We anticipate that most of the latency in the game will occur

between the Arduino and the Raspberry Pi. This latency should

be less than 1/10th of a second or less than 100 ms as that is the

minimum time needed for humans to perceive images. This is a

design requirement to satisfy the users requirement of having

an engaging game.

D. Game interface

 Our GUI (Graphical User Interface) will be one of the two

crucial points of contact between the game and the user (the

other one being the mat) and so the interface must be as flawless

as possible. This results in two design requirements:

1) Quick game startup: The game should be easy to start and

ready to be played by the user to avoid losing their interest and

keeping the game engaging. The game should be pre-installed

so all the user has to do is connect the game to a display screen

using a HDMI cable and start playing. The process of getting to

the game screen from the menu screen should not be a tedious

process and thus, the game screen should only be three clicks

away from the start of the game.

2) Engaging interface: The interface should be engaging and

have few animations to catch the attention of the users. It should

also not be overwhelming at the same time. After doing

research, we have determined that our interface must follow the

60-30-10 rule of UI and UX design. This rule states that in order

to keep a GUI from being overwhelming, three prominent

colors in the ratio of 60-30-10 should be used. Thus, there

should be smooth animations and the visual content on the

screen should be organized in order to avoid confusing the user.

E. Durability

We expect our game to be durable and last approximately

624 sessions without the need of maintenance. If a person

ideally exercises 4 times a week and expects a household item

to last three years, we conclude that our game should last 624

sessions of usage. This is explained in further detail in the

equations below.

V. DESIGN TRADE STUDIES

A. OS for Raspberry Pi

For our operating system, we chose the Raspberry Pi OS Lite

(formerly known as Raspbian Lite). This operating system is

ideal for a device that runs one single game with limited input

since it does not implement a desktop screen with window

management capabilities. It also boots fast, has good

documentation, and takes up little memory, which leaves more

space for our software and song files in the SD card. On top of

all that, it runs Python natively, which is the programming

language we chose for our software.

Other OS options we considered included the non-lite

version of Raspberry Pi OS, which takes longer to boot and has

a window manager that would get in the way of our game, and

DietPi, which has less documentation and requires apps to be

specifically optimized for it. Out of all three, RPi OS Lite was

the safest and most coherent option.

B. File format for soundtracks

Rhythm games must specify a sequence of desired inputs (in

our case, arrows) for each song so that the player can try to hit

those inputs at the right moment, and these sequences are often

encoded in a properly formatted file. For Flex Dance, this file

is a text file containing a measure-by-measure description of

when an input should be pressed in that measure and the time-

length of each measure in the song. An example is shown in

figure 6.

Each measure has 16 ‘spaces’ in which an arrow can be

stepped. The arrows are described in order (LEFT, UP, DOWN,

18-500 Design Project Report: Flex Dance 03/02/2022

5

Figure 5: First iteration of GUI

RIGHT) with a 1 indicating that the arrow in that position

should be pressed on that moment in the measure. Using this

description alongside the measure per minute of the song on the

third line, the software can properly predict how early an arrow

should appear in the screen in order to match its note in the

measure. Anything after a pound symbol is ignored when

parsing the file. We took inspiration from another rhythm game,

Stepmania, on how to encode these files.

Figure 6: Text file for arrow sequence description.

C. Pygame vs Unity

We chose to use Pygame for our game engine. Python, and

by extension Pygame, interfaces very well with the Raspberry

Pi. Also, since it is a widely known library, it is incredibly well-

documented. All of our team members are familiar with Python,

so we believed that we could learn Pygame on our own through

online tutorials and the documentation.

The other contender for game engine was Unity, which is very

flexible and also well documented. Unity, however, does not

interface easily with the RPi and we were concerned about how

long it would take us to learn how to use Unity as well as we

know how to use Python. Finally, since we have a better

understanding of Python through university courses, it is easier

for us to customize our game at a lower level.

D. FSRs

 To sense feet stepping on the mats, we brainstormed options

like mechanisms involving a flip of a switch or making

connections between 2 conducting materials. However, these

options would either not be able to handle the weight of a

human, be prone to accidental triggers or be awkward to step

on. Therefore, we decided to go with force sensitive resistors,

which can counter the issues described above and also fulfill

our purpose. Moreover, one of our group members also has had

experience with FSRs making it the ideal option.

In terms of specifics for our force sensitive resistors, we

considered various different options in terms of quantity and

coverage. Ultimately, we came down to 2 options. The first

option was to use a 2ft long FSR and bend it in a way that it

covers a lot of area. The second option was to have multiple

smaller FSRs under each square. While both were viable, the

second option would end up requiring a lot more wires and

connections to the Arduino. Furthermore, they do not have as

much coverage as we would ideally like. After some testing

with the first option, we found that the 2ft long FSR could be

bent (with very little damage) in a Z shape for a lot of coverage

and still take proper measurements. Considering the pros and

cons of each option, we decided to go with the first one.

However, we still have the second option as a backup plan if we

run into problems.

18-500 Design Project Report: Flex Dance 03/02/2022

6

E. GUI

For initial game interface, we designed the screens in

grayscale following the design process learned in our previous

classes (Fig 5).

For the home screen, we found that it was too text heavy. For

the high score screen, we used a lottery slot machine design to

allow users to select their player names. However, this interface

design would require the player to keep pressing arrow buttons

on the mat which would be tedious if the player wanted to use

letters such as S or Y. So, we decided against it. For our music

selection screen, we thought it was too boring and decided

against it. For the game screen, we liked the arrows placement

and kept the design as it was similar to the original Dance Dance

Revolution game. For the score, in the game screen, we had

designed a progress bar to show how much of the song was left.

However, we thought that was redundant. Lastly, for our screen

when the game was paused, we used the conventional screen.

But to choose options like “Restart”, the user would have to

click at least twice: once for moving towards the option and

twice to confirm the selection.

Based on our observations, we performed a second iteration.

We first sketched the ideas on paper to make sure we all agreed

upon it. The second design looked like this (Fig 7):

Figure 7: Second Iteration of GUI

As seen above, we combined music selection and game

screens in order to reduce the screens needed to reach the game

screen. The music selection is designed to have smooth

animations which makes it engaging yet not overwhelming. The

high score screen was arranged to be after the game screen and

could only be landed upon if the player scored high enough

points. The game screen was left mostly intact with the only

change being in the progress bar. We decided to have a score

multiplier to give incentive to the user to continue playing

competitively. The score multiplier would collect points based

on how many arrows the player is able to score correctly.

Another change we made was in the “Pause” pop-up box. We

designed it to take inputs directly corresponding to the arrows

on the mat. This minimizes the number of clicks and makes the

interface more efficient. Lastly, the high score input screen has

been designed to have a keyboard input which makes it easier

to input names rather than having to click or hold the buttons

for a long time. Based on these changes, we have our final

interface design that can be seen in figure 4.

F. Mat Material

For the material of the mat, we considered several options.

First was a normal fabric but we thought it would not be rigid

enough and the FSRs could sense it. Then we considered

Styrofoam but that could break easily. We also considered

wood but that would increase the weight of the product thus,

making it unfit to be lifted by young children if they wanted to.

Finally, after much deliberation, we settled upon using a mix of

tarp and EVA foam. The tarp is rigid and water resistant thus,

making our mat more durable. The EVA foam would provide

cushion surface for the feet so the player is comfortable

standing on the mat even on a hard floor surface. The possible

orientation of the layers that we are considering currently are

given below:

Figure 8: Different arrangement of layers of tarp and EVA foam for game mat

G. HDMI

Since we are developing a computer game, we needed to

decide what kind of display we would use. HDMI prevailed

over other options such as DVI since it is more convenient.

Most, if not all, modern televisions have at least one HDMI

input, and we expect our users to play Flex Dance in a larger

space such as their living room on their TV. Also, the RPi

supports HDMI out of the box with no need for any adapter.

Lastly, HDMI transports both video and audio, which means we

will not have to worry about providing a speaker interface since

the user’s own display will manage that.

H. Raspberry Pi 4B

One of Flex Dance’s most important features is ease of

storage, so whichever device is running our software has to be

compact. The Raspberry Pi line of microcomputers shines in

this aspect. A Raspberry Pi is powerful enough to run the code

that we need to run and it also fits inside any drawer that the

user has in their home. Some of our group members also have

experience working with RPi’s. We chose the Raspberry Pi 4B

in particular because it is the most recent model, overpowering

the Raspberry Pi 3B+ in every major aspect, and it has USB

3.0 ports which permit faster transfer of data between the mat

and the RPi, which will improve our speed, even if by just a

little bit. Finally, since the RPi files are stored in a micro SD

card, it is easy to change the files in it through our laptops.

18-500 Design Project Report: Flex Dance 03/02/2022

7

I. Arduino

We needed an ADC to convert analog voltages produced by

our FSRs into digital USB signals that the software can read.

We chose to use a headerless Arduino Leonardo for a few

reasons. All of our group members are familiar with Arduino

code and building circuits using Arduinos. As such, this reduces

the time we need to invest in learning how to use this

microcontroller. Also, the Arduino Leonardo interfaces with

computers through a micro-USB to USB cable and can send

information through that cable. USB Since we can program the

Arduino, it allows us to do some state processing in the Arduino

itself which lightens the load on RPi. For example, the Arduino

can check which button state (pressed, idle, held, etc.) the

voltages read represent and just send the state to the RPi instead

of the raw voltage.

VI. SYSTEM IMPLEMENTATION

This section will go into depth about how each of the

different subsystems work and how they are connected to the

other subsystems. The system as a whole is shown in Fig 1. We

will start from the mat which receives the inputs and follow

through to the Raspberry Pi. Then, we will finally talk about the

Graphical User Interface.

A. Game Mat

The layout of the mat from the top layer to the bottom layer

will be a layer of tarp, a layer of circuits, a layer of eva foam

and finally, another layer of tarp. The arrows, buttons and

borders will be painted on the tarp clearly to show where the

user should step. The square mat is divided into 3 x 3 squares

with the force sensitive resistors (FSR) being present on 6 of

the 9 squares (check Fig 1 for locations). These FSRs

correspond to the arrows that users need to step on to play, as

well as the pause and confirm buttons to navigate through the

user interface.

The FSRs are connected to resistors and the Arduino through

stranded wires that have been soldered. These wires are also

soldered to the headerless Arduino. The corresponding circuit

diagram is shown in Fig 3. The Arduino has spikes in the analog

values it measures from each FSR. If it crosses a certain

threshold, it will detect the step as a hit. Following this, it will

send an array of 6 values to the Raspberry Pi, which can then

be used in the game.

B. Raspberry Pi

 The Raspberry Pi will have an Operating System installed so

that it is easier to run Python and Pygame in it. It will also be

set to run the game on boot up. This will allow the user to

simply plug it into a power source and then start playing the

game.

Furthermore, the Raspberry Pi consists of all the files listed

in the block diagram in Fig 2. The mat_event_handler.py file

takes in the array sent by the Arduino and triggers a pygame

event when necessary. The game_components.py file

implements the basic classes (and their subclasses) that make

the game: Screen, Button, and Arrow. A Screen object has its

own drawing and updating methods to make it simple to draw

and update the game through main.py. A Button object has a

method that does something (change a screen, update the

current screen, update a high score, etc.) according to which

input is pressed when the button is selected. The song_reader.py

file implements a class to read our custom track files (a zipped

archive containing an MP3 file with the song and a text file

describing the arrows for that song). An Arrow object

represents the arrows that move during the game. The

constants.py file sets all the constants needed for the game, such

as FPS, sounds, icons, and colors. Sounds and icons are stored

in the Assets folder. The Saves folder holds save file data, such

as high scores for each song. Finally, the main.py file runs the

main loop of the game, updating and drawing the screen using

objects from the previous files.

C. Graphical User Interface (GUI)

 Fig 4 illustrates our initial design for the GUI. As mentioned

in the Design Trade Studies Section, the different game screens

were inspired from games similar to Dance Dance Revolution.

The menu screen has clear instructions on how to play the

game. Navigating through everything should also be quite

intuitive. The user can scroll through the songs in this screen to

decide on which one to play. The high scores corresponding to

the song will also be displayed there.

The game screen will be similar to how real DDR have their

arrows come in. They will arrive from the bottom and the user

needs to hit the correct arrow when the moving arrow on the

screen is close to the stagnant one. We will also implement

game features such as combos and score multipliers. Both of

them will go hand in hand i.e. the score multipliers will increase

with higher combos. The pause screen can be reached simply

with the pause button. Pressing the appropriate arrows as shown

in the pause screen will result in the corresponding actions.

Particularly, these are ‘restart’, ‘resume’ and ‘quit game’.

The last screen will be a screen for inputting your name if

you make it to the leaderboards. For now, there are 7 spaces to

input letters or numbers. The arrows will be used to navigate to

the correct symbol on the keyboard, and the confirm button will

be used to confirm the selection of each letter.

VII. TEST, VERIFICATION AND VALIDATION

A. Tests for ease of storage

When we finish building our mat, we will use a ruler (or

measuring tape, whichever is more convenient at the time) to

measure its width, length, and height, both when the mat is

folded and when it is unfolded. When the mat is folded, it will

pass this test if it occupies a space smaller than 13in by 12in by

5.5in, which we estimated to be a lower bound on the size of a

drawer, where we expect our user to store the mat while not in

use. When the mat is unfolded, it will pass this test if it occupies

a surface area of 39in by 39in, which we estimated to be the

minimum area in a living room necessary to play the game

comfortably and safely.

B. Tests for force detection threshold

From hands-on testing with a force gauge, we estimated that

the weight of a resting foot is approximately 10 pounds. We

want our mat to consider anything above this 10 lb threshold to

be an intentional button press. This will involve setting a digital

voltage threshold for the Arduino through its code. We will

place a 10 pound weight on top of the FSRs while they are

18-500 Design Project Report: Flex Dance 03/02/2022

8

connected to the Arduino and read the voltage value through the

serial monitor. This should give us a rough idea of what this

threshold should be and we can set that value for our detection

threshold. Finally, we will test it using our own resting feet and

adjust the threshold accordingly to whether we ourselves would

expect the current weight put on our feet to trigger the sensors.

C. Tests for arrow coverage

Flex Dance can be a fast paced game, and thus we do not

expect players to always be completely precise on which part

of the arrow squares they step during the choreography. As

such, it is important that our individual squares have good

coverage, being able to detect feet in many different positions

and orientations. For this requirement, we will test each square

by randomly stepping on it on different points and registering

which and how many steps it actually detected. Our goal is to

detect an average of over 95% of these steps for a good user

experience. If we notice that a particular orientation is not

working well, we can work on detecting that specific

orientation better in order to reach our target.

D. Tests for latency

In a similar vein to the previous requirement, high latency

will also hurt the user experience if it is noticeable. Whether our

mat can detect steps or not will not matter if these steps are

registered with too much delay. We believe the longest latency

in our platform will come from the software and not the

hardware. As such, we are assuming that the time between

stepping on the mat and sending that through USB to the RPi is

negligible. In order to measure software latency, we will use the

Python function time_ns() to register the times, in nanoseconds,

(a) when the RPi first reads the USB signal that the arrow was

stepped on and (b) when the game is done computing whether

that arrow was a hit or not, since this is the feedback that the

user will receive from that step. Our goal is to achieve 𝑡𝑏 −
𝑡𝑎 < 100𝑚𝑠, which is the minimum time for humans to

perceive duration and, by extension, delay.

E. Tests for error rate

With games in general, it can be very irritating when the

player’s input is read incorrectly. For Flex Dance, we aim to

have an input error rate of less than 1%, meaning that if the user

steps on an arrow, that step will be correctly registered over

99% of the time. We chose this target following the calculation

below, in which we assume that a perfect player will score

perfectly 25% of the time in a track with 200 arrows in total and

eta represents the error rate:

𝑃(𝑠𝑐𝑜𝑟𝑖𝑛𝑔 𝑒𝑣𝑒𝑟𝑦 𝑎𝑟𝑟𝑜𝑤) = 0.25
⟺ (1 − 𝜂)200 = 0.25

⟺ 𝜂 ≅ 0.001

Equation 1: Error rate calculation

Noticeably, this requirement is similar to our coverage

requirement, but the coverage requirement involves tinkering

with the layout of the sensor and the materials around it to make

sure we can detect steps in different regions of the arrow

squares. When we test for error rate, we will have already

verified that we meet the goal for coverage. In order to measure

this error rate, we will have one person dance to a song on the

mat while another person watches the player’s steps to mark

down whether they should have been detected. Then we can

compare the player’s score, or how many times the game

detected their steps, versus the watcher’s notes.

F. Tests for scoring scale

The main purpose of our linear scoring scale is to be

forgiving towards users when they cannot hit an arrow at the

exact time. As such, we want to test it through user interactions.

We will have some people play the game when it is in MVP

state and ask them whether they feel that their final score was

an honest reflection of how well they played. This feature will

be verified once we achieve 75% or more positive responses.

According to different news articles and research, around 75%

of people believe that at-home exercising will remain as a trend,

even post-pandemic. As such, we want to make sure our

product caters to at least this same percentage of people. Should

we fail to meet this goal, we will rescale the score awarding

system to be more forgiving (i.e. give more points for less

precise steps) and run these tests again until we reach our target.

G. Tests for cost

Finally, we want our product to stand out from other at-home

alternatives by being comparatively cheap. We are aiming for a

final purchase cost of at most $200.00, which should be less

expensive than the majority of other available options. Larger

options such as gym machines cost at least $500.00, and most

are much more expensive than that, falling in the $1,000.00 to

$3,000.00 range. The game-like alternatives like Just Dance

require a video game console and motion tracking hardware are

also above our target. The most cost-effective Just Dance

experience is provided through the Xbox 360 ($150.00 without

the HDMI output) with the Kinect ($20.00) and a copy of Just

Dance ($10.00), which amounts to a total of $180.00, but

without the benefit of Flex Dance’s simple interface dedicated

solely to our software and no other services. In order to reach

our purchase cost goal, we will sum up the cost of every

material used in our final product and see if the building cost is

less than $180.00, which in turn allows us to sell our product

for $200.00.

VIII. PROJECT MANAGEMENT

A. Schedule and division of labor

All team members are handling specific tasks for a couple of

weeks. Afterwards, all team members will come together to

integrate the different components of the game. The area of

expertise along with the specific components are given below:

1) Tushhar Saha: He was the presenter of the Design Review

presentation and is handling circuits of the game. He is

currently working with FSRs to create buttons for the mat.

2) Caio Augusto Araujo: He will be the presenter of the Final

presentation and is currently handling the software systems. He

is working on creating the game screen in Pygame and arrow

tracks for the two songs needed for the MVP.

3) Spandan Sharma: She was the presenter for the Proposal

presentation and is currently handling the software systems and

18-500 Design Project Report: Flex Dance 03/02/2022

9

Figure 9: Schedule and Division of Labor

UI design. She is working on creating the menu screen in

Pygame and ensuring the interface design is user-friendly.

Everyone will be working together to integrate the game

interface and the mat.

4) The schedule and team member responsibilities are given in

the chart below. The chart has been updated and the timeline is

starting from the submission week of the design report.

B. Bill of Materials and Budget

Our bill of materials is shown in figure 10 at the end of the

document, and we will have $375.24 left in our budget after we

order the rest of the parts.

C. Risk Mitigation Plans

Based on the testing and progress since the design review

presentation, our team has come up with a few mitigation plans.

If our Arduino is unable to detect the signals from the force

sensors when the player steps on the buttons, we will either

decrease the threshold or scale the readings. The modification

of the threshold also applies to account for the error rate.

If in our testing, it is revealed that the users are unhappy and

think the scoring is unfair, we will be more forgiving with the

scores. If they have any suggestions for the improvement of the

interface design, such as the screen is too “text-heavy”, we will

try to modify our Pygame algorithm to implement their

suggestions.

If our game has a lot of latency, we will decrease the usage

of external assets such as images in icons. Rather than using our

customized images of arrows, we will use Pygame functions to

draw them.

IX. RELATED WORK

There are a few other alternatives for at-home exercising

other than Flex Dance. The one we believe is the most

competitive towards us is the game series Just Dance. Just

Dance uses motion tracking software supported by a video

game console (usually an iteration of the PlayStation or the

Xbox) to capture players’ abilities to follow a choreography

shown on the screen. This game shares many of the appeals of

Flex Dance: it occupies little space, only requires the console to

be installed, and also provides a fun workout through dancing.

The advantages of Just Dance are that it does not require a mat

since it uses a camera to track motion and it allows for more

diverse choreographies since it tracks the players entire body

and not just whether they step on a specific place. Just Dance,

however, proves to be a poor alternative for a casual exerciser

who cannot justify buying a video game console solely for

exercising, as the entire setup would cost at least $300.00

(console + motion tracking hardware + Just Dance software).

Also, for someone who is not used to console menu interfaces,

they can be overwhelming at first since the console offers much

more than Just Dance. Flex Dance aims to provide an intuitive

and simple interface without the multiple other apps that

consoles throw at their users.

Another digital competitor is Stepmania, a free DDR-like

computer game that allows users to create and share their own

choreographies to songs. Unlike Just Dance, and similar to Flex

Dance, Stepmania uses a directional mat, so it has the same

limitations in terms of choreography as our platform. Although

Stepmania is a heavily supported software with a large

community, it still requires a reasonable computer to run it,

which once again might prove unjustifiable to buy for the casual

exerciser who does not need an overly powerful computer.

Also, Flex Dance is intended to be played on a TV, and not

everyone has their desktop or laptop connected to a TV in their

living room.

Finally, there are the non-digital alternatives. The most

preferred ones are usually small exercise tools, such as

dumbbells, kettlebells, and elastic bands. These options are on

the cheaper side and are quite easy to store. The main caveat

with them is that they are usually not particularly enjoyable

(aside from the mental reward of exercising), especially for

beginners. On the other side of the spectrum, there are home

gyms and wall-mounted exercise machines. These are usually

quite expensive and hard to assemble and/or install. They are

usually quite flexible, which is a clear advantage, but in most

cases are too glamorous for the casual exerciser.

18-500 Design Project Report: Flex Dance 03/02/2022

10

With all these options in mind, Flex Dance finds a niche with

casual exercisers who are looking for budget options to

enjoyably exercise at home.

X. SUMMARY

Our design provides an enjoyable, comparatively cheap, easy

to store, and beginner-friendly alternative to people who want

to exercise at home. Our platform consists of a foldable,

pressure sensitive mat that acts as a controller for a rhythm

game running on a Raspberry Pi which can connect to any

HDMI display the user already possesses, such as a modern TV.

The player follows a sequence of directional arrows shown on

the screen by stepping on the corresponding arrow on the mat.

This formula has been tested and proven by existing games such

as Dance Dance Revolution and we have converted it into a

convenient household product. Now, any casual exerciser who

wants to stay fit from the comfort of their home, be it because

of quarantine or just inclement weather, can have a small device

that assists on their workouts.

At this moment, we anticipate three major challenges,

namely minimizing latency between stepping on an arrow and

seeing feedback on the screen, providing good coverage for

each different button on the mat, and staying under our

allocated maximum purchase cost of $200.00. For the latency

challenge, we recognize that our game will be doing many

things at the same time, such as drawing images, reading USB

input, and playing music, which can all slow down the software,

especially in a small device like the Raspberry Pi. It will be very

frustrating for our users if at any point our latency is long

enough that the player notices a delay between them stepping

on an arrow and being awarded points.

Second, if our mat has poor coverage of the arrow squares,

minimizing latency will be irrelevant since we will not detect

steps anyway. Once again, this creates a very disappointing

experience for anyone using our device. The force-sensitive

resistors that we are using can only bend so much and in so

many directions, so if we fail to provide good coverage using

these sensors, we will have to reevaluate our approach.

Lastly, although we have managed to stay under the budget

that we projected for our entire device so far, we have not

accounted for the price of the Raspberry Pi and the SD card,

since these were retrieved from the ECE inventory. Once we

account for the market price of these two parts and possibly

other parts that we need down the line, it is likely that the cost

of materials used to build the final product will stop any profit

of selling this platform for $200.00.

REFERENCES

[1] NextFab, ‘Making a USB Game Controller’,

https://www.instructables.com/Making-a-USB-Game-Controller/

[2] Last Minute Engineers, ‘Interfacing Force Sensing Resistor (FSR) with
Arduino’, https://lastminuteengineers.com/fsr-arduino-

tutorial/#:~:text=Force%20Sensing%20Resistors%20are%20also,pressur

e%2C%20squeeze%2C%20and%20weight.

18-500 Design Project Report: Flex Dance 03/02/2022

11

F
ig

u
re

 1
0

:
B

il
l

o
f

M
at

er
ia

ls

