
18-500 Final Project Report: Team A0 05/07/2022 
 

1 

 
Abstract—For individuals with difficulty controlling their 

muscle functions, performing tasks on a desktop computer 
is virtually impossible. Given that the traditional mouse and 
keyboard would be very difficult to use in this scenario, we 
aim to create an alternative platform that allows a more 
accessible control through brain signal acquisition 
techniques, specifically electroencephalogram (EEG) and 
electromyography (EMG). This platform increases 
computer accessibility through an integrated control 
interface system that is easily customizable for users. 
 

Index Terms— Arduino, Bluetooth, EEG, EMG, Emotiv, 
Fast Fourier Transform (FFT), Logistic Regression, 
Python, Random Forest, Support Vector Machine (SVM) 
 

I. INTRODUCTION 
Nowadays, the computer is prevalent and critical for people 

in various ways, ranging from working to easing general daily 
lives tasks. Even though computers are being more accessible 
to the general body of people, one of the limited user groups are 
those who lack physical control abilities. For individuals who 
suffer from physical disabilities such as amputees, there is no 
platform in the market that offers an alternative controllable 
interface on the computer for this user group. Therefore, our 
project will aim to increase accessibility of desktop devices for 
individuals who do not have control of their upper limbs or have 
difficulty controlling muscle functions. We will create an 
application that serves as the mouse and keyboard interface and 
will be controlled through electroencephalography (EEG) and 
electromyography (EMG) signals.  

Even though there is various research studying the control of 
cursor movement, there are currently no competing 
technologies in the market that offer an integrated interface 
allowing a full interaction on the computer desktop. Therefore, 
we are developing this platform to allow the user to both control 
a cursor as well as to use a keyboard on a device, through mental 
and augmented physical control. Our goal is to provide the 
individuals with a minimum shoulder movement ability and 
with full mental control abilities to be able to use this platform 
to navigate tasks on the computer wirelessly. This will provide 
full and unhindered access for people with disabilities to use a 
traditional desktop device such as a laptop on a user-friendly 
control. 

II. USE-CASE REQUIREMENTS 
Our main goal in this project is to provide an interface for 

those with disabilities to use desktop devices. The most 
important requirement is that the platform works with low 
latency, in real time, and with high accuracy for unhindered 
control on a desktop application. One use-case requirement we 
have is to aim for 75% of users to open the Chrome browser 
within 60 seconds. This will be tested through one of our testing 
methods, called the Task test. To ensure a satisfying speed of 
our platform across the software and hardware 
implementations, another requirement is that a user, on average, 
can score 500 ms on reaction time in the human benchmark test 
using our device. Further, we will require that our user hit three 
targets within 60 seconds with a 75% accuracy. This user 
accuracy and speed requirement will be tested through a point-
and-click test. Another use case requirement comes from our 
signals; for our application, two types of control data are 
required: continuous control data and single-time control data. 
Continuous control data will be obtained from the EMG, which 
measures the muscle movement signals from the shoulders. On 
the other hand, four types of distinct single-time control data 
will be acquired from the EEG device. These distinct signals 
will be used to serve different features on our interface. For 
example, the EMG sensors will allow for control in either an up 
to down or left to right direction and left winking will mimic 
clicking. These feature mappings will be set in this manner 
when the user puts on our device for the first time but will be 
customizable to allow for maximum flexibility. Finally, the last 
use-case requirement is that we will have an onscreen 
accessibility keyboard that provides the ability to send all 
standard keyboard inputs, modified with customizable widgets 
based on the user preferences. 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
We are building our application using Python as the 

programming language. From there, we are using various 
packages and libraries, including Tkinter and PyAutoGUI. For 
our backend signal processing, we are creating and training ML 
models using the Scikit machine learning library. Python 
provides a development environment that can be used and 
accessed by both the developer and user on any laptop. After 
the user puts on the EEG headset, is attached to the EMG 
sensors, and opens our application, the user will be prompted to 
a screen that has an accessibility keyboard. For the EMG 
sensors, we will connect an Arduino with a Bluetooth module 
to transfer the data wirelessly. Both the headset and sensors 
serve as our data acquisition platforms. When the user performs 

NeuroController 

Authors: Jonathan Ke, Wendy Mo, and Jean Udompanyawit  

Department of Electrical and Computer Engineering, Carnegie Mellon University 



18-500 Final Project Report: Team A0 05/07/2022 
 

2 

various actions to accomplish tasks (eg. double blinking to 
click), the data will be processed and classified through ML 
pattern recognition, and the application will trigger the mapped 
action within the desktop.  

The EMG shoulder movement will allow the user to control 
moving the cursor or going across the keyboard either in a left 
to right motion or in an up to down motion. The user will be 
able to switch between these two methods through one of our 
extracted features. The gestures used to control different 
functions will be made customizable based on our user 
preferences. Further descriptions of our system architecture are 
described with our figures.  

There were many changes to our overall system from the 
design report. First, we removed the FFT processing to get the 
frequency domain information because the features we had 
chosen to build our ML models to parse for an action had 
already produced a satisfying result of 90%. Moreover, adding 
extra processing algorithms would also slow down our system 
as well as parsing through a greater number of features would 
mean that EEG classification would take longer.  

We also removed the mapping of double blinking to an action 
because we faced the problem of falsely predicting that event 
happening, existing when it did not occur, or not recognizing 
the movement when it occurred. When we ran tests during our 
live-sampling, double blinking gave us the greatest error. The 
left and right winking actions are distinct enough such that there 
was the smallest amount of error when we did our live 
sampling. Our final implementation had the left wink mapped 
to changing modes and right wink mapped to a left click.  
 
 

 
 
Fig. 1. Overall System Layout. Users will generate signals via EEG and EMG. 
The signal is sent wirelessly to backend processing that funnels recognized 
signals to the user interface. 

 
 

 
 
Fig. 2. Frontend Block Diagram. The processed signals from the backend will 
be connected to event listeners that the frontend can respond to. Users will 
activate certain features of our application, which will be displayed on our 
screen output. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



18-500 Final Project Report: Team A0 05/07/2022 
 

3 

 
Fig. 3.  Backend System Layout. Both EEG and EMG signals from the two 
sensing systems are funneled through separate wireless transmitters and unified 
under the same backend layer. 

IV. DESIGN REQUIREMENTS 
Speed and accuracy are our two most important 

requirements. As mentioned in the use-case requirements 
section, we aim to have over 500 ms latency from acquiring 
EEG and EMG signals to the end process of the computer input. 
Our data will be transmitted via Bluetooth, which generally has 
a latency of approximately 100 to 300 ms. We require that our 
Python backend processing does not have a latency over 50 ms. 
Python backend processing refers to the signal processing, 
machine learning data classification, and communication 
between the data acquisition device to backend program as well 
as to the user interface. Our accuracy will be speculated based 
on two aspects: signal classification accuracy and overall user 
control accuracy. The first design requirement is to have our 
signal classification accuracy of more than 90% using a 
combination of support vector machine (SVM), random forest 
classification, and linear classification models. We require that 
the collected training data be contained from over 200-300 
samples data sets per each signal data type. The data will be 
sampled at 128 Hz. Since our window of interest will be running 
through the samples of approximately 3 second span as our 
longest data. EEG data will be analyzed in real-time to detect 
the most fitting classification for double blink, left wink, right 
wink, normal baseline, and unclassified noisy signals. Real-
time EMG data from the two shoulder blades will be our main 
controlling method for the two directional control planes: 
left/right and up/down. Therefore, we aim to have the detection 

of the shoulder movement to be used as the continuous 
controlling data. The design requirement for our interface is to 
offer our user both the cursor and the mouse control on the 
desktop by EMG, with additional controls through EEG. The 
user would be able to navigate through the entire desktop page 
easily with the cursor triggered by EMG signals from the 
shoulders or send key inputs like tabbing through a webpage 
using a combination of EEG signals.  

V. DESIGN TRADE STUDIES 

A. Emotiv Insight Model 1.0 
The Emotiv Insight is a 5 channel, wireless headset that 

records the wearer’s brainwaves and translates them into 
meaningful data. The Emotiv Insight is preferable to other EEG 
headsets (both produced by Emotiv and other companies) for 
its lower price point and its ability to provide the data necessary 
for our modeling. While other headsets contain more channels 
and provide more information, after looking at our project 
budget, the other EEG headsets would have cost more than the 
money allotted. Lastly, there was already an Emotiv Insight 
available in the capstone inventory, so we did not need to spend 
any money. This device also provides an out-of-the-box 
platform for interfacing through the Emotiv app for our 
application development. 
B. Hardware Design  

A major and early decision made in the designing of our 
application is to use the commercially available Emotiv 
headset. With this, we are somewhat limited in how we can 
pursue low latency and easy operation within our system. We 
initially considered adding a RaspberryPi to offshore the ML 
and signal processing to a second computing device. However, 
the tradeoff here is that we desire our system to be wireless with 



18-500 Final Project Report: Team A0 05/07/2022 
 

4 

respect to the headset. The Emotiv headset uses a Bluetooth 
wireless dongle to send data from the headset. To reach the 
target of 500 ms between a user’s response to a stimulus and 
generating the corresponding output, we already need to 
account for a latency of around 200 ms for the Emotiv 
Bluetooth receiver to acquire from the headset, process, and 
setup for API access [1]. If there exists another remote device 
like a RaspberryPi to acquire, process, and send data again 
through a wireless system like Bluetooth or WiFi, we expect 
around an additional latency of 200 ms. This leaves 
approximately 100 ms for the user to react to a stimulus and for 
our signal processing and application inter-communication to 
react to the user’s signal, which is a lower flexibility time 
window for the user. We need more slack in meeting the latency 
requirements so instead are opting for our primary compute to 
be performed within the desktop or laptop which the application 
is being used from to ensure that the majority of the latency is 
from the Bluetooth connection of the Emotiv Insight and wired 
latencies within the desktop operating system, providing greater 
slack for users to react. This will include some work to make 
sure our software critical path is short and inexpensive as to 
prevent our application from overburdening the desktop 
hardware. 
C. Model Selection 

With the headset chosen for acquiring EEG signals, the 
Emotiv Insight also comes with software packages to process 
and interpret signals, which we opt to not use and instead to 
construct our own. 

From experimentation of the EmotivBCI package, which is 
provided with the Emotiv Insight, we found very low reliability 
and minimal ability to tune or update the package to meet our 
accuracy needs. Primarily due to the lack of tuning and the 
closed source software licensing of EmotivBCI, which shrouds 
the ability to tune or test the system to meet the 90% accuracy 
metric, we decided to instead ingest raw EEG data from the 
headset and process the data using our own models and filters 
to ensure we have the flexibility to meet the metric. 
Furthermore, since we only have one headset on hand, we desire 
our recognition system to be trained specifically for this 
headset. 

Given that the software will be hosted on a desktop computer 
potentially running other applications, we desire to find models 
that are lightweight, quick to train, and deploy. Hence, we will 
be using an assortment of random forest, SVM, and logistic 
regression models over more complex and expensive models 
like a neural network. Neural networks are not optimized for 
CPU processing and require a large amount of data to train 
successfully. Our project is limited by the small samples of data 
we need to manually collect. To allow for rapid retraining and 
use, we cannot deploy a neural network. In comparison, random 
forests and logistic regression are cheap to train and quick to 
build given we are choosing a set of features that should be easy 
to differentiate on and more complex feature sets can be 
modeled using SVM. 
D. Python Tkinter  

Our user interface is an essential part of our project because 
it influences a user’s experience while using our application. An 
inviting, easy to use interface will increase a user’s satisfaction. 

Initially, we looked into various desktop application 
development platforms and had decided on using Flutter for its 
reduced code development time, “hot reload” feature, and its 
ability to deploy visually appealing apps from a single 
codebase. However, we decided to go against this option 
because none of us had experience building an app from scratch 
and there was a steep learning curve.  

After settling on using Python as the language for our project, 
we considered using Tkinter for the creation of our user 
interface for its various built-in features. This will allow us to 
easily interface the frontend with the backend.   

VI. SYSTEM IMPLEMENTATION 

A. Signal Processing Algorithm 
Our data was sampled at 128 Hz, processed through temporal 

analysis, and fed into an ML model. On the pattern recognition 
side, the incoming real-time signals will be analyzed 
continuously and will be classified into different pattern 
recognition according to our signal input. Since we have real-
time data running constantly, the data will be kept in a 30 
second data buffer, in which we will analyze the data using a 
sliding 1.5 second window. Our ML model will classify the data 
into double blinking, left wink, right wink, normal baseline, and 
unclassified noisy signals. Outstanding features of the patterns 
in terms of amplitude and data variance will be used to classify 
the signals into the following categories. A more detailed 
explanation of the procedure training and classification will be 
explained in section C, EEG Classification. 
B. Signal Acquisition 

The brain signals we will be acquiring are AF3, which is 
located on the front left of the forehead and AF4, which is 
located on the front right of the forehead. These signals will be 
acquired through the Emotiv Insight headset which sends 
signals via Bluetooth to a locally installed EmotivPro desktop 
application accessible through the Emotiv API interface.  

A custom Python script will be created with a thread directly 
responsible for calling the Emotiv API to set up a connection to 
the Emotiv device and communicate connection issues to the 
frontend. Once a connection is established, the same thread will 
poll sensor and device data from the API stream, strip context 
data, and dump the relevant sensor data into a local buffer which 
will have the capacity to hold the previous 30 seconds of polled 
data to handoff to the classification subsystem. A second thread 
within the running process will use the currently buffered 
dataset for classification and logging. Another thread within the 
process will be actively Fourier transforming incoming data. 
C. EEG Classification 

The classification subsystem running on a second thread will 
classify raw EEG data stored within the buffer into left and right 
wink. To do this, the classification thread maintains a sliding 
1.5 second window on the previous 30 seconds of data within 
that shared buffer and live computes features from the 1.5 
second window. The features computed will be described in 
more detail below. 

The process for distinguishing different blinking and winking 
patterns is done by extracting features including maximums, 
slopes, average signal strength, frequency strength, variance, 



18-500 Final Project Report: Team A0 05/07/2022 
 

5 

and differences in amplitude in the AF3 and AF4 electrode data 
and using a random forest model to predict the occurrence and 
number of blinks and winks.  

The models described above are trained using manually 
collected data from the Emotiv headset before deployment. 
Over 1700 unique samples have been collected for training the 
various models across 8 different individuals. The ML models 
will be trained in Scikit-Learn to optimize algorithm 
performance over smaller data sets. Some visualizations of the 
sample data we will use for training are provided in Appendix 
A. This data has already been cut to only have the feature we 
are detecting within the sample window. The resulting outputs 
from the model will be dispatched to a data bus shared by event 
listeners on the frontend. 

The full system is then implemented for real-time as an 
ensemble FSM decider which takes each smaller model into 
consideration when making final predictions. The model is 
shown below. 

 
Fig. 4. Finite state machine for EEG classification 

The full model uses multiple smaller ML models to make an 
educated prediction about whether a user triggered event 
actually occurred. Validation between different models is done 
to ensure an ensemble prediction yields better results than not. 
This also mitigates false positives as if there is a mismatch in 
prediction, the ensemble model will hedge on the side of no 
event occurring. The model times out after each valid event is 
predicted as to avoid repredicting the same event within the 
time window. 

D.  EMG Signal Acquisition and Implementation 
EMG signal is the continuous control input signal that we 

will be using to produce continuous movement to activate the 
cursor.  We purchased the EMG sensor that will be connected 
to Arduino and send the data wirelessly to the computer. EMG 
ranges from 0 uV to 15 mV prior to amplification [2]. Shoulder 
movement would increase the amplitude of the signal which 
will be used as the right and left digital signals. However, 
depending on the users, other muscle positions can be used for 
the detection as well, such as the back movement muscle. These 
signals will be sent wirelessly through the Bluetooth module 
that is attached to the Arduino and sent to the backend for 
processing. Processed signals will then be dispatched to the 
frontend as an event. The right signal will be used for right/up 
control in the front-end interface, whereas the left signal will be 
used as the left/down control. To create a more stabilized 
system, the user EMG stream will be used in the EMG 
calibration mode.  

To calibrate, the user has to sit relaxed for approximately 5 
secs to allow 1000 data points (equivalent to 4.7 seconds 
stream). If the buffer data has an average of less than 200 with 
standard deviation of less than 20, the average value will be 
calculated and used as the reference value for threshold 
detection. For muscle movement detection, we have a buffer 
that contains 50 data points, the average of the data points and 
standard deviation will be calculated. Furthermore, the 
movement detection signal to be sent for the event trigger on 
our front end if the ratio between the average real-time data and 
the average baseline data must be greater than 1.3 and the 
standard deviation should be greater than 20. 
E. Software Interface (Backend and Frontend) 

A bus system will be established in which the backend will 
publish detected features and event listeners on the front-end 
application will react and activate based on the incoming 
feature stream. The frontend application will dispatch 
interface movements accordingly. The features of our 
application will be displayed on our screen output. Users will 
be able to perform various tasks, including typing on a 
keyboard, moving a cursor across the screen, and performing 
left and right clicks. This will all be coded in Python.   

VII. TEST, VERIFICATION AND VALIDATION 
The design of our interface is mainly broken down into three 

parts: signal acquisition, backend signal processing, and the 
front-end interface. Most of our tests will be focused on the 
latency, accuracy, and the user satisfaction. As mentioned in the 
other sections, we require our system to work on real-time data 
analysis, thus, we would like to ensure that the latency of our 
two routes of data, EEG and EMG, are within an acceptable 
range that the user will be satisfied with.  

A. Results for EEG signal classification accuracy 
For our EEG signal processing testing, we will test on the 

pattern recognition accuracy. From research paper [3], the 
general linear technique such as SVM has accuracy up to 97- 
98% of analyzing the EEG data. Therefore, our goal is to be 
able to have above 90% accuracy by using either the SVM 
and/or random forest classification. From our current data 
sample, we will split 75% of the collected data into a training 
set and 25% of the collected data into a test set such that the test 
and training sets both have the same proportion of each 
movement data point. For different models with different 
hyperparameters, we will use the training set to train the model 
and verify the model meets the 90% accuracy metric by seeing 
if it predicts the test data with below 10% error. Of the subset 
of the models we select from this process, we will add each 
model into the real-time prediction system, add functions to 
parse the appropriate features that are used by the model to 
predict, and then attempt to predict features live. For each signal 
we need to predict, we have the subject we are monitoring in 
the session produce that signal 20 times in sequence with at 
least the second pause between each and track the number of 
times the model predicted the movement occurring correctly. 
We track the number of times the model predicted incorrectly, 
including falsely predicting a feature existing when it did not 
occur and not recognizing the movement when it occurred, and 
divide it by 20 to get a percentage error for each movement we 



18-500 Final Project Report: Team A0 05/07/2022 
 

6 

are testing. We then take an average across all the different 
movements to get an overall error prediction percentage. We 
aim for this number to be below 10%, meaning 90% of the time 
the model detected the movement in streamed EEG data or did 
not detect a movement that did not occur.  

The logistic regression and random forest models we are 
using in our final system have validation errors reported below. 

 

ML Classifier 
(Individual classifiers used in ensemble 
classifier) 

Validation Error 
(%) 

Sensor is moving/detached (Logistic 
Regression) 

1% 

Eyelid event occurred (Logistic Regression) 6.31% 

Blink occurred (Logistic Regression) 2.53% 

Right Wink occurred (Logistic Regression) 2.61% 

Left Wink occurred (Random Forest) 20% 

Double Blink occurred (Random Forest) 9.5% 

Left Wink or Right Wink (Logistic Regression) 0% 

Fig. 5. Finite state machine for EEG classification 

All smaller models used in the ensemble classifier have a 
validation error under 10% as we desired except the classifier 
for left wink occurrence. After multiple tests with different 
computed features from the test data, most models have a fairly 
separable data set it can reliably predict on. However, in the 
case of the left wink model, because of the fair similarity of a 
left wink event compared to a regular blink event, especially 
factoring in the variance between different people, the 
prediction error on left winks is higher. However, the average 
model error across all models is below 10%, which meets our 
target for validation error. It can be observed in the appendix 
that signals for what we desire to classify can vary wildly and 
contain much noise but still be effective enough that we desire 
to classify them. In the appendix we can observe signals that are 
more ideal and cleanly represent particular movements and 
signals that are more noisy and much more varied that we still 
desire to classify correctly. This creates a major difficulty in 
overall classification accuracy and its ability to generalize to the 
real-time system. 

Below are the error rates from testing the real-time ensemble 
classifier. We performed a certain action 20 times in a row and 
tracked the number of times the model predicted incorrectly, 
including falsely predicting a feature existing when it did not 
occur or not recognizing the movement when it occurred.  
 
Left Wink Right Wink Double Blink 

10% 15% 30% 

Fig. 6. Error rates after testing our real-time ensemble classifier 

The model detected correctly left wink 90% of the time, 
detected right wink correctly 85% of the time, and detected 
double blink 70% of the time. Except for the left wink detection, 
the error incurred by the ensemble model is significantly higher 
than we desired. We attribute much of this error to 
desensitization of the model to mitigate registration of false 
positives, meaning much of the error observed is from the 
model not detecting a signal when it was present. During user 
testing, we observed a high number of false positives, causing 
many unintentional movements when the user never issued the 
signal. To increase usability, we scaled our ensemble model to 
be less sensitive to the three kinds of signals above, so the 
system may not react to the actual occurrence of a meaningful 
signal but will not falsely emit a signal when it did not occur. 
The rationale for this late tuning decision is because we would 
rather the user retry the same command multiple times and have 
the system trigger on one of the repeated events than trigger 
unintentionally. It was observed that this made the system 
easier to control when performing tasks.  

 
B. Results for EEG full system pipeline latency of <500 ms  

A human benchmark test that is available online will be used 
to test speed of the control from the EEG signal acquisition to 
the output on the interface. The user will react to the stimulus, 
in this case clicking the screen in the test without any planar 
control from the EMG. This will be a good approximation to 
see the latency sum of acquiring the data from EEG headset, 
wireless transfer, backend signal processing, and the sending of 
data over to the front end. The entire process is expected to be 
less than 500 ms. To ensure the least and consistent latency 
from the other computer programs, we will be running only our 
API in the background and all other applications have to be 
closed.  

Our system’s performance on the human benchmark test 
was an arithmetic average reaction time of 1780 ms across three 
subjects. This is about 3 times the latency we expected from the 
system. During testing, it was observed that if the system 
reacted immediately to the user stimulus, the reaction time was 
closer to 550 ms, which is in the ballpark of what we desired 
from our system. The delayed time was due to the scaling down 
of system sensitivity to increase overall system usability. This 
caused the user to need to resend the same signal multiple times 
before the system registered the event. Our overall assessment 
of the system is that it should be usable, and the system does 
not lag significantly enough for this to impact the user 
experience, especially in regard to accomplishing tasks. 
However, random false positive signals do significantly impact 
the user’s experience and controllability of the system, so we 
decided to optimize for this particular attribute at the expense 
of other metrics. 
 
C. Results for Integrated system: accuracy and speed  

This test was used to test the accuracy and speed of the 
control from the EMG signal with the clicking ability from the 
EEG signal. We will be using the point and click test that is 
created by ourselves. The test was for a one-minute period, and 
we aimed for the user to be able to click on three of the targets. 
The user had to click on these targets in a specified order. In our 
test, we have the subjects control the cursor to type two words 



18-500 Final Project Report: Team A0 05/07/2022 
 

7 

in our keyboard interface, in which the words are ‘cmu’ and 
‘dog.’ 

After testing across three subjects, each performing the task 
twice, participants finished the task in an average time of 74.5 
seconds. This is within 25% of the target time for finishing the 
task. The recorded average fell slightly above our target time, 
but the results show promise that with some more practice and 
patience, users can accomplish normal point and click tasks 
using the system, which was the primary goal this metric 
measures. 

Essentially, from the three tests that were taken, two were 
not satisfying our requirements as shown below. However, in 
those cases there is a huge variance in the result for the best and 
worst case.  The best case of our user latency is at 614 ms while 
the worst case is 2628. This implies that our system has the 
potential to meet the requirement if the system is stabilized with 
that instance of use, meaning that the EEG were placed at the 
efficient spots on the head. 

 

 
Fig. 7. Testing results along the three tests with results taken on average from 
our test subjects. 

VIII. PROJECT MANAGEMENT 

A. Schedule 
Our schedule was broken into three main phases to 

distinguish between EEG data collection and model training, 
EMG setup, working on individual components, and integrating 
and testing. Throughout the semester, we each ran into various 
roadblocks and had to update our Gantt chart to allow more time 
for setup and integration. All project code is hosted at 
https://github.com/Jonny1003/capstone-18500-eeg. 
B. Team Member Responsibilities 

Our work is split into a few different categories, including 
signal processing, hardware components, and software 
environment/application. Although our project tasks are 
roughly split along these categories, we will work together to 
complete the tasks. The assignment of responsibilities serves 
more as an indicator for leadership of the task. 

Jean has the most experience with signals and has taken 
advanced digital signal processing courses, so she will be 
mainly in charge of creating the signal processing procedure 
and algorithm, as well as conducting research on EEG and 
EMG signals. She will work on creating the signal processing 
structures for the model and will be working in analyzing data 
to extract the main features that will be used to train the ML 
model.  

Jonathan will be working on the hardware/software 
interfacing. After obtaining the data from the Emotiv Insight 
headset, he will build pipelines for parsing the data and build a 

testbed for training and testing ML models. This includes 
testing within the data set and a live detection testbench where 
the model will attempt to detect continuous live inputs. He will 
then create the acquisition and processing production backend 
that will communicate to the user frontend. 

Wendy will be working on the software end, primarily on the 
frontend side. She will create the interface and add various 
features to our project. She and Jonathan will work to connect 
the frontend and backend components together for the final 
application. 

C. Bill of Materials and Budget 
Our project has saved a huge budget by using the 

inventory’s Emotiv Insight headset. Thus, the other components 
for the EEG system that we spent on are for Emotiv’s licensing 
and replacement electrodes. One issue that arose during our 
process is connecting the wrong power supply to the EMG 
sensors. Thus, we had to order extra EMG sensors on our 
second lot in the case of an accident again. We solved the 
problem by instead of wiring the power source to the 
breadboard holes, we have cleaned up the circuits and used 
colored clippers for less prone power supply connection. 
However, in the future to lessen this risk, we could solder 
everything permanently on one board with the full circuit 
system. Other materials are Bluetooth module, batteries, EMG 
electrodes, enclosure box, and USB-c hub. We were given a 
budget of $600 and have spent just above $339. See Appendix 
C for more details.  
D. Risk Management 

One of the major risks we had is how accurately we can 
detect the desired features from the EEG sensors. Furthermore, 
we also risk having an unsmooth and difficult to use interface 
if the signals are difficult to pinpoint from the user. To combat 
this, we are already including two EMG sensing devices which 
only require a simple threshold cutoff for triggering display 
interactions. These can be rigged to generate continuous 
movement and be configurable as the primary controllers of 
desktop movement, especially the mouse, with EEG headset 
acquired signals used to trigger less commonly used shortcuts. 
As a minimum target, if our system can reliably detect two user-
controllable signals from the EEG headset, we have enough 
flexibility to define how patterns of those signals will 
correspond to interface interactions. While this would be 
convoluted and difficult to pick-up in the beginning, we can 
guarantee high accuracy on detecting these signals and our 
system will still be usable, albeit with each action being a 
unique combination of the 2 binary signals we acquire. Another 
potential risk we may face is if the same set of features we 
would like to detect are very different from person to person. 
We can mitigate this by using the EEG headset and manually 
calibrating a set of data from a user and only using their unique 
signals to train the recognition model before it is used. We can 
also port this as an extra feature of our interface, so the user 
doesn’t have to navigate to another application before using the 
system. If the EEG headset acquired signals prove to be 
extremely unreliable, we planned on pivoting to using a desktop 
camera and using object detection with OpenCV to recognize 
facial movements that we can map to user actions. However, 
we were able to classify EEG data to a satisfying result as stated 



18-500 Final Project Report: Team A0 05/07/2022 
 

8 

in the result section therefore we did not move to our back up 
plan on using the OpenCV.  

IX. ETHICAL ISSUES 
The NeuroController implementation involved a significant 

amount of data science to collect sufficient samples to train ML 
models. This involved finding participants willing to record and 
to share their data for this project. Having such a requirement 
may pose ethical concerns regarding the misuse of EEG data. 
However, this is mitigated by the fact that the data collected is 
not particularly tied to sensitive information. Sampling for 
winking and blinking does not directly involve disclosing any 
valuable private information about a user and hence we are 
fairly confident that the system does not pose a significant risk 
to users who contributed training data. 

Our system also requires licensing from Emotiv to use a 
commercial Emotiv EEG headset with our system. This 
requires agreeing to Emotiv terms of service and passing all 
collected data from the Emotiv application service before it can 
be forwarded to the NeuroController system. This relationship 
is less than ideal because now our system requires the trust of a 
third party service that has access to the same EEG data from 
potential users. This could adversely affect our users should the 
third party use the data inappropriately without knowledge or 
consent. However, to mitigate this risk, it can be noted the 
stakes involved with the data collected is not high, as EEG 
recordings with blinking artifacts is not valuable data. 
Furthermore, our data recordings only involve acquiring data 
from two of the five EEG sensors from the headset. The other 
sensors were mostly disconnected and noisy for the entirety of 
recording, meaning no meaningful data could’ve been collected 
from those other streams. 

Another ethical issue that may arise from our product is 
ensuring that our ML models don’t bias such that it is 
significantly more difficult for certain people to use the device 
than others. To mitigate this, we needed to sample multiple 
people when collecting EEG data so that we have different user 
blink signals to generalize our model predictions over and not 
overfit to a single person’s brain signals.  

Another issue arising from our product is accessibility for 
people with different hairstyles. EEG devices have traditionally 
been more difficult to use for people with a lot of hair or curly 
hair. Our product, which relies on EEG, suffers from the same 
issue. To mitigate this problem, we specifically only read the 
front two EEG sensors attached to the forehead, so that hair will 
not be an issue. This way the user only needs to ensure the 
ground node maintains good contact under the hair with the 
skull for using the device and people with different hair styles 
can all use the device. 

X. RELATED WORK 
There are currently no other projects or products that 

incorporate both EEG and EMG signals in the way that we have 
planned. A lot of research has been done to study the 2D 
directional control from motor imagery for people who have 
fully lost their arm muscles. There are similar projects that take 
in EEG signals to study and control the cursor on the BCI 
program [4][5]. However, there is no product that is available 
in the market yet that allows the integration of the BCI 

discovery to create a platform on the desktop computer. 
Moreover, with how expensive a standard EEG cap costs, we 
chose to use an EEG headset as it is more commercialized. With 
the trade-off between the price and data acquisition to the 
spatial and temporal resolution, we are integrating EMG 
sensors to have precise control data from the shoulder muscle 
movement instead. We hope that our interface will allow 
amputees or people with limited physical ability to use 
computers on a daily basis and without much difficulty. 
Previous Capstone projects involving EEG or EMG signals 
include a game called Myorun, from Fall 2020, which allowed 
users to physically workout their forearm using a game and 
another game called Traveling Mind, from Spring 2021, which 
implemented a mind-controlled iOS game. Our project hopes to 
integrate mind-control and EMG to not just play a game but to 
control more general computer interfaces. 

XI. SUMMARY 
The design and plan of work for our project has undergone 

many iterations. The systems and components have been 
planned and changed to best fit our design goals, as well as be 
feasible to implement. Our plan has also changed as we have 
reevaluated our skill sets and areas of expertise.  

Along the course, we found challenges in multiple aspects 
that hindered our system to be stabilized and run smoothly. This 
is particularly challenging due to the variance in physiological 
signals that is the core of our system. Thus, we have created 
calibration and state transition algorithms to allow a more 
accurate detection and classification for EEG and EMG signals. 
Our system was able to reach some of the design specifications. 
As mentioned, we think that our calibration could be improved 
for the product to be enhanced in the future. If we could 
improve the system, we would focus on the calibration for EMG 
signals and enhancing the classification algorithm for the EEG 
signals. Having a boarded circuit would have allowed us to have 
less debugging issues rather than having the circuits on the 
protoboard.  

Even though we will not be continuing this project after this 
semester, our group will continue to do research and remain 
interested in brain signal acquisition methods. Overall, our team 
learned a lot about EEG and EMG signals. We learned that the 
general shape of EEG signals for actions generally look the 
same for everyone, but that reading clear EMG signals depends 
on where the electrodes are placed. We had to collect a lot of 
information from our subjects because there was not a lot of 
public data that could be used. 

We learned the importance of integration in the development 
and testing of our subsystems and overall. Even though we 
designed our schedule to include integration testing and slack 
time, we still ran into some troubles and had to reevaluate and 
re-pivot. We also learned the importance of constant 
communication among team members. There were times when 
we all faced various setbacks and being transparent about our 
situations made working together a lot easier. 

Lastly, we learned a lot about project management and 
staying on track. Each week, we looked at our Gantt chart to see 
if we had completed everything or if we were slightly behind. 
Planning for slack days helped us spend the last few days 
working out unexpected issues and bugs without panicking.  



18-500 Final Project Report: Team A0 05/07/2022 
 

9 

GLOSSARY OF ACRONYMS 
API- Application Programming Interface  
CPU- Central Processing Unit  
EEG- Electroencephalography  
EMG- Electromyography  
ML- Machine Learning  
SVM- Support Vector Machine 

REFERENCES 
[1] “The latency of Emotiv data streams,” EMOTIV, 24-Aug-2021. 

[Online]. Available: https://www.emotiv.com/knowledge-
base/thelatency-of-emotiv-data-streams/. [Accessed: 28-Feb-2022].  

[2] M. B. I. Raez, M. S. Hussain, and F. Mohd-Yasin, “Techniques of EMG 
signal analysis: Detection, processing, classification and applications,” 
Biological procedures online, 2006. [Online]. Available: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1455479/. [Accessed: 
02-Mar-2022].  

[3] H. U. Amin, W. Mumtaz, A. R. Subhani, M. N. M. Saad, and A. S. 
Malik, “Classification of EEG signals based on Pattern Recognition 
Approach,” Frontiers, 01-Jan-1AD. [Online]. Available: 
https://www.frontiersin.org/articles/10.3389/fncom.2017.00103/full. 
[Accessed: 03-Mar-2022]. 

[4] Yuanqing Li, Chuanchu Wang, Haihong Zhang and Cuntai Guan, "An 
EEG-based BCI system for 2D cursor control," 2008 IEEE International 
Joint Conference on Neural Networks (IEEE World Congress on 
Computational Intelligence) [Online]. Available: 
https://ieeexplore.ieee.org/document/4634104?arnumber=4634104 
[Accessed: 03-Mar-2022]. 

[5] J. R. Wolpaw, D. J. McFarland, G. W. Neat, and C. A. Forneris, “An 
EEG-based brain-computer interface for Cursor Control,” 
Electroencephalography and clinical neurophysiology. [Online]. 
Available: https://pubmed.ncbi.nlm.nih.gov/1707798/. [Accessed: 03- 
Mar-2022].  

 
 
 
 

  



18-500 Final Project Report: Team A0 05/07/2022 
 

10 

Appendix A  

 
 

(a) Typical baseline sample with no features                (b) Typical blink sample  
 

(c) Typical double blink sample                   (d) Typical double blink sample, but less ideal 

 
(e) Typical left wink sample                     (f) Typical left wink sample, but less ideal 

 

(g) Typical left wink sample                     (h) Typical left wink sample, but less ideal 
 
 

Fig. 9.     Visualizations of the sample data from the EEG device that we are using for training. 
 
  



18-500 Final Project Report: Team A0 05/07/2022 
 

11 

Appendix B 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10.     Schedule 



18-500 Final Project Report: Team A0 05/07/2022 
 

12 

 

Appendix C 
Item Quantity Manufacturer Source Price Arrived? 

Emotiv Insight Model 
1.0 

1 Emotiv 18-500 
Inventory 

$0.00 Yes 

Replacement EEG 
sensors 

2 Emotiv Emotiv $61.94 Yes 

EmotivPRO Student 
License 

1 license 
($30/month x 

3 months) 

Emotiv Emotiv $90.00 Yes 

EMG Sensors 4 N/A Ebay $89.22 Yes 

EMG gel electrodes 1 pack of 100 3M Amazon $18.50 Yes 

9V battery 2 packs of 8 Amazon  Amazon $11.59 Yes 

HC-05 Bluetooth 
module 

1 DSD Tech Amazon $9.99 Yes 

USB-C hub 2 UNI Amazon $27.18 Yes 
EMG gel electrodes 1 pack of 100 3M Amazon $17.51 Yes 
Electric enclosure box 1 LeMotech Amazon $13.77 Yes 

Grand Total $339.70 

  
Table I. Bill of Materials   


