
18-500 Final Report - May 14, 2021 Page 1 of 8

Espresso Overflow
Authors: Archana Navada, Stefan Orton-Urbina, Harper Weigle: Electrical and Computer Engineering, Carnegie

Mellon University

Abstract—The taste of espresso is dependent on
well known variables: pressure, heat, and surface area.
Pressure and heat are fixed by a high quality espresso
machine, surface area is tuned by a grinder. The taste
can then be quantified by looking at the weight vs time
of the pull. This project provides that information with
a scale and iOS or Android application that records the
relevant information and provides insight on how to
improve.

Index Terms—Bluetooth, Espresso, Weight scale,
IoT, iOS, Android, Arduino, C++, Dart, Firebase, 3D-
Printing, SPI, I2C

1 INTRODUCTION

Espresso is as much a science as any other process that
comes before a niche but specialized tasting experience. In
this process, the tuning variables are pressure, heat, and
surface area. Ideally, pressure and heat can be held con-
stant by a high quality espresso machine and consistent
”tamping” of the ground coffee. The surface area is depen-
dent on the fineness of the grind and can be tuned with an
espresso grinder. However, the ability to finely tune vari-
ables in a system is only as helpful as the bench-marking of
the output. While taste is subjective, the taste of espresso
can be quantified by the weight of the espresso and how long
it took to extract it from the coffee grounds. The beginning
of the ”pull” is very bitter and acidic while the end of the
pull is more mellowed but less flavorful. The combination
of these with even flow through the coffee grounds results
in a sweet and generally deemed desirable shot of espresso.
This project looks to provide a quantitative solution to the
systems bench-marking on par with the specificity of the
tuning variables.

2 DESIGN REQUIREMENTS

2.1 User Requirements

The usage should be simple but the simplicity should
not inhibit the user from having full control over the pro-
cess. For that reason the device must maintain functional-
ity as a typical coffee scale in that it:

• Accurately measures and displays object weights with
a resolution of .01g. This will happen on the LCD
screen as well as on the weight display on the appli-
cation side.

• Can functionally tare or set the zero point to the
weight currently applied to the scale. This will hap-
pen on the push of a button and within 1s of the
button press. The updated weight of 0g will be re-
flected on the LCD.

• The scale should be capable of measuring weights up
to 200g and down to 0g without loss of resolution.

• The device must be able to be powered down to con-
serve power.

• The device must be able to work for repeated uses
back to back for the use case that it is being used to
serve multiple people espresso.

2.2 Physical Requirements

The scale must comply with the physical constraints of
an espresso machine as it will measure the weight of the
espresso while it is being poured. Given that a typical
espresso machine has 4in of room from the portafilter to
the drip tray and a typical 4oz glass standing around 2in
must fit between the scale and the portafilter, the scale
must be under 2in in height. To fit on a standard drip
tray the device must have a footprint of less than 5in x
8in. Lastly, the device must be easily transferable from the
espresso machine to a nearby table presumably with one
hand. For the average human, a limit of 5lbs was set but
the device is expected to be far under that threshold.

2.3 Software Requirements

The application looks to have a live feed of the weight
on the scale. While it is not imperative that it happens in
sync with the pull because the user will be operating the
machine independent of the application, the data should
be available as soon as the user goes to look for it. So
the device will have to transmit the data as it is collected.
Additionally, the duration of the pull can be as short as
10s and as long as 60s. For helpful data, the application
is going to need at least 100 samples. Over the minimum
duration, the software must be transmitting an updated
value at 10Hz at the slowest.

2.4 Application Requirements

Seeing as the application will often be used at the earli-
est hours of the morning or at least when caffeine is desired
by the user, the application will have to be user friendly and
easily navigable. It should have no more than 3 steps to
get from opening the app for the first time to being able

18-500 Final Report - May 14, 2021 Page 2 of 8

to retrieve the data informing the tuning variables for the
process.

3 ARCHITECTURE OVERVIEW

The system can be described in two major components
as illustrated in Fig. 1. The dark brown section described
the hardware which will sit in the espresso machine, inter-
act with the user during the process, and transmit data to
the application end. The application end is detailed by the
tan section. It will collect data from the hardware during
the process and provide data to the user about the qual-
ity of the espresso as well as how it can be improved by
adjusting the tuning variables.

Figure 1: Architecture Overview Block Diagram

3.1 Hardware

The MCU described in Fig. 1 is an ATmega328P: the
MCU included on an Arduino UNO. It will communicate
with a NAU7802 load cell amplifier through I2C commu-
nication protocol. The load cell amplifier will in turn com-
municate with a load cell that was removed from a NEXT-
SHINE kitchen scale and placed into the physical enclo-
sure. The MCU will also communicate with the LCD dis-
play through I2C communication protocol and the button
interface through dedicated GPIO pins on the MCU. On
the SPI bus is the NRF24L01 2.4GHz transmitter. The
MCU will transmit weight data from the load cell to the
transmitter so that it can be received by the application.

Figure 2: Full physical device in use

3.2 Application

The application is uses Firebase as a web server and
keeps the data of previous espresso pulls as well as user up-
loads such as bean brand, pictures of the resulting espresso,
and user ratings as well as the applications recommenda-
tions on improvements. It will communicate with the AT-
mega by reading the manufacture data on the paired Blue-
tooth device. The pairing will occur using the built in
Bluetooth functionality on a modern Android or iPhone.
This manufacturer data will contain the scale readings and
update the graph in the application user interface accord-
ingly. The application also provides users with the ability
to upload custom logs.

Figure 3: Sample of Application User Interface

18-500 Final Report - May 14, 2021 Page 3 of 8

4 DESIGN TRADE STUDIES

4.1 Hardware

4.1.1 MCU

The MCU had to be capable of communicating with the
LCD and NRF24L01 meaning it had to be equipped with
a SPI bus. Additionally, it required a I2C bus for com-
munication with the load cell amplifier and a few GPIO
ports for use with the button interface. While lengthy,
this list of requirements does not narrow down the list of
MCUs very much. Originally, the MCU was going to be
a STM32F423CHU6 mounted on a custom PCB. However,
due to supply shortages in China, the MCU was unable
to be acquired in time and the risk mitigation MCU (AT-
mega328P) was used instead. The trade off that lead to
the choice of the STM32F423CHU6 rather than the AT-
mega328P was the compactness that the custom PCB of-
fered. Such compactness would allow the device to better
address the size requirements detailed in Sec. 2.2. Pivoting
to the risk mitigation plan forced more pedantic space al-
location of the individual evaluation boards for each com-
ponent but the design requirements were still met. The
ATmega328P was selected as a backup MCU because of its
versatility in that it was able to function with each periph-
eral component selected and did not compromise the verti-
cal constraints detailed in Sec. 2.2. It also is equipped with
a 16MHz internal clock which is divided by 4 for the SPI
clock which will be used to transmit data. This provides a
data rate with plenty of room to meet the 100 samples per
second data rate described in Sec. 2.3.

4.1.2 Load Cell

The load cell specifications are strict given the size con-
straints detailed in Sec. 2.2 and the weight resolution re-
quired to meet the design requirements detailed in Sec. 2.1
all the while staying within the price range. It was de-
termined that buying a load cell itself capable of measur-
ing 0g-200g at a resolution of .01g would quickly take the
project out of the scope of the budget. As an alternative, a
NEXT-SHINE kitchen scale was purchased and disassem-
bled to retrieve the 500g load cell with a resolution of .01g.
Because of the load cell amplifier (described in Sec. 4.1.3),
the load cell could be easily cut, striped, and plugged into
the terminal blocks to work for the projects purposes.

4.1.3 Load Cell Amplifier

Firstly, the load cell amplifier was included in the de-
sign to compartmentalize the load cell voltage output away
from the MCU. This reduces the need to occupy the inter-
nal ADC in the MCU in case it was needed for additional
features but it also isolates the load cell output from digital
lines that could create unwanted noise on the low voltage
line. The NAU7802 was selected for it’s I2C compatibil-
ity and it’s internal wheatstone bridge removing the need

for external passive components both increasing the devices
footprint but also it’s susceptibility to failure.

4.1.4 2.4GHz Transmitter

The transmitter was added to the design to remove the
need for wired communication between the device and a
mobile phone. The NRF24L01 was selected for its low
price point and its open source nature. The device could
easily be appended to the SPI bus and was known to trans-
mit the frequency needed to be detected by modern mobile
phones. The project could have included a dedicated pro-
prietary BTE transmitter, however, this peripheral would
have consumed a substantial portion of the budget for little
benefit over the NRF24L01 outside of ease of setup for the
engineers. The user should notice no difference between the
two use cases because Firebase (described in Sec. 3.2) does
not include native bluetooth functionality. This requires
the user to pair with the bluetooth device outside of the
Espresso Overflow app to begin with.

4.1.5 LCD

The LCD serves a critical purpose on the device as it has
to relay information to the user that will ultimately guide
the user interaction. The LCD chosen was the SparkFun
LCD-16396. It connects with other selected components
well because of its I2C connection and has software infras-
tructure already written to allow for seamless intergration
with the other components.

4.1.6 Enclosure

Due to our tight sizing constraints described in Sec.
2.2, the enclosure created had to fit the chosen components
very closely which ruled out any pre-fabricated enclosures.
Additionally, the access to raw materials was limited but
3D-printer access was virtually unlimited. As a result, a
3D-printed enclosure was selected to allow for maximum
accessibility and minimum footprint. This choice also low-
ered the cost of the enclosure because all that would have
to be paid for is the printer filament.

4.2 Software

4.2.1 Application

The application was written in Dart with a Firebase
backend. The primary driving factor behind this design
choice was the need to function on both Android and iOS.
This development toolchain allows for a much smaller and
more compact exportable application that makes the device
usage quick for all users without the need for any depen-
dencies.

4.2.2 Embedded Software

The software for the MCU was written in C++ and
compiled and downloaded using the Arduino IDE through

18-500 Final Report - May 14, 2021 Page 4 of 8

Serial. The primary benefit to the Arduino IDE is the soft-
ware infrastructure for each of the peripheral components
which was necessary given the time constraints after the
project pivot. Furthermore, the Arduino IDE allowed the
group to forgo a writing or finding a bootloader for the
ATmega328P.

5 SYSTEM DESCRIPTION

The system as a whole is controlled by two main hard-
ware systems, the MCU (Sec. 5.1 and the users mobile
device. The MCU communicates with the LCD (Sec. 5.5
and the load cell amplifier (Sec. 5.3) through its I2C bus
and the 2.4GHz transmitter (Sec. 5.4 via its SPI bus. The
button interface (Sec. 5.6 communicates with the MCU
through its GPIO pins. The mobile phone houses the ap-
plication software and queries the Firebase database for
all information transfer. The scale information is received
the the bluetooth manufacturer data transmitted by the
2.4GHz transmitter on the scale.

5.1 MCU

The ATmega328P[2], in the overall system, is tasked
with I2C communication to control the LCD display and
the load cell amplifier as well as SPI communication to
control the 2.4GHz transmitter. The I2C line, by the na-
ture of I2C clock stretching, has no defined clock speed
but the average I2C clock for an Arduino and SparkFun
peripherals during standard operation is around 100KHz.
Additionally, the 16MHz on board clock is divided by 4 for
the ATmega328P’s internal SPI clock resulting in a 4MHz
clock. As shown in Lst. 1, the MCU writes 9 bytes and
reads 3 bytes over I2C, writes 6 bytes over SPI, and writes
7 bytes over Serial to the debugger. The ATmega328P’s
serial was initialized to a baud rate of 9600. The I2C reads
and 1 write occurs in the getReading() function. Under-
standing that the weight is a 32bit integer that must be
transmitted over the SPI bus, the equation in Fig. 4 yields
a weight update from the scale every .36µs.

DataRate(
bytes

s
) = 32(bits)×

(SCLKSPI(bits
s)

NSPI(bits)

+
SCLKI2C(bits

s)

NI2C(bits)

+
BaudRateSerial(

bits
s)

NSerial(bits)
)

(1)

Figure 4: Data rate calculation

5.2 Load Cell

The load cell was taken from NEXT-SHINE kitchen
scale and unfortunately did not come with any part num-
bers so the actual verification of the load cell capability

had to be done after integration with the device. However,
the NEXT-SHINE scale was found to operate within the
advertised conditions. The load cell, shown in Fig. 5, fit
well into the model because of its small size. Its dimensions
(LxWxH) were found to be 47mmx10mmx6mm. The load
cell was determined to function like a Wheatstone bridge
based on the V+, S+, S-, and V- connections in the scale
as shown in Fig. 6. This allowed us to splice the connection
and plug it into the load cell amplifier described in Sec. 5.3.

Figure 5: 3D model of load cell

Figure 6: Load Cell Connection to NEXT-SHINE kitchen
scale

Figure 7: NAU7802 typical application schematic

5.3 Load Cell Amplifier

The load cell amplifier communicates through I2C with
the MCU as described in Sec. 5.1. Due to the usage of a
SparkFun evaluation board for the NAU7802[1], a library[4]
was able to be used for the driver code. The NAU7802

18-500 Final Report - May 14, 2021 Page 5 of 8

model takes in a voltage differential from a Wheatstone
bridge connection detailed in Fig. 7. It outputs data from
its internal ADC in the form of thee 8-bit packages.

5.4 2.4GHz Transmitter

For Bluetooth transmission, the nRF24L01[3] was used.
It broadcasts at 2.4GHz which is the frequency Bluetooth
communication broadcasts at. In order to send the infor-
mation to the application, the device encodes the weight
information into the manufacturer data to get around pro-
prietary Bluetooth communication protocols. Fig. 9 shows
the scale broadcasting information and encoding 86g (0x56
in hexadecimal) in the manufacturer data. This value up-
dates on every loop of the MCU describes in Sec. 5.1 and
shown in Lst. 1.

Figure 8: The broadcast device name and manufacturer
data containing the current weight on the scale

5.5 LCD

The LCD is a SparkFun 16x2 SerLCD. It communicates
with the MCU through I2C as described in Sec. 5.1 and
displays the current weight on the scale every loop in the
MCU as shown in Fig. 2.

5.6 Buttons

The Buttons on the scale are responsible for starting
the on board timer and zeroing or taring the scale. Both
buttons are shown next to the LCD in Fig. 2. The but-
tons are simply Pressed-On/Release-Off buttons connected
to GPIO pins on the MCU. The tare function simply takes
100 samples of the current weight on the scale and aver-
ages it. This value becomes the new baseline value used
in the loop calculation shown in Lst. 1. The timer button
starts a timer from the time of press and stops it on a sub-
sequent press. Because the device perpetually broadcasts
information as described in Sec. 5.4, the time kept by the
scale is just for the user to maintain normal coffee scale
functionality.

Figure 9: Mechanical drawing of scale buttons

6 TEST & VALIDATION

The team performed various tests on the speed of the
application and the accuracy of weight measurements from
the scale itself. The data was uploaded to storage and
downloaded back to the dashboard consistently within five
seconds, as was hoped at the beginning of the project.

6.1 Results for Weight Accuracy

The device quality was verified using a commercial scale
of known accuracy to cross reference the weights of coffee
grounds. It was found that the percent error was well be-
low ten percent for various measurements. This data is
displayed in 10 and 11.

18-500 Final Report - May 14, 2021 Page 6 of 8

Figure 10: Line graph displaying measured weight error

Figure 11: Bar graph displaying percent error in espresso
weight

7 PROJECT MANAGEMENT

7.1 Schedule

The team’s schedule changed drastically towards the
end due to the PCB, which contained the entire system,
not arriving. This forced the entire hardware side of the
the system design to pivot to the risk mitigation plan and
forced many of the tasks in the middle of the schedule to
simply preparing for the late arrival of the PCB. Things like
writing preliminary embedded code for the STM32 were
completed but never fully realized because of the pivot to
an available MCU.

The application development also suffered from not hav-
ing available hardware because it forced integration be-
tween the application side and the hardware to be pushed
until after the newly ordered evaluation boards for each of
the peripherals had been integrated.

7.2 Team Member Responsibilities

Each team member came into the project with fairly
similar skill sets but slightly specialized in one way or an-
other. The divisions of labor ended up falling on the lines
of front end software, embedded software, and hardware.
This changed slightly towards then end when Stefan had
all of the hardware in his possession and became respon-
sible for hardware integration and testing the embedded

software on the full hardware system. General responsibil-
ities were as follows:
Archana - Front End Software

• Firebase implementation

• Flutter implementation and integration

• Application User Interface

Stefan - Embedded Software

• Embedded Software Integration

• LCD/Button User Interface

• Physical Enclosure Manufacturing and Testing

• Hardware Integration

Harper - Hardware

• System Electrical Design

• PCB Design

• Load Cell Implementation

7.3 Budget

The budget is described in Tab. 1.

7.4 Risk Management

The team’s approach to the project was understood
to be high risk from the beginning. Between the custom
on-PCB antenna to embedded peripherals as opposed to
full evaluation boards, the project had many failure points.
For this reason, the risk mitigation plans for the project
encompassed on PCB risk mitigation such as:

• 0Ω Signal Test Points

• 2.54mm UART Through Holes

• Terminal Blocks for the Buttons, the LCD, and the
Load Cell

The design was also made with well known peripherals
that had evaluation boards should the project need to pivot
away from the PCB entirely. When the PCB was unable to
arrive due to stock shortages in China, it was helpful to be
able to buy SparkFun evalution boards for all the periph-
erals and control them all with an Arduino that was laying
around.

8 ETHICAL ISSUES

Espresso making as a hobby and community is one with
a high barrier to entry in that the cost of the tools is high
and the learning curve is steep. While this project is un-
able to do anything about the high cost of entry, it looks to
lower the time and effort required to surmount the learn-
ing curve. The obvious implication of such a goal is more
people will become involved in espresso making thereby
consuming more coffee.

18-500 Final Report - May 14, 2021 Page 7 of 8

Table 1: Bill of materials

Description Model # Manufacturer Quantity Cost @ Total
Populated PCB SPRSO00 PCBWay 1 $255.00 $255.00
Load Cell Connector 440146-4 TE Connectivity 3 $0.17 $0.51
Load Cell Connector Crimps 1734193-1 TE Connectivity 12 $0.14 $1.68
JTAG Programmer ST-LINK/V2 STMicroelectronics 2 $22.61 $45.22
LCD LCD-16396 SparkFun 3 $19.95 $59.85
LCD Cable 4399 Adafruit 3 $0.95 $2.85
Batteries CR2032 LiCB 1 $5.99 $5.99
Power Switch PV2F240NNM01 E-Switch 3 $5.87 $17.61
Buttons RP3502ABLK E-Switch 10 $1.68 $16.80
3D Printer PLA Filament HZST3DSILKPLA SHENGTIAN 1 $29.99 $29.99
Coffee Scale n/a NEXT-SHINE 2 $16.99 $33.98
Load Cell Amplifier SEN-15242 SparkFun 1 $14.95 $14.95
2.4GHz Transmitter nRF24L01 Makerfire 1 $12.88 $12.88
MCU STM32F423CHU6 STMicroelectronics 3 $12.64 $37.92

$535.23

Herein lies the primary ethical concern with this
project: coffee consumption. On a global scale, coffee con-
sumption is incredibly detrimental both environmentally
and economically for countries which grow it. Coffee, as it
is currently grown requires a very specific climate common
in South America, Northern Africa, and many countries
in Oceania. These regions are also subject to exploitation
by many industries, coffee included. The mass growth of
coffee to meet the global demand results in mass defor-
estation and low wages for the workers who endure such
back-breaking labor.

The solution is to encourage users of this device, but
also all coffee products, to purchase ethically sourced cof-
fee. Ethically sourced coffees range in their detriment mit-
igation techniques from coffees that do not require defor-
estation, like shade grown coffees, to simply giving portions
of the profits back to the countries which grow the coffee.

9 RELATED WORK

There are few related products to the product the team
created. The main one of note is the Acaia Pearl and Lunar
scales. These weighing scales have similar functionality to
the product created by the team. These products are the
only ones of importance on the market that can fit under
an espresso machine, which was a key requirement in this
project. With the original design including the PCB, our
team believes that the budget would have been comparable
to the cost of the Acaia products.

10 SUMMARY

The final product was able to meet most of the de-
sign requirements that were set forth with the caveat that
they occurred through the risk mitigation plan. The de-
vice functions as a normal coffee scale and can be used in
place of any espresso scale one might find in the kitchen

of an espresso enthusiast. Additionally, data is transferred
to the application which displays the weight vs, time. The
application is capable of data logging and providing brief
advice on improving the espresso quality.

Had there been more time for this project, first and
foremost, the PCB would have arrived allowing for a more
compact and efficient implementation. Additionally, more
time would have been able to be allocated to integration
and developing more features for the product like more spe-
cific improvement advice or advice based on the experiences
of other users.

10.1 Future Work

Since the assembled PCB and the replacement STM32s
are arriving after the deadline for the project, it would be
interesting to try and see this project through. All mem-
bers of the team subscribe to ”espresso culture” and could
possibly benefit from a finished and polished version of this
project. Other version of the device exist but it’s well un-
derstood that they do not accomplish what they need to
and the niche largely goes unfilled.

10.2 Lessons Learned

The main lessons learned from this are ordering evalua-
tion boards for all components of the PCB before it arrives.
This way, in the worst case, there is a very large and dis-
jointed version of the finished product that only needs to
be recreated in the more sleek and compact version offered
by the arriving PCB. The design requirements were able to
be met but to a much lesser extent because of how long it
took to pivot to the risk mitigation plan. In the future, the
risk mitigation plan should just be an in-tandem plan.

18-500 Final Report - May 14, 2021 Page 8 of 8

Glossary of Acronyms

• SPI – Serial Peripheral Interface

• I2C – Inter-Integrated Circuit

• MCU – Microcontroller Unit

• LCD - Liquid Crystal Display

• GPIO - General Purpose Input/Output

• PCB - Printed Circuit Board

• IDE - Integrated Development Environment

• JTAG - Joint Test Action Group

• UART - Universal Asynchronous Receiver-
Transmitter

• PLA - Polylactic Acid

References

[1] Nuvoton Confidential. “NU78-02 24-bit ADC”. In: 1.7
(Jan. 2012), pp. 1 –42.

[2] Atmel Corporation. “ATmega328P [DATASHEET]”.
In: 4 (Jan. 2015), pp. 1 –294.

[3] Nordic Semiconductor. “Product Specification v1.0”.
In: nRF24L01+ Single Chip 2.4GHz Transceiver 1
(Sept. 2008), pp. 1 –2.

[4] SparkFun. “SparkFunQwiicScaleNAU7802ArduinoLibrary”.
In: 1.0.4 (Jan. 2020).

Legend: Archana Stefan Harper Team

Week 2/8 Week 2/15 Week 2/22 Week 3/1 Week 3/8 Week 3/15 Week 3/22 Week 3/29 Week 4/5 Week 4/12 Week 4/19 Week 4/26 Week 5/3 Week 5/10

Brainstorm

Abstract

PCB Schematic
Design

Website Creation

Tool Chain
Research

Proposal
Presentation

PCB Board
Design

Order Parts

Initialize App

STM32 Toolchain
setup

PCB Operational
Testing Docs

App Framework

Design
Presentation

Driver Code

Design Review

Enclosure Design

Enclosure Fit
Testing

Ethics
Assignment

App Dummy Data
Testing

Pivot to Risk
Mitigation Plan

Redesign to Use
Eval Boards

Order Parts

LCD Unit Testing

Load Cell Unit
Testing

Load Cell/LCD
Integration

Bluetooth Unit
Testing

Bluetooth
Integration

Final
Presentation

Capstone Fair

18-500 Final Report - May 14, 2021 Page 9 of 8

18-500 Final Report - May 14, 2021 Page 10 of 8

Listing 1: MCU loop code

void loop ()
{

i f (myScale . a v a i l a b l e () == true)
{

i f (d i g i t a lRead (0) == 0) b a s e l i n e = z e r o s c a l e () ;
long currentReading = (myScale . getReading ()− b a s e l i n e)/ val2gram ;
SerialUSB . p r i n t (”Reading : ”) ;
SerialUSB . p r i n t l n (currentReading) ;
n r f s e r v i c e d a t a buf ;
buf . s e r v i c e u u i d = 0x180A ;
f loat temp = currentReading ;
buf . va lue = temp ;

SerialUSB . p r i n t (” . ”) ;
//Needs to be l a r g e enough to ho ld the en t i r e s t r i n g wi th up to 5 d i g i t s
char tempString [1 0 0] ;
// transmi t to dev i c e #1
Wire . beg inTransmiss ion (DISPLAY ADDRESS1) ;

//Put LCD in to s e t t i n g mode
Wire . wr i t e (’ | ’) ;
//Send c l e a r d i s p l a y command
Wire . wr i t e (’− ’) ;
s p r i n t f (tempString , ”Weight %dg” , currentReading) ;
Wire . p r i n t (tempString) ;
Wire . endTransmission () ; //Stop \(I ˆ2C\) t ransmiss ion
s p r i n t f (tempString , ”Weight %dg” , currentReading) ;
b t l e . begin (tempString) ;
b t l e . a d v e r t i s e (0 , 0) ;
// b t l e . a d v e r t i s e (0 , 0) ;
b t l e . hopChannel () ;

}
}

