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Abstract—For individuals with difficulty controlling their 

muscle functions, performing tasks on a desktop computer is 
virtually impossible. Given that the traditional mouse and 
keyboard would be very difficult to use in this scenario, we aim to 
create an alternative platform that allows a more accessible 
control through brain signal acquisition techniques, specifically 
electroencephalogram (EEG) and electromyography (EMG). This 
platform increases computer accessibility through an integrated 
control interface system that is easily customizable for users. 
 

Index Terms—Arduino, Bluetooth, EEG, EMG, Emotiv, Fast 
Fourier Transform (FFT), Logistic Regression, Python, Random 
Forest, Support Vector Machine (SVM) 
 

I. INTRODUCTION 
Nowadays, the computer is prevalent and critical for people 

in various ways, ranging from working to easing general daily 
lives tasks. Even though computers are being more accessible 
to the general body of people, one of the limited user groups are 
those who lack physical control abilities. For individuals who 
suffer from physical disabilities such as amputees, there is no 
platform in the market that offers an alternative controllable 
interface on the computer for this user group. Therefore, our 
project will aim to increase accessibility of desktop devices for 
individuals who do not have control of their upper limbs or have 
difficulty controlling muscle functions. We will create an 
application that serves as the mouse and keyboard interface and 
will be controlled through electroencephalography (EEG) and 
electromyography (EMG) signals. 

Even though there is various research studying the control of 
cursor movement, there are currently no competing 
technologies in the market that offer an integrated interface 
allowing a full interaction on the computer desktop. Therefore, 
we are developing this platform to allow the user to both control 
a cursor as well as to use a keyboard on a device, through mental 
and augmented physical control. Our goal is to provide the 
individuals with a minimum shoulder movement ability and 
with full mental control abilities to be able to use this platform 
to navigate tasks on the computer wirelessly. This will provide 
full and unhindered access for people with disabilities to use a 
traditional desktop device such as a laptop on a user-friendly 
control. 

II. USE-CASE REQUIREMENTS 
Our main goal in this project is to provide an interface for 

those with disabilities to use desktop devices. The most 
important requirement is that the platform works with low 

latency, in real time, and with high accuracy for unhindered 
control on a desktop application.   

One use-case requirement we have is to aim for above 90% 
accuracy in converting user intentions into the corresponding 
output within the interface. This will be tested through one of 
our testing methods, called the Task test.  

To ensure a satisfying speed of our platform across the 
software and hardware implementations, another requirement is 
that a user, on average, can score 500 ms on reaction time in the 
human benchmark test using our device.  

Further, we will require that our user hit five targets within 
30 seconds with a 75% accuracy. This user accuracy and speed 
requirement will be tested through a point-and-click test.  

Another use case requirement comes from our signals; for 
our application, two types of control data are required: 
continuous control data and single-time control data. 
Continuous control data will be obtained from the EMG, which 
measures the muscle movement signals from the shoulders. On 
the other hand, seven types of distinct single-time control data 
will be acquired from the EEG device. These distinct signals 
will be used to serve different features on our interface. For 
example, the EMG sensors will allow for control in either an up 
to down or left to right direction and double blinking will mimic 
clicking. These feature mappings will be set in this manner 
when the user puts on our device for the first time but will be 
customizable to allow for maximum flexibility. 

Finally, the use-case requirement is that we will have an 
onscreen accessibility keyboard that provides the ability to send 
all standard keyboard inputs, modified with text autocomplete 
and customizable widgets based on the user preferences. 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
We are building our application using Python as the 

programming language. From there, we are using various 
packages and libraries, including Tkinter and PyAutoGUI. For 
our backend signal processing, we are creating and training ML 
models using the Scikit machine learning library. Python 
provides a development environment that can be used and 
accessed by both the developer and user on any laptop. 

After the user puts on the EEG headset, is attached to the 
EMG sensors, and opens our application, the user will be 
prompted to a screen that has an accessibility keyboard. For the 
EMG sensors, we will connect an Arduino with a Bluetooth 
module to transfer the data wirelessly. Both the headset and 
sensors serve as our data acquisition platforms. When the user 
performs various actions to accomplish tasks (eg. double 
blinking to click), the data will be processed and classified 
through ML pattern recognition, and the application will trigger 
the mapped action within the desktop.  
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 The EMG shoulder movement will allow the user to control 
moving the cursor or going across the keyboard either in a left 
to right motion or in an up to down motion. The user will be 
able to switch between these two methods through one of our 
extracted features. The gestures used to control different 
functions will be made customizable based on our user 
preferences. 

Further descriptions of our system architecture are described 
with our figures.  
 

 
 
Fig. 1. Overall System Layout. Users will generate signals via EEG and EMG. 
The signal is sent wirelessly to backend processing that funnels recognized 
signals to the user interface. 

 

 
 
Fig. 2. Signal Processing Subsystem. Live raw EEG data is fed into a fast 
fourier transform (FFT) to ensure user actions are only forwarded to the 
frontend when the user is focused and an ML model to detect user commands 

 
 
 

 
 
Fig. 3. Frontend Block Diagram. The processed signals from the backend will 
be connected to event listeners that the frontend can respond to. Users will 
activate certain features of our application, which will be displayed on our 
screen output. 
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Fig. 4.  Backend System Layout. Both EEG and EMG signals from the two 
sensing systems are funneled through separate wireless transmitters and unified 
under the same backend layer. 

IV. DESIGN REQUIREMENTS 
Speed and accuracy are our two most important 

requirements. As mentioned in the use-case requirements 
section, we aim to have over 500 ms latency from acquiring 
EEG and EMG signals to the end process of the computer input. 
Our data will be transmitted via Bluetooth, which generally has 
a latency of approximately 100 to 300 ms. We require that our 
Python backend processing does not have a latency over 50 ms. 
Python backend processing refers to the signal processing, 
machine learning data classification, and communication 
between the data acquisition device to backend program as well 
as to the user interface.  

Our accuracy will be speculated based on two aspects: signal 
classification accuracy and overall user control accuracy. The 
first design requirement is to have our signal classification 
accuracy of more than 90% using a combination of support 
vector machine (SVM), random forest classification, and linear 
classification models. We require that the collected training 
data be contained from over 200-300 samples data sets per each 
signal data type.  

The data will be sampled at 128 Hz. To save the expensive 
calculation, the Fast Fourier Transform (FFT) analysis will be 
calculated every 4.5 seconds to detect the focus state and to 
either activate or deactivate our ML classification functions. 
Since our window of interest will be running through the 

samples of approximately 1.5 second span as our longest data, 
the triple blinking has the features that last up to around 1.5 
seconds.  

EEG data will be analyzed in real-time to detect the most 
fitting classification for double blinking, triple blinking, left 
wink, right wink, clenching/tongue movement, normal 
baseline, and unclassified noisy signals.  

Real-time EMG data from the two shoulder blades will be 
our main controlling method for the two directional control 
planes: left/right and up/down. Therefore, we aim to have an 
accuracy of 95% for detecting the shoulder movement that will 
be used as the continuous controlling data. 

The design requirement for our interface is to offer our user 
both the cursor and the mouse control on the desktop by EMG, 
with additional controls through EEG. The user would be able 
to navigate through the entire desktop page easily with the 
cursor triggered by EMG signals from the shoulders or send key 
inputs like tabbing through a webpage using a combination of 
EEG signals.  

V. DESIGN TRADE STUDIES 

A. Emotiv Insight Model 1.0 
The Emotiv Insight is a 5 channel, wireless headset that 

records the wearer’s brainwaves and translates them into 
meaningful data. The Emotiv Insight is preferable to other EEG 
headsets (both produced by Emotiv and other companies) for 
its lower price point and its ability to provide the data necessary 
for our modeling. While other headsets contain more channels 
and provide more information, after looking at our project 
budget, the other EEG headsets would have cost more than the 
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money allotted. Lastly, there was already an Emotiv Insight 
available in the capstone inventory, so we did not need to spend 
any money. 

This device also provides an out-of-the-box platform for 
interfacing through the Emotiv app for our application 
development. 
B. Hardware Design  

A major and early decision made in the designing of our 
application is to use the commercially available Emotiv 
headset. With this, we are somewhat limited in how we can 
pursue low latency and easy operation within our system. We 
initially considered adding a RaspberryPi to offshore the ML 
and signal processing to a second computing device. However, 
the tradeoff here is that we desire our system to be wireless with 
respect to the headset. The Emotiv headset uses a Bluetooth 
wireless dongle to send data from the headset. To reach the 
target of 500 ms between a user’s response to a stimulus and 
generating the corresponding output, we already need to 
account for a latency of around 200 ms for the Emotiv 
Bluetooth receiver to acquire from the headset, process, and 
setup for API access [1]. If there exists another remote device 
like a RaspberryPi to acquire, process, and send data again 
through a wireless system like Bluetooth or WiFi, we expect 
around an additional latency of 200 ms. This leaves 
approximately 100 ms for the user to react to a stimulus and for 
our signal processing and application inter-communication to 
react to the user’s signal, which is a lower flexibility time 
window for the user. We need more slack in meeting the latency 
requirements so instead are opting for our primary compute to 
be performed within the desktop or laptop which the application 
is being used from to ensure that the majority of the latency is 
from the Bluetooth connection of the Emotiv Insight and wired 
latencies within the desktop operating system, providing greater 
slack for users to react. This will include some work to make 
sure our software critical path is short and inexpensive as to 
prevent our application from overburdening the desktop 
hardware. 
C. Model Selection 

With the headset chosen for acquiring EEG signals, the 
Emotiv Insight also comes with software packages to process 
and interpret signals, which we opt to not use and instead to 
construct our own. 

From experimentation of the EmotivBCI package, which is 
provided with the Emotiv Insight, we found very low reliability 
and minimal ability to tune or update the package to meet our 
accuracy needs. Primarily due to the lack of tuning and the 
closed source software licensing of EmotivBCI, which shrouds 
the ability to tune or test the system to meet the 90% accuracy 
metric, we decided to instead ingest raw EEG data from the 
headset and process the data using our own models and filters 
to ensure we have the flexibility to meet the metric. 
Furthermore, since we only have one headset on hand, we desire 
our recognition system to be trained specifically for this 
headset. 

Given that the software will be hosted on a desktop computer 
potentially running other applications, we desire to find models 
that are lightweight, quick to train, and deploy. Hence, we will 
be using an assortment of random forest, SVM, and logistic 

regression models over more complex and expensive models 
like a neural network. Neural networks are not optimized for 
CPU processing and require a large amount of data to train 
successfully. Our project is limited by the small samples of data 
we need to manually collect. To allow for rapid retraining and 
use, we cannot deploy a neural network. In comparison, random 
forests and logistic regression are cheap to train and quick to 
build given we are choosing a set of features that should be easy 
to differentiate on and more complex feature sets can be 
modeled using SVM. 
D. Python Tkinter  

Our user interface is an essential part of our project because 
it influences a user’s experience while using our application. An 
inviting, easy to use interface will increase a user’s satisfaction. 

Initially, we looked into various desktop application 
development platforms and had decided on using Flutter for its 
reduced code development time, “hot reload” feature, and its 
ability to deploy visually appealing apps from a single 
codebase. However, we decided to go against this option 
because none of us had experience building an app from scratch 
and there was a steep learning curve.  

After settling on using Python as the language for our project, 
we considered using Tkinter for the creation of our user 
interface for its various built-in features. This will allow us to 
easily interface the frontend with the backend.    

VI. SYSTEM IMPLEMENTATION 

A. Signal Processing Algorithm 
Our data will be sampled at 128 Hz. The two main branches 

of processing are spectral analysis (Fast Fourier Transform, or 
FFT) and temporal analysis. Both will be fed into an ML 
model.  

On the pattern recognition side, the incoming real-time 
signals will be analyzed continuously and will be classified into 
different pattern recognition according to our signal input. 
Since we have real-time data running constantly, the data will 
be kept in a 30 second data buffer, in which we will analyze the 
data using a sliding 1.5 second window. Our ML model will be 
in charge of classifying the data into double blinking, triple 
blinking, left wink, right wink, and clenching/tongue 
movement, normal baseline, and unclassified noisy signals. 
Outstanding features of the patterns in terms of amplitude and 
data variance will be used to classify the signals into the 
following categories. A more detailed explanation of the 
procedure training and classification will be explained in 
section C, EEG Classification. 

On the FFT side, the data will be decomposed into 4 different 
focus signals according to their frequency bands: theta, alpha, 
beta, and gamma signals. These signals will give us information 
about the level of focus/relaxation state the user is currently in. 
This information is what we will be using to activate our pattern 
recognition system. The lower frequency signals refer to a loss 
in focus and the higher frequency signals would refer to a higher 
focus. Since our real-time data will be kept in a 30 second data 
length buffer, we will FFT for every 4.5 seconds length of data. 
In this period, if a loss in focus is detected, we will ignore the 
next 4.5 seconds length of data to save the system from 
operating on unintentional data. Two main brain waves that we 
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will be looking for are the theta and alpha range, which measure 
between 4-8 Hz and 8-12 Hz respectively. Theta and alpha 
range refer to a slightly sleeping and a calm/relaxed state. 
Therefore, if there is a substantial increase of amplitude in 
frequency range 4-12 Hz, for the next 4.5 seconds length of 
data, we will deactivate our processing algorithm. The exact 
value of the threshold will be determined through 
experimentation. 
B. Signal Acquisition 

The brain signals we will be acquiring are: AF3, which is 
located on the front left of the forehead; AF4, which is located 
on the front right of the forehead; T7, which is located above 
the ear on the left side of skull; T8, which is located above the 
ear on the right side of the skull; and Pz, which is located on the 
top of the head. These signals will be acquired through the 
Emotiv Insight headset which sends signals via Bluetooth to a 
locally installed EmotivPro desktop application accessible 
through the Emotiv API interface.  

A custom Python script will be created with a thread directly 
responsible for calling the Emotiv API to set up a connection to 
the Emotiv device and communicate connection issues to the 
frontend. Once a connection is established, the same thread will 
poll sensor and device data from the API stream, strip context 
data, and dump the relevant sensor data into a local buffer which 
will have the capacity to hold the previous 30 seconds of polled 
data to handoff to the classification subsystem. A second thread 
within the running process will use the currently buffered 
dataset for classification and logging. Another thread within the 
process will be actively Fourier transforming incoming data.  

C. EEG Classification 
The classification subsystem running on a second thread will 

classify raw EEG data stored within the buffer into double 
blinking, triple blinking, left wink, right wink, and 
clenching/tongue movement.  

To do this, the classification thread maintains a sliding 1.5 
second window on the previous 30 seconds of data within that 
shared buffer and live computes features from the 1.5 second 
window. The features computed will be described in more 
detail below. 

The process for distinguishing different blinking and 
winking patterns is done by extracting features including 
maximums, slopes, average signal strength, frequency strength, 
variance, and differences in amplitude in the AF3 and AF4 
electrode data and using a random forest model to predict the 
occurrence and number of blinks and winks.  

Teeth clenching and tongue movement will be processed by 
extracting local maxima and slopes from the T7 and T8 
electrode data and using a logistic regression classifier to detect 
the occurrence of strong clenching or tongue movement. 

The models described above will be trained using manually 
collected data from the Emotiv headset before deployment. 
There will be at least 100 samples of each training data point 
for building the model. The ML models will be trained in Scikit-
Learn to optimize algorithm performance over smaller data sets. 
Some visualizations of the sample data we will use for training 
are provided in Appendix A. This data has already been cut to 
only have the feature we are detecting within the sample 
window.  

The resulting outputs from the model will be dispatched to a 
data bus shared by event listeners on the frontend. 
D.  EMG Signal Acquisition and Implementation 

EMG signal is the continuous control input signal that we 
will be using to produce continuous movement to activate the 
cursor.  We purchased the EMG sensor that will be connected 
to Arduino and send the data wirelessly to the computer. EMG 
ranges from 0-15 mV prior to amplification [2]. Shoulder 
movement would increase the amplitude of the signal which 
will be used as the right and left digital signals. These signals 
will be sent wirelessly through the Bluetooth module that is 
attached to the Arduino and sent to the backend for processing. 
Processed signals will then be dispatched to the frontend as an 
event. The right signal will be used for right/up control in the 
front-end interface, whereas the left signal will be used as the 
left/down control. 
E. Software Interface (Backend and Frontend) 

A bus system will be established in which the backend will 
publish detected features and event listeners on the front-end 
application will react and activate based on the incoming 
feature stream. The frontend application will dispatch interface 
movements accordingly. The features of our application will be 
displayed on our screen output. Users will be able to perform 
various tasks, including typing on a keyboard, moving a cursor 
across the screen, and performing left and right clicks. This will 
all be coded in Python.   

VII. TEST, VERIFICATION AND VALIDATION 
The design of our interface is mainly broken down into three 

parts: signal acquisition, backend signal processing, and the 
front-end interface. Most of our tests will be focused on the 
latency, accuracy, and the user satisfaction. As mentioned in the 
other sections, we require our system to work on real-time data 
analysis, thus, we would like to ensure that the latency of our 
two routes of data, EEG and EMG, are within an acceptable 
range that the user will be satisfied with.  
A. EEG signal classification accuracy 

For our EEG signal processing testing, we will test on the 
pattern recognition accuracy. From research paper [3], the 
general linear technique such as SVM has accuracy up to 97-
98% of analyzing the EEG data. Therefore, our goal is to be 
able to have above 90% accuracy by using either the SVM 
and/or random forest classification. From our current data 
sample, we will split 75% of the collected data into a training 
set and 25% of the collected data into a test set such that the test 
and training sets both have the same proportion of each 
movement data point. For different models with different 
hyperparameters, we will use the training set to train the model 
and verify the model meets the 90% accuracy metric by seeing 
if it predicts the test data with below 10% error.  

Of the subset of the models we select from this process, we 
will add each model into the real-time prediction system, add 
functions to parse the appropriate features that are used by the 
model to predict, and then attempt to predict features live. For 
each signal we need to predict, we have the subject we are 
monitoring in the session produce that signal 20 times in 
sequence with at least the second pause between each and track 
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the number of times the model predicted the movement 
occurring correctly. We track the number of times the model 
predicted incorrectly, including falsely predicting a feature 
existing when it did not occur and not recognizing the 
movement when it occurred, and divide it by 20 to get a 
percentage error for each movement we are testing. We then 
take an average across all the different movements to get an 
overall error prediction percentage. We aim for this number to 
be below 10%, meaning 90% of the time the model detected the 
movement in streamed EEG data or did not detect a movement 
that did not occur. 
B. EEG full system pipeline latency of <500 ms 

A human benchmark test that is available online will be used 
to test speed of the control from the EEG signal acquisition to 
the output on the interface. The user will react to the stimulus, 
in this case clicking the screen in the test without any planar 
control from the EMG. This will be a good approximation to 
see the latency sum of acquiring the data from EEG headset, 
wireless transfer, backend signal processing, and the sending of 
data over to the front end. The entire process is expected to be 
less than 500 ms. To ensure the least and consistent latency 
from the other computer programs, we will be running only our 
API in the background and all other applications have to be 
closed. 
C. Integrated system: accuracy and speed  

This test will be used to test the accuracy and speed of the 
control from the EMG signal with the clicking ability from the 
EEG signal. We will be using the point and click test that is 
created by ourselves. Circles with 100 pixel-radii will appear 
randomly on the screen every five seconds and stay there for 10 
seconds. The user will need to click on those circles within the 
10 seconds before they disappear. The test will be for a one-
minute period, and we will aim for the user to be able to click 
on 75% of the overall targets. 
D. User Experience 

User experience is one of the important areas of focus of our 
product. Even though our interface is not able to allow a 
multidirectional control (eg. diagonal movement), we hope that 
the experience of controlling an interchangeable directional 
plane provides satisfaction to our subject group.  Since there is 
a challenge in finding test subjects of our interest, we will 
conduct a user experience survey based on the users with no 
disabilities. They will be asked to rate our product based on a 
scale from one to ten on whether they would recommend our 
product to someone in our use-case group or not. This scale will 
be linear, with 1 being a no, 5 for neutral and 10 for a definite 
yes. We aimed to have 15 subjects and hope to receive 70% 
confidence in our product in this test.  

VIII. PROJECT MANAGEMENT 

A. Schedule 
Currently, we are transitioning between our design/setup 

phase and our first execution phase. We have run and recorded 
several sets of data from the EEG device, and that data is being 
used to train and test our machine learning models. This is a 
part of our signals research phase, as we are currently 

constructing an effective way to build and train different ML 
models and testing their accuracy in live detection. We have 
also begun playing around with the EMG sensors and 
connecting them with our Arduino.  

We are moving into the implementation of the software 
phase, where we will be building out the frontend of our 
application. Currently, we have a keyboard with tab, arrow, and 
cursor features. In the coming weeks, we will be adding new 
features and connecting the frontend with the backend. See 
Appendix B for more details.  

B. Team Member Responsibilities 
Our work is split into a few different categories, including 

signal processing, hardware components, and software 
environment/application. Although our project tasks are 
roughly split along these categories, we will work together to 
complete the tasks. The assignment of responsibilities serves 
more as an indicator for leadership of the task. 

Jean has the most experience with signals and has taken 
advanced digital signal processing courses, so she will be 
mainly in charge of creating the signal processing procedure 
and algorithm, as well as conducting research on EEG and 
EMG signals. She will work on creating the signal processing 
structures for the model and will be working in analyzing data 
to extract the main features that will be used to train the ML 
model.  

Jonathan will be working on the hardware/software 
interfacing. After obtaining the data from the Emotiv Insight 
headset, he will build pipelines for parsing the data and build a 
testbed for training and testing ML models. This includes 
testing within the data set and a live detection testbench where 
the model will attempt to detect continuous live inputs. He will 
then create the acquisition and processing production backend 
that will communicate to the user frontend. 

Wendy will be working on the software end, primarily on the 
frontend side. She will create the interface and add various 
features to our project. She and Jonathan will work to connect 
the frontend and backend components together for the final 
application. 
C. Bill of Materials and Budget 

To date, we have purchased all the components outlined in 
our design, and around half of the components have arrived. 
Even though we ordered a few components that might not make 
it into our final system, this was a conscious decision as they 
were purchased as spares. We also ordered replacement 
components in the event of component failure. Fortunately, 
there was already an EEG device in the 18-500 inventory, so 
we did not have to spend a significant portion of our budget 
purchasing that. We were given a budget of $600 and have spent 
just above $226. See Appendix C for more details. 
D. Risk Mitigation Plans 

One of the major risks we might encounter is how accurately 
we can detect the desired features from the EEG sensors. 
Furthermore, we also risk having an unsmooth and difficult to 
use interface if the signals are difficult to pinpoint from the 
user.  

To combat this, we are already including two EMG sensing 
devices which will only require a simple threshold cutoff for 
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triggering display interactions. These can be rigged to generate 
continuous movement and be configurable as the primary 
controllers of desktop movement, especially the mouse, with 
EEG headset acquired signals used to trigger less commonly 
used shortcuts.  

As a minimum target, if our system can reliably detect two 
user-controllable signals from the EEG headset, we have 
enough flexibility to define how patterns of those signals will 
correspond to interface interactions. While this would be 
convoluted and difficult to pick-up in the beginning, we can 
guarantee high accuracy on detecting these signals and our 
system will still be usable, albeit with each action being a 
unique combination of the 2 binary signals we acquire. 

Another potential risk we may face is if the same set of 
features we would like to detect are very different from person 
to person. We can mitigate this by using the EEG headset and 
manually calibrating a set of data from a user and only using 
their unique signals to train the recognition model before it is 
used. We can also port this as an extra feature of our interface, 
so the user doesn’t have to navigate to another application 
before using the system. 

If the EEG headset acquired signals prove to be extremely 
unreliable, we also plan to pivot to using a desktop camera and 
using object detection with OpenCV to recognize facial 
movements that we can map to user actions. 

IX. RELATED WORK 
There are currently no other projects or products that 

incorporate both EEG and EMG signals in the way that we have 
planned.  

A lot of research has been done to study the 2D directional 
control from motor imagery for people who have fully lost their 
arm muscles. There are similar projects that take in EEG signals 
to study and control the cursor on the BCI program [4][5]. 
However, there is no product that is available in the market yet 
that allows the integration of the BCI discovery to create a 
platform on the desktop computer. Moreover, with how 
expensive a standard EEG cap costs, we chose to use an EEG 
headset as it is more commercialized. With the trade-off 
between the price and data acquisition to the spatial and 
temporal resolution, we are integrating EMG sensors to have 
precise control data from the shoulder muscle movement 
instead. We hope that our interface will allow amputees or 
people with limited physical ability to use computers on a daily 
basis and without much difficulty.  

Previous Capstone projects involving EEG or EMG signals 
include a game called Myorun, from Fall 2020, which allowed 
users to physically workout their forearm using a game and 
another game called Traveling Mind, from Spring 2021, which 
implemented a mind-controlled iOS game. Our project hopes to 
integrate mind-control and EMG to not just play a game but to 
control more general computer interfaces. 

X. SUMMARY 
The design and plan of work for our project has undergone 

many iterations. The systems and components have been 
planned and changed to best fit our design goals, as well as be 
feasible to implement. Our plan has also changed as we have 
reevaluated our skill sets and areas of expertise. So far, 

however, we have not done any testing with all our components 
linked together. This is our next biggest challenge, as we have 
dedicated time in our schedule in the upcoming weeks to do 
testing.  

We are excited to implement our design and look forward to 
improving desktop accessibility for those suffering from upper 
body disabilities. If there is anything we have learned in the first 
half of this course, it is that we will maintain an open mindset 
project and be open to any changes or modifications to our 
design. 

GLOSSARY OF ACRONYMS 
API- Application Programming Interface 
CPU- Central Processing Unit  
EEG- Electroencephalography 
EMG- Electromyography  
FFT- Fast Fourier Transform 
ML- Machine Learning  
SVM- Support Vector Machine  
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Appendix A  

 
(a) Typical baseline sample with no features                 (b) Typical blink sample  

 

(c) Typical double blink sample                   (d) Typical triple blink sample 

 
(e) Typical left wink sample                     (f) Typical right wink sample 

 
 

Fig. 5.     Visualizations of the sample data from the EEG device that we are using for training. 
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Appendix B 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.     Schedule 
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Appendix C 
Item Quantity Manufacturer Source Price Arrived? 

Emotiv Insight Model 
1.0 

1 Emotiv 18-500 
Inventory 

$0.00 Yes 

Replacement EEG 
sensors 

2 Emotiv Emotiv $61.94 No 

EmotivPRO Student 
License 

1 license 
($30/month x 

3 months) 

Emotiv Emotiv $90.00 Yes 

EMG Sensors 2 N/A Ebay $44.61 Yes 

EMG gel electrodes 1 pack of 100 
electrodes 

3M Amazon $18.50 No 

9V battery 1 pack of 8 Amazon  Amazon $11.59 No 

Arduino Nano 1 Arduino 18-500 
Inventory 

$0.00 No 

Grand Total $226.64 

  
Table I. Bill of Materials   


