
1
18-500 Final Project Report: Paymodoro 05/06/2022

Paymodoro

Austin Lin Author, Lev Stambler Author, and David
Wang Author

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract— Paymodoro is a system capable of gamifying
Pomodoro. Paymodoro ensures that users remain in an
environment and physical state optimal for focus. If users fail to
remain in this environment, they are financially penalized. If they
succeed, they are paid out a pot via a lottery system. This system
is unique in its combination of financial incentives and Pomodoro.
We hope to increase the number of successful Pomodoro sessions
a user has by at least 10% with the use of Paymodoro.

Index Terms—Arduino, Blockchain, Bluetooth, ECG, Electron,

Focus, Payout, Pomodoro, Sensors

I. INTRODUCTION
Pomodoro is a technique for working efficiently. It is

where you work for 25 minutes, without any distractions,
relax for 5 minutes and then repeat for 2-5 cycles.
Currently, there are minimal incentives and structures to
ensure that a student remains focused for the duration of the
25 minutes. Temptations such as social media and messages
from friends are constant; and with our decreasing attention
spans, many of us simply just fail to put the effort into the
25 minute focused period. Our implementation will aim to
monitor if a student is focused during their 25 minute
session and penalize them if they do not remain focused and
reward them if they do. We define the criteria for focus as
being in a quiet environment, not moving around during the
focus period, and staying in a calm state — not being excited
by external stimuli.

Thus, we propose Paymodoro. Paymodoro is a system

which can be used to monitor a user’s Pomodoro sessions
and pay them out or penalize them using Near Tokens, a
form of cryptocurrency. Our algorithm determines that they
remained focused for the span of the Pomodoro session.
Paymodoro consists of hardware which measures and
records environment sounds levels, a user’s acceleration,
and a user’s heart rate. These measurements then sync with
a desktop app which the user has open. This desktop app is
also used to start and stop the Pomodoro session. Once a
Pomodoro session is stopped a program running on the

blockchain will reward or penalize the user depending on
the results reported from the desktop app. Competing
technologies include devices such as the Muse headband
which use EEG to monitor focus. While their approach uses
EEG, our approach uses multiple sensors as well and is
directly tied to a gamified Pomodoro. Thus, while the Muse
helps track focus, we directly apply focus tracking to a use
case — Pomodoro.

Our primary intended user is a student looking to better

their study habits and have more effective Pomodoro
sessions. In particular, because we see Paymodoro as a
gamified version of Pomodoro, we are targeting users who
are interested in gaming.

II. USE-CASE REQUIREMENTS
Paymodoro must have sensors with a maximum of a 5%

error range. This means that noise levels, acceleration, and
heart rate cannot exceed 5% of their real value. This ensures
that our measurements and subsequent calculations of
whether a user is focused or not are accurate. We also
require that a user is able to get a session started and ended
in less than 15 seconds. In other words, from the click of the
“start” or “end” button to the actual start or end of a session
should take at most 15 seconds. This requirement ensures
that the product is usable and does not introduce substantial
overhead into a Pomodoro session.

We further require that failure criteria, sound levels,

heart rate, and acceleration, (further elaborated on in the
Design Section) are properly flagged in at least 95% of trials.
So, if we place Paymodoro in an environment which is 10
dB more than baseline, we expect the sound criteria to be
signaled as failed at least 95% of the time. The same goes for
acceleration and heart rate.

We also require that the amount a user is penalized for

failing a Pomodoro session to be small. This is so that a user
is not scared to use Paymodoro and so that Paymodoro
remains playful while still being incentivising. Thus, we
require that 95% of users see the amount penalized as
costing less than a cup of coffee. In the US, the average cost
of coffee [1], [2] goes from $1.18 to $2.70. Thus, we require
that the penalization cost be $1.

Finally, we require that there is less than a 20% false

positive and less than a 10% false negative rate in
accordance with our observations of users. This means that
if we have a user trial Paymodoro intentionally remains
focused, Paymodoro should have an error rate of less than

2
18-500 Final Project Report: Paymodoro 05/06/2022

10%. If a user tests Paymodoro, intentionally doing
unfocused activities, there should be an error rate of less
than 20%. A smaller false negative rate is important as a
false negative causes a financial penalization and is thus
worse to have than a false positive.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
Our system consists of 3 main seperate systems:

1. The Arduino and sensors
2. The Desktop App
3. The Blockchain SmartContract

There were no changes from our design report to the

system architecture. The block diagram relating all the
components can be found in Fig. 1. The accelerometer and
optical heart rate sensor interface directly with the Arduino.
The Arduino then interfaces via Bluetooth with the desktop
app. The desktop app then collects microphone data from
the computer’s onboard microphone and interfaces with the
blockchain smart contract.

The Arduino, accelerometer, heart rate sensor, and
Bluetooth chip will be housed in a battery powered box that
can be clipped to the user’s belt, hereafter referred to as the
Belt Clipped Device. The wiring diagram is shown in Fig. 3
and the final prototype of the Belt Clipped Device is shown
in Fig. 4. The Belt Clipped Device will have wires coming
out of it for the optical heart rate sensor since it needs to be
attached directly to the user’s ear or finger.

The desktop application was written with React node.js

with an electron extension to make it desktop app
compatible. Furthermore, we included the Bluetooth
communication to receive the data from the Arduino every
2 seconds which was written to a CSV file due to different
node version dependencies with the node-Bluetooth library.
The desktop application then reads from the CSV file and
the data from the computer’s built-in microphone to run the
algorithm to determine the focus state. Once a session is
completed, the desktop application makes a function call to
the blockchain to notify the blockchain with the updated
status of the focus session, adding or deducting Near tokens
to the user’s account.

Fig. 1. Our block diagram of different subsystems

Fig. 2. Wiring diagram for the components inside the Belt Clipped Device. Inside the belt-clipped device there will be an accelerometer, a Bluetooth
module to communicate with the desktop app, a battery to power the device, and wires leading out of the box to an optical heart rate sensor.

3
18-500 Final Project Report: Paymodoro 05/06/2022

IV. DESIGN REQUIREMENTS

A. Algorithm Requirements

A baseline measurement will be taken at the beginning of
each session of the user’s environment sound level in dB
and heart rate in beats per minute. Every second, a sample
will be taken from the microphone, accelerometer, and
heart rate sensor

For the purposes of determining whether a user has failed

a session, we define two types of failure:
1. Session failure
2. Criteria Failure (Heart rate, Acceleration, Sound)

1) Session Failure

Session failure means that the user has failed the session
and will not have the lock amount returned to them at the
end of the session. There are 2 ways to fail a session. The
first way to reach a session failure is having 2 or more
criteria failures (defined in Section IV.A.2) over an entire
contiguous 30 second period. The second way to fail a
session is if one criterion fails for more than 25% of the
Pomodoro session or 6.25 minutes.

2) Criteria Failures

Microphone Criteria Failure:

If the noise level exceeds the calibration noise level by 5
dB for every sample during a 15 second time interval, we
consider this a failure. We choose 10 dB initially as 10 dB
relates to the difference in noise level of a normal
conversation, 60 dB, and a vacuum running, 70dB. Thus,
we considered a 10dB noise increase to be “focus breaking”
as the turning on of a vacuum, hair dryer, and other sounds
around 70dB are enough to break concentration if the initial
environment just contained normal conversation. But, we
changed to a 5 dB increase based on test results.

Accelerometer Criteria Failure:

Since our accelerometer data is triaxial and includes
acceleration due to gravity, we calculate acceleration by
taking the magnitude of the pairwise difference between
two acceleration data points. This is a change from our
design report where we aggregated the acceleration data by
taking the average magnitude of samples in a 15 second
interval.

According to Researchgate, the acceleration a person

experiences during the first 5 seconds of walking is 0.2g.

Thus, if a person is experiencing 0.2g for each sample
during a 5 second interval, we assume that they are starting
to walk. We consider moving around and changing location
as a focus breaking activity. If the difference in acceleration
exceeds 0.2g for more than 5 seconds, we consider this a
acceleration criteria failure.

Heart Rate Sensor Criteria Failure:

If the average heart rate is more than 40% above the
calibration heart rate for the 2 second period, we consider
this a criteria failure. According to a University of Oregon
Study, a 40% increase in heart rate corresponds to going
from a calm state to an excited state. Thus, we correlate a
change from calm to excited with a break in focus. Some of
these measurements have since been updated and will be
mentioned in the later sections.

Fig. 3. A basic flow chart of the algorithm’s component’s

B. Smart Contract Requirements

In order to meet the latency requirement of each action
taking at most 15 seconds, the blockchain must be fast. We
specifically want a latency of less than 5 seconds from the
time of submitting a transaction to the blockchain to the time
it is confirmed. This will leave us 10 seconds of slack
latency for dealing with the device, desktop app, and
computation. Also, we require that the smart contract be
inexpensive in order to keep to the use case requirement
that a user can lose only around $1 dollar per Pomodoro
Session.

Blockchains have fees, often referred to as gas, which

pay for the computation done on the blockchain. We thus
require that the amount of gas spent for initializing and
ending a Pomodoro session sums to at most 10 cents. This
allows for the rest of the dollar (90 cents) to go into the

4
18-500 Final Project Report: Paymodoro 05/06/2022

payout pot and thus keep the Pomodoro sessions
incentivized.

C. Electron App Requirements

In order to properly connect the blockchain to the
hardware, we need a desktop application to serve as a
control. The blockchain needs to know a focus session has
succeeded or failed, and the hardware needs to know when
a focus session has begun or ended. Furthermore, we also
need to be able to process the signals being sent out of the
hardware. This will be done via a desktop application using
the Electron App library.

The Electron App will send and receive start and stop

signals to the Arduino via “node-Bluetooth” which is a
Bluetooth serial port communication package for Node.js.
After establishing connection with the Arduino device, the
desktop application will be able to send start and end session
commands to the device.

Once the desktop application receives the signals back

from the Arduino device and onboard microphone, it will
process the signals via a program written in Javascript that
calculates the focus using the algorithm we developed. This
temporary result will then be kept in local memory; and
when the session ends, it will send the final results to the
blockchain via the smart contract. Furthermore, the signals
will also be displayed visually to the users via our front end
UI to provide users with real time feedback on whether they
are focused or not.

Finally, the desktop application will also fetch the

resulting reward from the smart contract and display the
amount of tokens earned to the user.

D. Hardware Requirements

To effectively monitor whether the user is in an
environment conducive to focus, we will collect the user’s
heart rate (from an optical HR sensor), acceleration (from
accelerometer), and surrounding environment volume
(from the computer's onboard microphone). These
measurements should be accurate to within ±5% of the
actual value.

The Arduino will collect measurements from the heart

rate sensor and from the accelerometer every second.
Every two seconds, the Arduino will take the average heart
rate over the last two seconds from the heart rate data and
send the magnitude of the vector difference between the two

triaxial acceleration measurements. These two pieces of
data will be packaged into a bit stream to be sent serially to
the desktop app over Bluetooth as the Bluetooth module we
are using requires a serial bit stream. There should be no
more than a 0.25 second latency between the end of each 2
second interval and the time that Bluetooth transmission
starts.

To detect changes in the environment sound level, the

microphone onboard the computer will directly interface
with the desktop application. The sound in a library is
around 40 decibels. Therefore, the microphone must be
sensitive enough to capture sounds above 40 decibels.
Processing of the microphone input will be performed by
the desktop application directly. The requirements for
processing the microphone input is described in Section IV-
A.2.

V. DESIGN TRADE STUDIES

A. Design Specification for Algorithm

When considering the algorithm, our main focus was to
determine which types of body metrics to take into account.
After significant research, we determined that heart rate
(ECG), sound (microphone), and movement
(accelerometer) were key indicators of whether a person is
focused or not. Another factor we considered was
potentially EEG which is brain waves. However, that could
be very difficult to calibrate as the user would have to wear
a headset and we would need to differentiate what types of
brain activity is part of the focus and what activity is the user
doing something not task related. Another consideration we
had was to consider eye movement to see if the user is
focusing on the correct part of the screen. However, this
could violate some privacy issues as we would require the
user to allow us access to their computer screens, and it
would not be beneficial if the user is working on something
that cannot be captured by our webcam. Our algorithm
works by assigning failure or success to each individual
measurement, which we call criteria, per two seconds. If a
majority (⅔+) of criteria fail for a period of 30 seconds or
more, then we consider the overall session to be
unsuccessful. We chose a majority of failing criteria to
signify a break in focus because it is possible that external
events may affect the individual criteria. For example, a dog
could start barking and the microphone criteria could fail,
the user may get excited after solving a problem and their
heart rate spikes, or the user has to move due to the library
closing. By requiring a majority of criteria to fail, we
decrease the probability of signaling that a user has failed

5
18-500 Final Project Report: Paymodoro 05/06/2022

when, in reality, uncontrollable events caused the user to
fail.

B. Design Specification for Smart Contracts

When considering what blockchain we were going to use,
we had to choose a fast and inexpensive blockchain. We
considered three widely used smart contract blockchains
used today, Ethereum, Solana, and Near. Fees on Ethereum,
for the past year, have always exceeded $1 per smart
contract transaction, so we cannot use Ethereum. Solana
has had fees around 1 cent per transaction, but they have
recently been having problems with transactions not
confirming. Thus, some transactions can be confirmed
within a second, but the same need to be retried multiple
times. Thus, the latency of using the smart contract can
exceed 10 seconds. Near Protocol meets our smart contract
requirements. Its latency time is around 3 seconds, with fees
per transaction totalling under 1 cent. Thus, if there are two
transactions, one for starting a session and one for ending,
the fees total to 2 cents.

C. Design Specification for Desktop App

When considering which framework to use for our
Desktop Application, we looked at both QT and Electron
App. We realized that QT was well suited for a richer UI and
custom components and design. However, the focus of this
project was not to create a rich user interface and a good
looking desktop application, but rather a robust algorithm
and hardware design. Therefore, we decided to go with
Electron App which is simple since we can utilize
CSS/HTML and Javascript. Furthermore, Electron App is
also compatible with web developments which also allows
us to potentially be more versatile in the future if we are
considering also opening up possibilities of web
applications.

D. Design Specification for Hardware

We considered 3 different options for acquiring data from
the sensors. Our first design had all sensors attached to an
Arduino. The Arduino would connect to a Raspberry Pi
which will then communicate with the desktop application.
We decided against using both an Arduino and a Raspberry
Pi since both devices have general purpose IO pins and 2
devices would increase the complexity of our system which
could lead to more setbacks and delays.

For our second design, we decided to connect our sensors

to either an Arduino or a Raspberry Pi to transmit data to the
desktop application. We decided on using an Arduino since

we do not need a graphical user interface for our Belt
Clipped Device.

Finally, in our initial designs, we had planned on

purchasing a microphone and building an amplifier circuit
which would connect to the Arduino along with the other
sensors. However, since our system already specifies a
computer to run the desktop application and most
computers come with an onboard microphone, we decided
to use the computer’s onboard microphone and interface it
directly with the desktop application.

VI. SYSTEM IMPLEMENTATION

A. Algorithm

The algorithm will be implemented in TypeScript and run
locally on a user’s laptop within the desktop app. The
desktop app will collect the sensor data via the Bluetooth
connection to the Arduino. Originally, we were planning to
collect data every 2 seconds from the Arduino. We changed
this to every 1 second in order to have faster visual feedback
from the desktop app. The app also changed to store the
sensor measurements for each period in a CSV file rather
than in memory. Then, after each data update, the desktop
app will also calculate whether any of the criteria failed and
store the failure periods. At the end of the Pomodoro
session, the desktop app will calculate if the user failed 2 or
more criteria at a time for 2 or more consecutive 15 second
periods (30 total seconds) or if the user failed 25% (6.25
minutes out of 25 minutes) or more periods for any 1
criteria.

B. Smart Contract

We have defined the following state which must be kept
- Contract Confiscated Balance: the amount of Near

which the contract confiscated from unsuccessful
users before a payout is made to a successful user.
A balance is an unsigned 128 bit integer type
according to Near’s specifications.

- Active Users: a list of user IDs currently engaged
in a Pomodoro session. On Near, each user has an
ID which corresponds to a string. Only users who
own the ID can add or remove themselves to the
list. A caller’s user ID can be fetched from the
smart contract with the
env.predecessor_account_id() function in Near’s
runtime

- Lock Amount: the amount of Near required to be
locked into the contract before starting a Pomodoro

6
18-500 Final Project Report: Paymodoro 05/06/2022

Session. We are choosing ~0.1 Near for the lock
amount as specified in the design requirements.
This also has an unsigned 128 bit integer type

- User success rate: the number of times a user was
successful and the number of overall sessions. This
state was not included in our initial considerations
but is required.

The smart contract also requires the following methods to
interact with the state:

- Start Pomodoro Session: starts a Pomodoro session
and adds the user to the Active User list. Calling this
function requires attaching Lock Amount of Near.
This means that the user simultaneously calls this
method and transfers ~0.1 Near to the smart
contract. If the user is already in the Active Users
list, this method will fail and refund the user.

- End Session: End a Pomodoro session. If the caller
signals a success, then they will get rewarded all
earnings in the contract confiscated balance. This
means that the balance will be transferred to the
user. The lock amount will also be transferred back
to the user. If the user is unsuccessful, then
contract confiscated balance increases by the lock
amount.

- Session results: Get the number of successful and
total number of results. This method was added
after our initial considerations to improve the
desktop UI/ UX.

C. Desktop App

The Desktop App’s main purpose is to determine criteria
and session failure based on the specifications in IV.A and
to serve as a communication platform between the
blockchain and the hardware. Its secondary purpose is to
serve as a user interface for the users to provide feedback.

To accomplish its primary focus, it is crucial that the

Desktop app can communicate clearly with the hardware
and blockchain. The hardware communication is completed
via Bluetooth, and through any type of information
transmission, there are possibilities that the data being
transferred could be damaged. Therefore, it is important
that we take measures to ensure the accuracy of the data
being transmitted.

To accomplish our secondary focus, we utilized an

iterative design process to verify what the user needs to see
on the user interface. We first created lo-fi prototypes and
conducted user testing to see what type of information is the

most important part to the user, and iterated on the feedback
received.

D. Hardware

In order to effectively monitor whether the user is in an
environment conducive to focus, we will collect the user’s
heart rate, acceleration, and surrounding environment
volume. The user’s heart rate will be determined via a
optical heart rate sensor. The user’s acceleration will be
monitored by an accelerometer in the Belt Clipped Device.
A picture of our hardware system is shown in Fig. 4. Finally,
the environment sound level will be detected by the
computer’s onboard microphone.

The Arduino will continuously collect measurements

from the heart rate sensor sensor and from the
accelerometer directly, aggregate these measurements as
described in section IV.D, and send them serially to the
desktop app over Bluetooth.

To detect changes in the environment sound level, the

microphone onboard the computer will directly interface
with the desktop application. Thus, the specification for how
the microphone’s signals will be processed is discussed in
Section VI-A.2.

VII. TEST, VERIFICATION AND VALIDATION

A. Results for Design Specification of Algorithm and
Hardware

We tested the algorithm by trying to explicitly fail each
criteria, recording false positive and negative rates, and
seeing how our specified parameters affect the overall
performance. We tested sound level increase by putting the
device in a quiet environment and then speaking next to it.
We found that the initial 10 dB increase threshold was too
high. Thus, we changed the increase threshold to 5 dB. After
running 20 subsequent tests, we had a 95% success rate
where 19 trials triggered a failure of sound.

We then tested movement by sitting down and standing

with the device. We found that we had to update our
algorithm to look at the distance between accelerations of
two sequential timesteps rather than the current
acceleration value. This modification allowed us to account
for gravity. After this modification and changing the
threshold to 0.2 g/s, we had 18 successful trials and 2 failed
trials giving us a 90% success rate.

7
18-500 Final Project Report: Paymodoro 05/06/2022

Next, we tested the Heart Rate monitor. Unfortunately,

we found that the heart rate readouts were inconsistent
which caused difficulties in algorithm testing. When
measuring heart rate after jumping jacks though, we had a
success rate of 30% where the algorithm signaled a failure
6 out of 20 times.

Finally, whenever we tested a failure of a single criteria

for more than a quarter of the time, the algorithm indicated
a failure result for the session. Whenever we had a
continuous failure of two criteria for more than 15 seconds,
the algorithm also indicated a failure as intended.

B. Results for Design Specification of Blockchain

The blockchain program worked as intended. Over 20
recorded tests, we found that blockchain communication
for starting and stopping a session always took less than 10
seconds. We also found that initially signing into the
blockchain took less than 10 seconds 90% of the time, but
slightly exceeded 10 seconds (at around 15 seconds) 10% of
the time. We also found that blockchain fees never exceeded
1 cent as intended.

Moreover, the blockchain never had any consistency
problems or hangups. In other words, every transaction
submitted to the blockchain was successfully recorded
without need to resend the transaction.

C. Results for Design Specification of Desktop App

The desktop application worked as intended. We
conducted over 20 recorded tests for the start/end latency of
the application and found that we had a result of <8 seconds
to start and stop a session. Furthermore, we were able to
redirect to the blockchain pages for login, and also connect
successfully to the device via Bluetooth.

Still, we found that Bluetooth connection took 20 seconds
on average. Though we did not specify a bound on Bluetooth
connection as part of our design requirements, we found
connection time to be rather slow as compared to the rest of
the flow.

D. Validation

 After running 20 trials of shortened Pomodoro sessions
(lasting 1 minute), we found we had a 10% false positive rate
and a 10% false negative rate. So, we had 2 false positives
and 2 false negatives. This matches with our use case
requirement of less than or equal to 20% false positives and
less than or equal to 10% false negatives. We believe that we
could have further decreased the false positives if we had a

more finely tuned heart rate sensor. As for the false
negatives, one of them could have been averted if our heart
rate sensor did not give faulty results.

VIII. PROJECT MANAGEMENT

A. Schedule

Our final schedule is shown in Fig 2. In the design report,
we did not allocate time for system testing and designing
and building the physical prototype of the Belt Clipped
Device. The last 3 weeks were dedicated to testing and
building the Belt Clipped Device. Work on the desktop
application commenced 1 week later than originally planned
because we realized that more extensive research on react,
electron, typescript, and node-Bluetooth communication
was needed inorder to start writing code. These are the only
changes to our schedule from the design report aside from
adding more detail about what was actually completed each
week.

B. Team Member Responsibilities

Austin worked on writing the Arduino code for data
acquisition from the heart rate sensor and accelerometer
and also the code for Bluetooth communication with the
desktop application. Austin also designed and built the
prototype of the Belt Clipped Device. David worked on
implementing the desktop application. Lev worked on the
smart contracts. The entire team worked on integrating the
systems together. We also stepped in and helped each other
out when there were issues with implementation.

C. Bill of Materials and Budget

The bill of materials is located in Table 1 on the last page
of this document. Items in red are materials that were
purchased but not used. Items in yellow are materials that
were not in our design report. Most of the items in yellow
are materials used for building the Belt Clipped Device
which was not accounted for in the design report.

D. Risk Management

One of the risks that we identified initially was that we
could fall behind schedule due to implementation setbacks.
However, this was actually not the case. In terms of
implementation we were mainly on schedule, but we did
have issues with parts being ordered. For example, our
Bluetooth device got burnt out as soon as we first connected
it to the circuit, and thus we weren’t able to continue testing

8
18-500 Final Project Report: Paymodoro 05/06/2022

the hardware device until we were able to get a replacement
part. We were able to mitigate this issue by ordering another
part and also a spare so that if it burns out again, we would
not have another time delay. Furthermore, we also switched
out the tasks and spent our time working on the front end
application which was scheduled to be completed the
following week. Being agile and flexible in our scheduling
allowed us to get back on schedule when unforeseeable
issues happen.

Another risk that we had was with the ECG device. The

ECG device came from Ukraine, and when the war broke
out, our order was delayed. Because we kept a close eye on
the tracking information, we were able to identify the issue
immediately and order a different heart rate sensor.
However, with the new heart rate sensor, we had issues with
the accuracy of the readings we were receiving. The heart
rate sensor uses optical methods to read the heart rate,
which is very different from the ECG device. This also
resulted in a limitation as to where the device could be
placed. Thus, we had to change the device to be connected
to our ear instead of the wrist. The ear also resulted in
another problem of having a stable connection, thus we had
to mitigate this by lowering the threshold such that there
would be less false negative results.

IX. ETHICAL ISSUES
Currently, most of the projects out there are simply

timers to help the users track how long the session has
lasted. With our project, because there is an incentivization
aspect to the project, it could potentially be taken advantage
of by malicious users. Those malicious users may want to
simply make money with this platform, and thus they could
not utilize the device properly. For example, they could
simply strap on the device and go to sleep. If they don’t
move a lot in their sleep and do not snore, it may be possible
the device may recognize the user as being focused. This
would then be unfair to the users that are working hard and
actually focusing. Potential ways to mitigate this is to add in
a camera that tracks users’ eye movements and make sure
they are in front of the computer. However, there are also
downsides to this approach because it could be considered
invasive to users’ privacy and thus deter many users from
using our device.

X. RELATED WORK
We looked at various different types of applications that

supported the Pomodoro technique and found that most of

the applications were timer related.

1. Pomodoro for a simple web-based Pomodoro
timer: This timer allowed users to simply access a
web-based application and click start and pause
times for a specific start of a focus session. They
also allowed for timers for short and long break
periods.

2. Marinara Timer for a shareable web-based
Pomodoro time: This timer is also a web-based
timer that allows users to use a timer to monitor
their Pomodoro sessions. However, the one twist is
that users have a unique link that they receive to
share with other people because research has
shown that the Pomodoro technique is even more
effective when used in a small group setting.

3. Forest for a mobile Pomodoro timer: This mobile
timer uses a very simple technique to disallow
users from being distracted by their phones. This
phone app starts by having a user plant a tree;
however, if you navigate out of the phone app, the
tree will die. Therefore, it encourages the user to
not use their phones and focus on their current task
at hand.

4. Be Focused for Apple users: This is a menu bar
application that can also be linked with your iPad
and other iOS devices. However, on top of the timer
itself, it allows the users to jot down to-do-list items
which allows them to have a better idea of what they
are going to complete within this Pomodoro
session.

After our related-work studies, we realized that most of
these applications out there offer mainly a timer for the
Pomodoro sessions – sometimes with a small twist.
However, none of them have a hardware component that
actually monitors how focused you are. Furthermore, they
do not provide any monetary incentives for the user.

XI. SUMMARY
The majority of our system was able to meet our design

specifications. The only part of our system that did not meet
our design specifications was the heart rate monitor section.
This bottleneck was mainly due to the fact that our originally
ordered ECG device was stuck in Ukraine due to the current
war. Thus, we had to order a different device, which uses

9
18-500 Final Project Report: Paymodoro 05/06/2022

optics to determine the heart rate. This required the device
to be attached precisely to the skin, and had many
limitations as to which parts of the body it worked on. For
example, the wrist was no longer an option because the
device was unable to track the heart rate there. A simple fix
we could have done was to order another ECG device earlier
so that it would arrive in time for our integration.

A. Future Work

 In the future, we would plan on removing the optical heart
rate sensor and replacing it with an uECG sensor as
originally planned. This would allow for more accurate and
consistent readings. Moreover, we would add eye tracking
through computer vision as a means of checking whether
the user is engaged with their task. This would allow for
more fine tuned determination of whether the user is
focused. Finally, we would decrease the size of the
containment box to make it easier to attach to the body.

B. Lessons Learned

For students in other groups, we suggest they definitely
be very cautious when ordering parts and make sure that
there are enough parts for you to use. Not only did we have
issues with the ECG device, we also had an issue with the
Bluetooth device burning out. Thus, for parts that are
difficult to obtain, if it is within the budget, try to order a
backup part, because if parts do not arrive or burn out, it
could significantly take you off your schedule.

REFERENCES

[1] Americans Pay an Average $2.70 for Coffee, While Tipping ...
https://www.usnews.com/news/blogs/data-
mine/2015/09/29/americans-pay-an-average-270-for-coffee-while-
tipping-20-percent.

[2] Sherman, Elisabeth. “New Study Found the Most, and Least,
Expensive States to Buy a Cup of Coffee In.” Matador Network, 9 Dec.
2021, https://matadornetwork.com/read/coffee-cost-state/.

-

10
18-500 Final Project Report: Paymodoro 05/06/2022

-

Fig. 4. Final prototype of the Belt Clipped Device. The box contains two status lights to determine if the box is powered (green) and if there is a
Bluetooth connection (yellow)

11
18-500 Final Project Report: Paymodoro 05/06/2022

Fig. 5. Our desktop application with flow of which page every button leads to.

Fig. 6. Redirect pages from the desktop application to the Near blockchain for login information

Description Model # Manufacturer Quantity Cost Total

Accelerometer ADXL335 SparkFun Electronics 2 14.9
5 29.9

Bluetooth Module 8541554474 HiLetGo 6 8.59 51.54

Arduino Uno
Rev3 A000066 Arduino 1 - -

Heart Rate Sensor B09NQ9WGC
Y BANRIA 3 8.12 24.36

Molex Connector
and Crimper A7912F-FBA A ABIGAIL 1 26.9

9 26.99

Arduino Terminal
Block Shield B08LH5TCM5 Xiken Electronic Technology Co.,

Ltd. 2 20.9
9 41.98

Project Box
(6.2" x 3.54" x

2.3")
B07TS6RY85 Pinfox Tech 2 8.99 17.98

uECG uECG Ultimate Robotics 1 - -

Din Connectors US_CTA001 AuSL 1 11.3
5 11.35

- Table I: Bill of Materials. Items in red were purchased but not used. Items in yellow are items that are
not included in the design report.

