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Abstract—The Bat Belt is a smart mobility tool for
the visually impaired. The design goal of this project
is to achieve a better affordability and functionality
balance between blind assist canes and guide dog with
a lightweight wearable belt that provides obstacle de-
tection with intuitively actionable haptic feedback. A
highlight feature of the system is that both ground-
level and waist-level detection will be available through
a depth camera and ultrasonic sensor array respectively.
Our product can alert users of both ground-level and
waist-level obstacles with high accuracy while being
much more affordable and easy-to-maintain than more
advanced solutions.

Index Terms—Computer Vision, Embedded Sys-
tems, Haptic Feedback, Ultrasonic Sensor, Wearable
Device, assistive technology

1 INTRODUCTION

This project aims to address a real pain point in the
society at large through a technical solution that utilizes
both hardware and software sides of our team’s skill set.
Following this thinking, we envisioned The Bat Belt, a
smart sensing belt that gives real-time haptic feedback to
the visually blind to avoid collision with obstacles. The
two most adopted solutions, the guide dogs and the white
cane, are either hard to acquire and maintain or limited in
functionality. Guide dogs take extensive amount of train-
ing beforehand and care throughout its lifetime; the white
cane only offers ground level tactile feedback for contact
points within a small range. Emerging technical products
also each have their shortcomings, e.g. cumbersome and
conspicuous neckwear[9], minesweeper-like cane bounded
by the direction it is facing[14]. Given the status quo, our
project is designed to fill in the gap with a lightweight wear-
able that provides both ground-level and eye-level detection
with intuitively actionable feedback. The implementation
is based on a off-the-shelf belt bundled with depth cam-
era, ultrasonic sensor array, a set of vibration coin motors
and Raspberry Pi 4 and Arduino Uno boards (Figure 1) to
drive computation. To measure the engineering outcome
of The Bat Belt, we tested the prototype indoor against
a concrete set of metrics that includes detection accuracy,
response rate, feedback user testing as specified in the re-
quirements section.

2 USE CASE REQUIREMENTS

From the rudimentary product definition of a wearable
belt that alerts the visually impaired user with haptic feed-
back to avoid colliding with obstacles, we further develop
the following qualitative use case requirements to guide the
design and testing process:

1. Lightweight: should support a full day of use without
fatigue. weight ≤ 1kg

2. Long Battery life: should support a full day’s move-
ment after one battery charge. consecutive operating
time ≥ 2 hours

3. Reasonable detection range: 4 meters range of detec-
tion

4. Reliable detection: should give confident product
warnings when there is danger. response rate: false
positives (alert when there is no danger) ≤ 10%, false
negatives (no alert in danger) ≤ 5%.

5. Relatively low-cost: should be relatively affordable,
our goal is ≤ 500$

6. Real-time feedback : should give the user enough and
as much as possible time to react with the right move,
system response time ≤ 0.1s

Each of these requirements’ quantitative constraint is
placed by our users’ needs, and our reasoning of these
quantification is discussed in order:

In terms of weight, we want our user to be able to
walk around without too much burden. Our reference
point is based on two criteria: the first being that it is
estimated that a normal person can carry around 20 %
of their weight in backpack without feeling too tired [4].
For a person weighing 50kg, much lower than the average
female adult (77kg), this brings us to around 10kg limit.
The second is that utility belt typically weighs around 3.2
pounds (1.5 kg) without loading any tools[3]. Based on
these criteria, we believe that having our belt weigh less or
around 1kg, less than an utility belt and much less than
the tiring limit, would satisfy our definition of lightweight.

For the battery life, we want our belt to support at least
a full day of walking activity. Since design review, we have
re-evaluated our quantification and made appropriate ad-
justments. It is reported that an average person walks for
around 35 minutes everyday, and the suggested daily walk-
ing time for losing weight is 1 hour long[2]. As a result, we
believe that doubling the suggested walking period would
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be enough to support the walking time spend by an user
everyday. According to a study by research gate[1], around
12 % of waking time is spent walking everyday, which also
adds to the reasoning that 2 hours of consecutive walking
time would support a full day’s activities (2÷0.11 = 16.66)

For detection distance, we believe that we want to
provide a reasonable look ahead. According to BAWA
cane[15], a blind cane production company, the proper
length of a blind cane is about 2 inches shorter than the
user’s height. consider this with the average height of an
adult, the average detection range of a blind cane is around
1.2 meters. We want to provide a length that is at least
3 times more than that, but also something that is not
unnecessarily large. Therefore we estimated that our rea-
sonable detection range would be at 4 meters.

For accurate sensor detection, given the detection range
of 4 meters, we want the sensor to be accurate enough so
we do not cause any harm to our user with false sensor
data. In this case, we believe that an acceptable margin
of error is around 2 %. In a 4 meter detection range, this
means at most 8 cm error of detection. Within 2 meters,
that error is limited to less than 4 centimeters, which is a
distance that should not affect the means of the belt, and
a quantification that matches the need of the user.

Regarding reliable response, we want to system to al-
ways be able to react on the correct scenarios. If the
detection occurs, we want to see a valid reaction on the
feedback system(the vibration motors) in the correct di-
rection. This has to be accurate because if not, the user
can be hurt. However, we do allow for more false positives,
since giving the user more warnings is always better than
giving the user no warnings at all. Therefore, we believe
that we should contain our false positive responses to 10%,
and our false negative responses to within 5%.

For the cost, our metric is based on a comparison to
related market solutions. For our reference point, a smart
assist walking cane can cost up to 599$ [14]. And guide
dogs cost up to 50, 000[16]. Therefore a cost cap much
lower than the existing solutions is something we want to
achieve, and we estimate the maximum to be 500$

For real-time feedback, we quantified the real-time part
by requiring the latency from sensing to feedback to be
less than 0.1 second. This metric is based on the standards
of human response time, where the visual response time
is around 0.25 seconds, and the sensual response time is
0.15 second[6]. We want the belt to help blind users visu-
alize their surroundings in time, so our metric is based on
the difference in sensual response time and visual response
time, which roughly estimates to around 0.1 seconds. If the
belt can pass its information to the user through vibration
in less than 0.1 seconds, we would achieve a user experience
similar to how normal people react on visual information.

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

Our system can be divided to four subsystems: sensing,
computation, feedback, and power supply. For the sensing
subsystem, we use a depth camera for ground-level sensing
and an array of ultrasonic sensors for above-ground sens-
ing; data collected from the sensors are either sent to an
Arduino Uno, where they are processed into more compre-
hensive data, before being sent to the Raspberry Pi, or di-
rectly sent to the Raspberry Pi . The Raspberry Pi models
the surrounding, classifying objects and rating their threat
level, and send feedback commands to the Arduino Uno,
which drives the vibration motors in the feedback subsys-
tem. The two ports of the power supply is connected to
the Raspberry Pi(which also powers the Arduino) and the
depth camera.

A block diagram of our system is shown in Fig. 1; phys-
ical images of our belt are shown in Fig. 2, 3 and 4.

4 DESIGN REQUIREMENTS

Based on the use case of alerting the visually impaired
with real-time actionable feedback on a wearable form fac-
tor, we need to establish a set of requirements that in-
form product design and guide our decision making at ev-
ery stage of development. Conceptually, this wearable de-
vice is powered by electricity to constantly run a sense and
feedback loop so that users can rely on it for one outing
where alerts also have to responsive. Hence, use case re-
quirements of battery life and latency are to be in place for
users to trust the device for everyday use. Based on these
considerations, our quantitative design requirements are

1. Lightweight:
∑

wcomponent ≤ 1kg

2. Battery life: Battery power > 4,300 mAh

3. Resonable Detection range: Sensor detection range
and depth camera detection range both ≥ 4m

4. Reliable response: False positive < 10%, false nega-
tive < 5% within 4m

5. Accurate sensor detection: sensor error rate < 2%

6. Real-time feedback: depth camera/ultrasonic sensor
array detect-vibrate latency ≤ 0.1s

In terms of weight, our hardware components besides
the belt include Oak-D depth camera (115g), Arduino Uno
(25g), Raspberry Pi (46g), 6 HC-SR04 ultrasonic sensors
(6x8.5g), 6 vibration coin motors (6x1g) and 1-2 Charmest
portable battery (2x187g) which add up to 617g. We have
picked these components to meet the required weight limit
in mind.

For battery life, we need a battery that can support
the consecutive power draw of all components for more
than 2 hours. in Section 5.3, we discussed the minimum
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Figure 1: System Block Diagram.

Figure 2: Front of the belt
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Figure 3: Belt when worn on the user’s waist

Figure 4: The vibration unit
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battery requirement for our system to work consecutively
for 2 hours, and the battery live requirement listed above is
approximately 20% more than the minimum requirement.

To achieve reasonable range, we must have that our two
information collecting components, the ultrasonic sensors
and the depth camera, must have accurate detection at
least up to 4 meters as stated in our use-case requirement.

Both reliable response and accurate sensor detection
correspond to the reliable detection use-case requirement.
Reliable response ensures that our software implementa-
tion is correct when an information is received. We need
to make sure that when a threat does occur, our system is
able to correctly reflect that threat and not miss out any
information or have any problems when it comes to deliv-
ering the feedback. Accurate sensor detection is crucial to
make sure that we are picking up the correct information.
If our sensors are not accurate, then even if we do have the
correct software system, we would not be able to deliver
the correct feedback since we receive the wrong information
to begin with. The quantification of these rates are related
directly to the use-case quantification, our software system
response rate should match the use-case response rate, and
our distance error should be small enough to have little to
no impact, for which we determined 2% to be a reasonable
estimate of that parameter.

Since our system adopts two independent sensor system
for ground- and waist-level detection (ultrasonic sensor and
depth camera), we need to ensure that the detect-vibrate
latency for both systems should be within 0.1s. We are
aware that due to synchronization mechanisms, the detect-
vibrate latency of the integrated system can still exceed
0.1s, but this requirement for both sensor systems are
clearly necessary.

5 DESIGN TRADEOFF STUD-
IES

To control the cost of our product while satisfying the
design requirements in Section 4, it is crucial that we care-
fully examine each subsystem. In this section we will dis-
cuss the trade-offs when we design the different subsystems,
as shown in Fig. 1.

5.1 Sensing

Due to the different nature of above-ground sensing and
ground-level sensing, we will discuss the trade-offs in two
separate subsections.

5.1.1 Above-ground sensing

Unlike navigation of autonomous vehicles, which typi-
cally have their sensors rotating on the top of the vehicle

bodies, Our design adopts multiple sensors facing slightly
different directions for better coverage. Therefore, the key
specifications we care about are measuring angle, maximum
detection distance, and precision. Table 1 shows the 3 dif-
ferent distance sensors we have taken into consideration
and their specifications. Comparing these data against the
design requirements in Section 4, we chose the HC-SR04
ultrasonic sensors as our distance sensors.

5.1.2 Ground-level sensing

Compared to above-ground sensing, ground-level sens-
ing have the following properties:

• Increased complexity. A change in the terrain, like
potholes in the road, ramps, or stairs upward/down-
ward, requires higher resolution and better classifica-
tion methods.

• Lower Relative speed. Typical human walk speed is
5km/h or 1.4m/s, and ground-level threats are as-
sumed to be mostly stationary.

• Smaller field of view required. Users are expected to
walk mostly forward, so a smaller area in front of the
user is sufficient.

Based on these properties, we have chosen the Luxo-
nis OAK-D depth camera, with a 72° horizontal and 50°
vertical field of view, 720P resolution, and individual Intel
MyriadX chip for calculation of classification algorithms.

It should be noted that the inclusion of a depth camera
with independent processing units places a great stress on
power supply. We will discuss this in detail in Section 5.3.

5.2 Signal Processing & Computation

Limited by the form factor of wearable devices, we
need a portable computational device with sufficient per-
formance. We have adopted a Raspberry Pi 4 Model B
with 2GB RAM for the computation, partly because it is
readily available in the inventory. We have also considered
using a Raspberry Pi Pico, which is smaller and less power
hungry, but we eventually gave up because it does not sup-
port the communication interface and power supplies we
need for various devices, especially the depth camera (see
Section 5.1.2). However, the Raspberry Pi 4 is much more
power hungry than a Raspberry Pi Pico. We will discuss
this in detail in Section 5.3.

In order to better interpret signals from the ultrasonic
sensors and drive vibration motors, We have adopted an
Arduino Uno as a motor driver and an interface for signal
processing. There are sufficient GPIO pins available on the
board, so purchasing a more powerful board like Arduino
Mega would be unnecessary.

5.3 Power Supply

As briefly discussed in Section 5.1.2 and 5.2, the depth
camera and Raspberry Pi are the main contributor of power
consumption. The typical working current of different parts
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Table 1: Distance sensors

Sensor type Model # Measuring angle Max distance Precision Frequency Power Cost
ultrasonic HC-SR04 30° 4.5m 3mm 50Hz 10mW $3
infrared HiLetGo 35° 30cm - - - $0.9
LiDAR TF-Luna 2° 10m 1cm 250Hz 350mW $26

of our system is shown in Table 2. Given the battery life
requirements in Section 4, we would need a battery of

(2× 6 + 900 + 50 + 800)mA× 2h = 3, 524mAh.

Combined with cost factor and the need of 5V/3A power
supply for the Raspberry Pi, we decided to choose the
Charmast Smallest USB-C Portable Charger with its

10,400 mAh battery and 2 5V/3A output.

Table 2: Power consumption of components

Parts Working Current (typ. value, mA)
ultrasonic sensors 2× 6 = 12
depth camera 900

Arduino 50
Raspberry Pi 800

5.4 Haptic Feedback

Weight and form factor are the most important aspects
of vibration motors. After researching some widely used
vibration motors, we decide to use the linear resonant ac-
tuators (LRAs) because of their small form factor, light
weight, and short response time. More details about vibra-
tion motors will be discussed in Section 6.5.

6 SYSTEM IMPLEMENTATION

Due to communication latency issues with pySerial
(more in Section 6.2), We slightly modified our system de-
sign. In our current design, the Arduino is responsible for
deciding the threat level on different directions.

6.1 Sensing

6.1.1 Above-ground Sensing

We have discussed in detail why we choose to use ul-
trasonic sensors in Section 5.1.1. In this section we will
discuss how we integrate these sensors into our system.

We align an array of ultrasonic sensors in different di-
rections to cover a total of 180°of area in front of the user.
Directions of adjacent ultrasonic sensors will differ by ap-
proximately 30° apart to fully utilize the measuring angle
of the sensors while minimizing the blind area. To avoid
sensors interfering with each other, we choose to have sen-
sors firing ultrasonic waves in turn. However, it takes time
for the ultrasonic waves to travel before it is received by the
sensor, so our current system can only achieve an update
frequency of around 5Hz, which is lower than our goal of
over 10Hz.

6.1.2 Ground-level Sensing

As briefly discussed in Section 5.1.2, we plan to use
a Luxonis OAK-D depth camera for more sophisticated
ground-level sensing. We position the depth camera
slightly downward (about 35°downward from the horizontal
line), so it can capture more details closer to the user.

The depth camera can generate a mapping of distance
information in front of the user and update at a frequency
of 30 Hz. From the mapping we can easily detect obstacles
by comparing the depth mapping to an ”ideal” model in
which we assume the ground in front of the user is flat.

The depth camera has its own API, and requires the
user to construct a pipeline to activace its internal mod-
ules. A diagram of the pipeline is show in Fig. 5.

The horizontal field of view (FOV) of the depth camera
is around 72°, which is slightly larger than the FOV of two
ultrasonic sensors combined. Therefore, we set the depth
camera to be only responsible for updating the middle 2
vibration units, competing with 2 ultrasonic sensors in the
middle of the sensor array.

6.2 Signal Processing & Computation

Our code flow is shown in Fig. 6. Some changes have
been made since design review for this section. We initially
planned to use a Raspberry Pi 4 Model B with 2GB RAM
as our source of computation, and the Arduino serves as
an ADC for ultrasonic sensors and driver of the vibration
motors; however, during testing, we found that the pySe-
rial we are using has extremely high latency (around 1 to
1.5s per update) under certain circumstances. Therefore,
we moved the source of computation from the Raspberry
Pi to the Arduino to improve the latency to an acceptable
level.

The algorithm running on the Arduino Uno is as fol-
lows: For each cycle,

1. Collect data from ultrasonic sensors.

2. Calculate speed with current readings and historical
readings.

3. Rate “threat level” of each identified obstacle by com-
paring them to pre-set distance and speed thresholds.

4. If there is a threat level update sent from the Rasp-
berry pi. compare the corresponding threat levels and
choose the maximum of the 2 sets of data.

5. Set vibration level to the vibration motors.
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Figure 5: Pipeline design of the Luxonis OAK-D stereo depth camera. We initially implemented feature tracker (the
grey blocks) for motion tracking, but it is eventually discarded due to difficulties in integration and a tight schedule.

Figure 6: Flowchart of our code.
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6. Update historical readings for future speed calcula-
tion.

The Raspberry Pi communicates with the Arduino
through USB ports, using UART protocol with a Baud
rate of 9,600 [13].

The algorithm running on the Raspberry Pi is as fol-
lows:

1. Request the most recent depth map from the depth
camera. We call this frame the calibration frame.

2. Take the mid column of the calibration frame. This
column represents the depth information of a thin
band in front of the user, which we assume to be flat
ground.

3. Use Ridge regression to get a model of the flat ground,
and populate it across the frame to generate the base
map. This is the depth map we expect to get if the
ground in front of the user is flat and free of any ob-
stacle.

4. begin loop:

5. Request the most recent depth map from the
depth camera.

6. Use a hard threshold to determine the ”threat
level” of each valid pixel.

7. Compare the depth map with the base map; if a
pixel on the depth map has distance information very
close to the pixel on the same location on the base
map, we set the threat level of that pixel to 0.

8. Count the number of pixels with threat level
0/1/2; if it passes a certain threshold, we raise the
threat level to at least the corresponding level.

The visualization of the above algorithm is shown in the
order of Fig. 7, 8 and 9.

The threat levels are set from Level 0 (safe) to 2 (most
threatening) instead of 3 in the design report; the reasons
are elaborated in Section 6.5.

6.3 Arduino circuit connection

Our Arduino subsystem controls both the sensors and
the vibrators. We used the 6 analog pins(A0 - A5) as trig-
ger pins for the sensors, the 6 PWM digital pins to control
the vibrator motors, and the 6 remaining digital pins to
read sensor echo. A circuit diagram is provided on page
10, see Fig. 10.

6.4 Power Supply

We have adopted a power bank with 10,400 mAh ca-
pacity and 2x 5V/3A output. Our current implementation
plan is to power all other subsystems through the Rasp-
berry Pi; however, we do notice that the OAK-D depth

camera is also quite power hungry, so if the current design
proved to be beyond the power supply capacity of the Rasp-
berry Pi, we will directly power the depth camera with the
power bank.

The power supply is probably our biggest failure
throughout the project. Even though we have specifically
purchased a power bank capable of 5V/3A output (most
power banks in the market only support 5V/1A or 5V/2A
output), and we choose a 10,400 mAh power bank which is
theoretically sufficient (Section 5.3) to power the system for
the expected battery life, we see a 50% decrease in battery
life after a mere 2 hours. Worse still, we see a significant
performance decrease in the Raspberry Pi when the bat-
tery life plunges to the ground, making the entire system
dysfunctional. We did not see this coming because we did
most of our implementation and testing with stable power
supply attached. A more detailed discussion can be seen in
Section 7.2.

6.5 Haptic Feedback

As briefly discussed in Section 6.2, we use 6 LRA coin
motors as the feedback system. By controlling the output
voltage through PWM pins, we can control the intensity
of vibration from weakest (2.0V) to strongest (3.6V). We
have planned to implement 3 levels of intensity to signal
the user of the threat of certain obstacles; however, during
testing, we find the vibration levels hard to differentiate
when the PWM voltage is low. Therefore, we eventually
implemented only 2 levels of vibration intensity to ensure
clarity.

7 TEST & VALIDATION

For testing, we mainly conducted two classes of tests.
The first class is verifying the design requirements. This
includes:

• Weight test

• Battery life test

• Sensor accuracy

• System response rate

• Latency

For this class of tests, the main idea is to provide the sys-
tem with controlled input and check if the output is as
desired.

The second class is verifying our product’s performance
in the desired use-case, making sure that it will indeed help
blind user’s avoid obstacles while walking. For this test,
we had our team members and invited 2 friends to try out
the product in a controlled environment, and compared the
performance to real life scenarios.
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Figure 7: Depth map; the brighter the closer

Figure 8: Threat level map without filtering ground; brighter the color, higher the threat
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Figure 9: Final threat level map; ground is filtered and dark purple

Figure 10: Circuit diagram.
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7.1 Weight Test

We simply measured the weight of the belt on a
precise scale, there is a small error range because when we
hold the scale(to allow the belt to slope over it) our hands

might not be perfectly steady:

Table 3: Weight

Requirement < 1kg
Test result 1.025 kg (20g error range)

We ended up being around 25g heavier than what we
had in our requirements. But we are still well below the
weight of an utility belt and a 2% increase in weight should
be insignificant to performance.

7.2 Tests for Battery Life

While we have calculated the expected battery life, we
want to be able to test how well our product performs
with the entire system intact. For this test, we tested the
battery life in full operation mode. We internally set the
system to turn on depth camera, all six sensors, and oper-
ate all six vibration unit at all times. This is the maximum
power consumption for the system, and would give us an
idea of how well the system runs . To conduct this test,
one of our team members charged the power bank to full,
and left the belt to operate while doing other work. He
monitored the state of the raspberry pi through ssh to see
when would something go wrong. Approximately 2 hours
and 12 minutes later, the system reported that there is a
lower voltage warning from the depth camera, at which
point the main program terminated.

In our earlier design reports, we had planned to test
on a daily life scenario for battery life. However, we soon
realize that is not very meaningful for our design. The
only difference in a real life scenario would be how often
the vibration disk motors operate, which consumes very
little power compared to the raspberry pi and the depth

camera. And in a daily life operation, the power
consumption rate depends on the user turning on and
turning off the system by hand. Therefore we think

having a minimum operating time is sufficient to estimate
how well our system would run in daily life. We have
since then re-evaluated and quantified our battery-life

standard to 2 hours of operating time, as discussed in the
Design Requirements section. Thus our system achieves

the desired battery life.

Table 4: Operate time

Requirement ≥ 2 hours operating time
Test result 2 hours and 12 minute operating time

7.3 Tests for Sensor Detection Accuracy
and Range

For sensor detection distance, we want to make sure
that the sensor components we use have desired accuracy
and range when it comes to detecting obstacles. To conduct
this test, we placed the belt vertically at a desired distance
to a wall. We will measure that distance with a measuring
tape so we have an accurate reference point for our tests.
Then, at different distances, we will have the belt output
10 sets of sensor information to observe the differences be-
tween the belt readings and the measured distance. We
completed this accuracy test for distances of 50 cm, 100
cm, 200 cm and 400 cm. This would then also give us the
desired range because we are testing at 400cm, our speci-
fied maximum range of detection. In all of our tests, the
maximum measured difference occurred at 400 cm, with an
error of 5 cm. We divide the raw distance difference by the
reference distance to compute our error rate, and use the
maximum error rate over all tests at each distance as our
maximum error rate. We were able to conclude that the
overall error rate is capped at 2%, with specific error rates
shown in Table 5:

Table 5: Sensor error rate

Requirement ≤ 2% error
Test result (50cm) ≤ 2%
Test result (100cm) ≤ 1%
Test result (200cm) ≤ 1%
Test result (400cm) ≤ 1.25%

Overall result ≤ 2%

7.4 Tests for System Response Rate

To conduct this test, we have decided to test out the
depth camera subsystem and the sensor subsystem sepa-
rately. This will help us understand which part of the sys-
tem might need more improvements. The testing methods
and results are discussed below:

• Testing sensor response rate (stationary) For
this test, we want to make sure that our system al-
ways responds when the sensors conclude that we
have an obstacle. And we also want to make sure
that our system does not vibrate when the obstacle
leaves the parameter of the warning threshold. There-
fore to test for response rate, we had one of our team
members put on the belt, and he would be holding a
wooden stick. For each test, he would drop the stick
down to the level of the belt at a certain direction,
and see if there is a vibration in that direction. Then
after a short period of time, he would raise the belt
again and see if the vibration stops. We conducted
20 tests for each of the directions, giving us 20 test
results for false positives (inserting) and 20 test re-
sults for false negatives (leaving). Results are shown
in Table 8.
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• Testing sensor response rate (motion detec-
tion) We also conducted a test of motion detection
for the sensors. Since beyond a certain distance, we
would only warn the user if the obstacle is approach-
ing, we want to test out its response as well. For
this test, a team member wore the belt and stood
at around 2 meters from a wall. He then walks to-
wards the wall for a small distance, and stops before
he reaches the threshold where the belt will warn you
regardless of motion. Once again, this provided us
with two sets of information, one for observing vibra-
tion during the walk (false negatives) one for upon
stopping (false positives). We conducted 20 sets of
test for each of the 6 directions, Results are shown in
Table 8.

• Testing depth camera response rate. For this
test, we once again conducted insertion, (depth cam-
era is only used to observe terrain difference, so mo-
tion test is not needed). Our teammate dropped a
cardboard box to the ground before him, and waited
to see if there is vibration. Then he turns 180 degrees
to face flat ground, and see if the vibration stops.
This gave us similar false positive and false negative
tests as the sensor. We conducted this for 20 test
runs. Results are shown in Table 8.

Table 6: Sensor False rate

False positives False negatives
Requirement ≤ 10% ≤ 5%

Sensor (stationary) 0% 0%
Sensor (motion) 5% 5%
Depth Camera 0% 0%

7.5 Tests for Sensing-Vibration Latency

For this test, we once again measured the subsystem
latency separately, one for the depth camera, and one for
the sensors. For the depth camera measurement, we sim-
ply had the system calculate the system time difference
between receiving an image and producing the correspond-
ing vibration. For the ultrasonic sensors, we had the sys-
tem calculate the time difference between the start of every
cycle of triggering sensor response, and producing the cor-
responding vibration. For the sensor latency, we would see
a bigger fluctuation because sensor sound waves take time
to travel and the time to retrieve the signal could vary. The
results are shown in Table 7.

Table 7: Latency

Requirement ≤ 0.1s
Depth Camera ≤ 0.147s

Sensor ≤ 0.183s (average 0.15s)

This is a higher latency then what we would have hoped
for. The depth camera latency can be potentially improved
with more processing power or a optimizing the algorithm

a little more. And for the sensor data, the bottle neck
comes primarily from our design choice of grouping all 6
sensor data in a cycle. Each sensor is limited by physical
limits of the speed of sound, and to receive data within our
defined range, we have a timeout of 0.03 seconds. As a
result grouping 6 together in cycles means that each cycle
takes up to 0.03 × 6 = 0.18s, which is close to what we
see in the testings. There is still room for improvement on
latency but for a prototype an average increase of 0.05s is
a reasonable error.

7.6 Tests for MVP Use Case

For this test, we want to get an estimate of how well our
product actually performs. We utilized an empty hallway
at Wean, and measured out 15 meters as our track. We
constructed 4 obstacles out of chairs and cardboard boxes,
elevating the boxes to waist level. Every test run, one of
team members, or one of our two invited users would be
blindfolded and led to the start of the track. The other
team members would place the obstacles along the track
and ask the user to proceed to walk through the track. As
the user walks on the track another team member would
follow behind him to ensure his safety. We then measure
the time taken to pass and obstacles hit. We observe the
following results for our test runs:

Table 8: Sensor False rate

Average hits per run per obstacle 0.1
Average completion time 16.63 seconds

Average speed 0.903 m/s

Overall, we see very little actual hits because the test
subjects are typically very careful when they walk, and
only observed 8 small collisions out of all of our 20 tests.
However, this also reduces the speed for our runs, average
at around 0.9 meters per second. For reference, the aver-
age normal walking speed is around 1.4 meters per second,
and we see a 35.8% decrease in speed. Compared to the
collision statistics we see, we feel that this is a reasonable
performance for our MVP.

8 PROJECT MANAGEMENT

8.1 Schedule

The detailed schedule is shown in Fig. 12. towards the
end of the report. Generally, we were on track according
to the schedule with the exceptions depth image modelling
and physical assembly where we spent four weeks as op-
posed to the expected two weeks. For depth image mod-
elling, we had multiple iterations. We first tried segmenting
the image and calculate the mean squared error compared
to a calibrated base map, but it proved impossible to set the
thresholds right; we then tried to apply hard thresholds on
the depth map and use the base map as a ground filter and
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succeded. We tried using a feature tracker for motion track-
ing, but eventually gave up due to difficulties in integration
and a tight schedule. Meanwhile, the physical assembly
was delayed due to realizing the need of more parts such
as vibration motors, protection foams, and different con-
nection cables, as practical problems arise(e.g. vibrations
interfere with each other when attached to belt directly)
or parts(vibration motors with extremely thin wires) break
midway.

8.2 Team Member Responsibilities

Xiaoran Lin:

• Arduino interface code

• software and hardware integration for sensor and vi-
bration unit.

• Python code for raspberry pi and arduino serial com-
munication

• Battery and circuit connection

Ning Cao:

• Depth Camera Integration with Raspberry Pi

• CV code for depth camera obstacle detection

• Potential obstacle classification for depth camera

Zhuoran Zhang:

• Raspberry Pi integration

• Raspberry Pi python code for threat level processing
based on arduino and depth camera input

• Managing schedule and materials

• Belt physical form management

8.3 Bill of Materials and Budget

Our table is shown below in table 3 9.

8.4 AWS Usage

While we applied for AWS credit, we ended up using
none of it. We originally applied for this credit in case we
want to upload our history data to the cloud for more anal-
ysis. But we soon abandoned that feature because it was
out of the scope of what we had planned.

8.5 Risk Management

Our main risks include the following

• Sensor interference: Since we are operating mul-
tiple ultrasonic sensors, one of our main risk is in-
terference between the sensors. To handle this risk,
we simply ran our sensors in a cycle, so that no two
sensors would be operating at the same time. Our
initial idea is to increase operating rate was to oper-
ate two relatively far sensors at the same time in a
cycle, but we tested out the idea and there might still
be interference for large items or close up objects, so
we ended up operating our sensors one at a time.

• Increasing sensor data rate: Our sensors relied
on the sound wave traveling to the target and later
coming back to detect distance. And waiting for the
full response is often a waste of time that seriously
impacts our data rate. We resolved this by setting
a hard limit (30 ms) on the sensor, so once the de-
tection range is beyond what we wish to achieve, we
timeout directly to operate at a faster rate.

• Arduino Pin management: Since we are utilizing
so many sensors and vibration unites, we might run
into the case where we do not have enough operating
pins on the Arduino Uno model. From the design re-
port, a plan was formulated to use multiplexers for
sensor control. However, we soon realized that aside
from the digital pins, we can also use the analog pins
on the Arduino for digital write. So we now have 6
PWM pins, 6 digital pins, and 6 analog pins we can
use, which happens to be just right for our system, as
indicated by our current circuit connection (Fig. 10).

• Serial communication latency: As discussed in
Section 6.2, during our development process we real-
ized that bidirectional serial communication can be
extremely slow, which becomes a bottleneck for our
system. As a result, we made major adjustments from
the design review. Instead of using the Raspberry Pi
as our center control unit, the Raspberry Pi now only
operates to process depth camera information into
corresponding ground level threat detection. After-
wards, the information is sent one-way through serial
into the Arduino for vibration motor control. The
code that processes sensor information is now moved
into the Arduino. This way, we can now avoid bidi-
rectional communication and make our system much
faster.

• Getting real-time system visualizations: Fol-
lowing up on the last risk, we have removed bidi-
rectional serial communication from our implementa-
tion. This gives rise to a new problem, where we can
not grab information from the Arduino to monitor
our changes or demonstrate how our system works.
In order to do so, we have added a feature to the Ar-
duino code, so we can control whether we want the
Arduino to report sensor and vibration motor data.
We have also developed a python code written in tk-
inter to graph these data in real time. This was done
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Table 9: Bill of materials

Description Model # Manufacturer Quantity Cost @ Total
Depth Camera Oak-D Luxonis 1 $199 $199
Raspberry Pi Pi 4 2GB Canakit 1 $139.99 $139.99
Battery Smallest 10000mAh USB-C Portable Charger Charmast 1 $23.39 $23.39
Arduino Uno REV3 Arduino 1 $22.77 $22.77
Ultrasonic Sensor HC-SR04 Smraza 6 $3.198 $19.188
Belt Tactical Belt FAIRWIN 1 $14.99 $14.99
Raspberry Pi SD Card Pi 32GB Preloaded (NOOBS) Raspberry Pi 1 $9.9 $9.9
Vibration coin motor MIniVibration Motor For Mobile Phone Bluetooth Tegg 6 $1.17 $6.99

$458.988

deliberately in tkinter rather than existing modules
such as matplotlib because existing graphing tools
can not achieve the data rate we want, whereas in
tkinter we can optimize our code to work specifically
for display purposes.

• Vibration motor disk fragility: Since the low
voltage vibration motor disk we bought were small
models meant for small stationary projects, their con-
nection lines were extremely thin, which means that
when we attach them to our wearable belt, the con-
nection lines were very easy to break and the motors
could lose connections. To account for this, we sol-
dered and taped their lines so that they would be
more protects. While this does not guarantee that
they would be strong enough, we have also wired the
vibration motors so that they are on the surface of
the belt circuits. So in case we need to replace them,
we can do so without too much trouble.

9 ETHICAL ISSUES

Ethics is crucial for this project as it is designed to
ensure physical safety for visually impaired users. It is un-
ethical to release a product that does not reliably meet the
expectations communicated to the user for everyday use.
With this belief, we think that our current system is not
ready for the market for two main reasons. First, the sys-
tem as a whole is not fast enough in computing feedback
based on sensing. Second, the system has not gone through
sufficient user testing in miscellaneous scenarios. For exam-
ple, an object going from one ultrasonic sensing sector to
another among the 6 could confuse the system with a speed
spike and result in an overly heightened vibration alert for
the user. This falls under the error of false positive, and
false negatives can have more severe consequences. These
two categories of errors are to be discussed further below
along with latency.

9.1 Latency

The latency exceeded the requirement of under 0.1 sec-
ond from sense to feedback. With the current worst case

latency of 0.18s and average latency of 0.15s, the user could
get hurt when alerted by a fast moving object whose pres-
ence should be communicated sooner.

9.2 False negatives

False negatives leads to our system not warning the user
of existing obstacles. We find this issue much more dan-
gerous than any other issues because it is directly linked
with the safety concerns of the user, who may be misled
into serious safety threats. There might be safety threats
to other people in proximity or potential economic loss, but
we place a heavier emphasis on the safety of the user above
anything else since they are at a disadvantage in the first
place.

We have considered two ways of mitigating the false
negative issues:

1. We can ask the user to use our system along with
a white cane, so the ability of sensing ground-level
threats are guaranteed to be preserved. However,
there is a conflict of functionality between the white
cane and our depth camera.

2. We can set a low false negative rate. This is the
current method we employed; however, we can never
guarantee a 0% false negative rate, so we can limit
the possibility of the safety issues at best.

9.3 False positives

False positives leads to our system warning the user of
non-existent obstacles. A false positive is much milder than
false negatives, because even in the worst-case scenario it
confuses the user and impedes their movements. We con-
sider this to be a minor issue since it is better safe than
sorry; this is also part of the reason our goal for false posi-
tives is much lower than false negatives.

10 RELATED WORK

During ideation, our team has extensively researched
technical products currently available in the market with
the same value proposition of helping the visually impaired
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navigate. A capstone at SUTD, prototype built by MIT
CSAIL, and startup product are discussed and linked be-
low for reference.

• MIT CSAIL Lab research project : Device provides
information from a depth camera, via vibrating mo-
tors and a Braille interface. The depth camera with
an on-board computer is hung around the neck at
chest level while a separate vibration belt is wrapped
the user’s waist. The researchers opted for Braille in-
terface instead of audio feedback because blind people
rely heavily on hearing. The system can recognize ob-
jects and use braille pads to inform user, e.g., a “t” for
“table” or “c” for “chair.”. This system has not seen
application for 5 years after initial press and we be-
lieve the Braille interface presents too much cognitive
load in a real-time environment while the separate
belt and neckwear add communication challenges. [7]

• Strap Tech startup product Ara : A round pod
strapped at the chest, which presents a system we
think is best among the three for the following fea-
tures. First, it is able to detect obstacles at head,
chest, and below waist levels. It also covers a wide
range of obstacles from poles, stairs, to holes and
tree branches. Furthermore, Ara helps the user to
both detect obstacles and walk in a straight line with
its own haptic feedback language that produces a se-
quence of vibrations specifc for each situation (ob-
stacle detection and straight line navigation). The
system includes 4 Light Time-of-Flight, 5 ultrasonic
sensors, an accelerator, a gyroscope, 6 vibrators at
the pod and 4 along the strap. Priced at 500 USD
while its most expensive component of Light ToF sen-
sor looks like a model around 100 USD, the product is
questionable in terms of affordability. And the prod-
uct is still in pre-order stage after 3 years of develop-
ment. [8]

• SUTD Capstone Project N’Able : The system is a
neckband with two ultrasonic sensors at the front to
detect obstacles and provide audio as well as vibra-
tional feedback to user. A highlight feature is tog-
gleable modes for selecting audio and/or vibrational
feedback. In terms of user experience, it is more com-
fortable than the MIT CSAIL project as its weight is
evenly distributed around the user’s neck instead of
strapped. However, the system is limited in that it
only handles above waist level obstacle detection with
merely two ultrasonic sensors. Meanwhile, the wear-
able is conspicous and not aesthetic as a neckband.
Additionally, the cost as well as quantitative results
of the system are unknown. [9]

11 SUMMARY

11.1 Future work

In the future, we can improve our product in the fol-
lowing directions:

• Due to the limited computational power of Raspberry
Pi, we limited our motion tracking to only recording
one set of historical data. We can add more historical
data records for more accurate motion tracking.

• During implementation, we have planned using fea-
ture trackers for motion tracking of the depth cam-
era. However, this idea was eventually discarded due
to difficulty in integration and limited time sched-
ule. In the future when the schedule is more relaxed,
we can resume the integration of feature trackers in
the depth camera pipeline. This can also tap into
the depth camera’s built-in compute instead of trans-
mitting whole image frames to raspberry pi for mod-
elling, and thus reducing the latency.

• Audio feedback could provide rich information about
the environment such as the types of obstacles and
suggestions on how to step over or walk around ob-
stacles. Currently, we have tested the feature’s fea-
sibility by outputting audio from Raspberry Pi to
headphone through Bluetooth connection but have
not fully built out an audio feedback pipeline. Cap-
turing more information and feedback through audio
is a functionality worth considering looking forward.

• Currently we are using only 1 set of hard-coded
thresholds. These threshold values for speed and
warning distances are fine-tuned to meet the require-
ments of an indoor, low-speed environment (many
close obstacles with low speed). In an outdoor sce-
nario (less obstacles, further away with high speed),
the belt would not react well. On the other hand, if
we had tuned the threshold to outdoor environment,
the system would likely provide too much warnings.
in the future, we can devise multiple sets of thresh-
olds for different scenarios or even allow the user to
adjust the thresholds themselves.

11.2 Lessons learned

• We distributed our work to different team members
to accelerate the implementation of the system, but
the integration took much longer than expected, and
even leads to multiple rounds of design iterations in
the process. We have learnt that integration of dif-
ferent subsystems are sometimes much more difficult
than implementing them.

• We found difficulties quantifying and/or visualiz-
ing certain data due to sub-optimal design, and we
wasted much time on adjusting the designs. We have
learnt that when designing the system, we should
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keep ease of testing and demonstration in mind in-
stead of focusing on the functionalities only.

• We have learnt that Python is NOT a fast language.
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