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Abstract—The current standard for live poker uses the
outdated method of human estimation to track valuable
information about the game state, such as the overall pot size and
bet sizes. This practice often leads to slower playing times and
shifts a player’s focus from the crucial decision making processes
involved in playing towards bookkeeping, which ultimately takes
away from the playing experience. We propose a system to track
and display important game elements for real-life poker players.
Motivated by online poker, our system will track individual bet
sizes, the overall pot size, and player order through a device
controlled by a Raspberry Pi. The device will include a computer
vision system to scan stacks, an actuation system to direct the
camera to the correct location, and a real-time display to show
this information to the players. The game state will be controlled
by a dealer through an intuitive UL. Our goal is to provide a
simple device that a dealer can use to provide an online
poker-like experience to in-person games, improving overall
gameplay quality.

Index Terms—Computer Vision, Mechatronics,
Microcontrollers, Motor Control, Python, Servo, Systems, User
Interface

1. INTRODUCTION

The rules of poker state that all table information should be
available to players at all times. Table information is crucial to
competitive poker players for making informed decisions
during a game. For example, knowing the stack size of other
players is very important when choosing to either call, raise,
or fold. If an opponent has more money than themself, they
may want to rethink about raising the bet size. If the opponent
has less money than themself, it may be an opportune time to
step on the pedal and raise. In a real life poker match, if a
player wanted to know the size of another player’s stack, they
would need to ask the casino dealer to physically count that
player’s stack chip by chip. This method is becoming outdated
given the efficiency of online poker games.

Online poker games have revolutionized the poker
environment by constantly displaying all table information
directly to the players. In an online poker game, players can
always view the pot size, player stack sizes, bet sizes, and
whose turn it is to act during a round. This is the way poker is
meant to be played, with all table information readily
available. The goal of the Smart Poker Table is to display the
same information provided in an online poker game to real life
poker players. With a maximal update time of 10 seconds, the
Smart Poker Table will successfully imitate the online poker
environment for real life casino poker players.

II. DESIGN REQUIREMENTS

Our goal with this project is to create an environment that
creates a smooth play experience like one found in online
poker games; as a result, the most important requirement is
providing the players and dealer with real-time, accurate
information. Since there is no objective measurement of
real-time speed as defined in a poker game, we have chosen a
maximal update time of 10 seconds (allotting for turning,
image capturing and computer vision processing, and updating
the display). In person, a round of poker with a full table takes
anywhere from 30 seconds to 10 minutes. Averaging round
lengths gives us 5 minutes and 15 seconds; with a full table of
eight, our device will require 8 * 4 * 10 = 320 seconds per
round, or about 5 minutes and 20 seconds a round in the worst
case scenario. An update speed bounded by 10 seconds will
allow our device to keep pace with standard live poker games
in the worst case.

Our metric for the accuracy of estimating the pot size will
be within +/- 10% of the actual pot size. This number may
seem quite low, but it is sufficient in the context of the
problem. At the end of the game, the winner’s payout is based
on the physical chips on the table --- not our estimated pot
value. Instead, the main purpose of the pot estimation is to
help players make better betting choices; a rough idea of the
pot size works well for this purpose, which is why 90-110%
estimates are just as useful as 100% accurate ones.

Our device is intended to be easy to use and require only 5
minutes to learn for the average poker dealer. This represents a
way to metric the ease of use since end users ultimately want
something which works as out of the box as possible. While
this is admittedly an arbitrary value, it provides a good
guideline to follow on the eventual simplification/streamlining
of the design. As for the computer vision, we would like the
image capture and processing pipeline to occur within 3
seconds. This will provide us ample time to meet our maximal
update time listed in the first paragraph. Turning the camera to
the correct position using a servo will need to occur within 5
seconds to fit alongside our computer vision processing time
and maximal update time requirements.

Here, we’ll address the more physical requirements of the
system. The servo will need to turn within a 4.735 degrees of
our reference stack reading position. This translates to a worst
case scenario (when the stacks are 48 inches away) of +/- 4
inches of deviation from the horizontal line of our stack
reading position (arctan(4/48) = 4.735 degrees). Anything



18-500 Final Project Report: 05/14/2021

beyond this point will result in the camera pointing in the
wrong direction and being unable to read the stack, which will
result in a completely incorrect bet size. Finally, our camera
will need a minimum resolution of 63x460 pixels. This is
derived from our window size of 48x48 square inches and a
chip area of 1.53x0.209 square inches, with the formula
axisResolution = 2 x FOV / minSize. Plugging in the
values 2*(48/1.53) and 2 * (48 /0.209) gives us a minimum
bound of 62.74 and 459.33 pixels in the x and y directions,
respectively.

Finally, we want our internal game state to perfectly match
the current state of the game in real life. These two must be
exactly the same or else synchronization issues will occur in
the software.

111. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
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within its yellow box. The orange arrows show the
connections between different hardware components, and the
blue arrows represent the conditions and order in which
software functions are called. In addition to the block diagram
above, we have provided two more block diagrams at the end
of the page. The Software Block Diagram details specifically
the interplay between the dealer UI and the game state tracker,
while the Communications Block Diagram describes in detail
the protocols used to communicate between different
devices/drivers.

When a game is started, the game state tracker is initialized.
The game state tracker (or GST, for short) then initializes the
Dealer/Player Ul, the Vision System, and the Servo System.
Control is then handed to the Dealer UI, which waits for the
dealer’s input to start a round or to configure the system. Once
the dealer starts a round, the “Play Round”
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Fig. 1 Overall System Architecture

Broadly speaking, we can divide our project into four main
subsystems: the dealer/player Ul, the game state tracker, the
servo system, and the vision system. Since our design
presentation, we have decided that the vision and servo
systems were disconnected enough to warrant their own
subsystems and separated them from our original hardware
subsystem. In the diagram above, each system has hardware
component(s) in its green box and software component(s)
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loop in the Software Block Diagram begins. During this loop,
the Dealer UI collects information regarding players folding
and/or betting and transmits it to the GST, which then hands
over control to the appropriate subsystem. If a player folds, the
GST removes them from the order tracking and proceeds to
the Dealer UL If a player raises or calls, the GST will first
proceed to the Servo System. Once the Servo System has
moved to the appropriate position, control is returned to the
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GST which in turn invokes the Vision System. After the
Vision System collects the stack size information, it transmits
the information back to the GST to update the state and repeat
the cycle. For a pseudocode example of this process, please
refer to Fig. 12.

The hardware architecture consists of a Raspberry Pi, a
camera, a display monitor, a servo motor / servo driver. The
Raspberry Pi serves as the main controller of the system, to
which the peripherals are connected. To send and receive
image data, the Pi communicates with the camera over UART.
To actuate the servo with positional feedback, the Pi uses I12C
to communicate with the servo driver which in turn uses PWM
to drive the servo itself. The monitor is updated over HDMI as
the game progresses. Most of the design is abstracted behind
libraries, allowing us to focus more on the algorithms than
connecting the subsystems.

IV. DEsIGN TRADE STUDIES

A. Stack Scanning: Computer Vision vs RFID

One of the biggest design decisions we made as part of our
design process was choosing to go with computer vision
instead of RFID for the stack height reading. The most
prominent reason for this change is feasibility. While we have
little actual data on the feasibility of scanning a stack of chips
using RFID, feedback from the professors generally suggested
it was a nigh impossible task to achieve. While there are a few
examples of RFID being used to scan items quickly (RFID
Blog, 2020), our problem is fundamentally harder due
occlusion from RFID tags. This is less of a problem when
scanning items such as the clothes mentioned in the above
article, but can prove to be a strong issue when dealing with
stacked playing chips. Even the most sophisticated leaders in
RFID technology can struggle with scanning thin stacks of
more than 25 chips (RFID Journal, 2013). In contrast,
computer vision can scan chips using fairly simple methods if
properly structured. In the end, we decided to go with a
tradeoff of a method that is more likely to provide a guarantee
of being able to scan stack heights to some accuracy over
experimenting with a relatively unknown technology
potentially unable to fulfill our requirements.

B. Servo Subsystem: Continuous vs Regular

Another design decision we made was choosing between a
standard 180 degree servo and a continuous rotation servo. A
180 degree servo tends to be fairly positionally accurate and
easy to use; the ability to simply write an angle to the motor is
built into the driver chip we initially wanted to use.
Meanwhile, a continuous rotation servo provides 360 degrees
of rotation but is more complex in terms of control.
Additionally, its feedback is not readable by a Raspberry Pi so
using this component requires introducing an Arduino to
communicate between the motor and the Pi. Our device
placement on the poker table (see Fig. 14, Model of Smart
Poker Table Setup) also depends on what motor we choose, as
the range of rotation limits how far we can place the device
from the dealer. In the end, we chose to go with continuous
servo. We initially chose the continuous servo because it

allowed us to place the device in the middle of the table and
close to the players --- thereby reducing the difficulty of
scanning stacks. We believed this would translate into an
increased accuracy, making the continuous servo well worth
the extra complexity involved with implementation. In the
end, we chose to only use a rotation of 180 degrees, and to
place the servo at the edge of the table. We had no time to
order the non-continuous servo, so we just stuck with the
servo we had.

C. Hardware Components Consolidated vs Distributed

Deciding between a placement of components in which parts
were distributed versus a placement that consolidated the parts
in one area actually proved to be quite difficult. Distributed
components allow us to hide the less visually appealing
electrical components. This would create a prettier setup
which is less distracting from a standard poker environment.
However, this method creates complex wiring schemes that
increase both the chance of failure (i.e a wire getting cut) and
the difficulty of setup and troubleshooting (since devices must
be individually repositioned and inspected). On the other
hand, consolidating the various components as much as
possible allows us to shorten wires and more quickly identify
any hardware issues that crop up during gameplay --- but
doing so involves more mechanical design and construction,
as seen in the rendering of figure 3. Our choice to go with
consolidated components is based on the decision to invest
more in design, as we believe that a good design preemptively
mitigates many risks associated with possible system failure
later on.

D. Computer Vision: Blob Detect vs Checker Counting

The most major trade-offs we made were whether to use
the blob detection algorithm or the checker counting algorithm
for scanning stack sizes. The blob detection algorithm is a
straightforward, easy to implement algorithm which simply
matches a color to a blob and finds the minimum bounding
box around said color blob. However, as seen in table 1, its
performance was far less accurate. This is because no matter
what color space representation we used (HSV, RGB, or
LAB), we found that lighting conditions had a noticeable
effect on color interpreted by the algorithm. Tuning the
algorithm to match colors and values properly, as well as
getting it to avoid counting random pixels as part of the stack,
ended up being extremely difficult; as a result, the algorithm
interpreted stack heights wildly incorrectly. On the other hand,
the checkers counting algorithm (also in table 1) was more
accurate but extremely complex to implement. So, we had to
make the tradeoff of time and complexity versus accuracy. In
the end, we chose to implement the checker counting
algorithm. While it was not sufficient to get us to our desired
metric, it still performed far better than blob detection.

E. User Interface: Combined or Separate

A minor tradeoff we encountered early on was whether we
should separate our dealer and player Ul screens. Initially, we
felt that the dealer might have information they would want to
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keep hidden from the rest of the players and intended to
separate them. However, the limitations of the Pygame library
[5] prevented us from keeping these windows separated.
While deciding between using a different library or using one
window for both Uls, we concluded that there isn’t any
information the dealer needs to keep from the players and
elected to have the dealer Ul and player Ul use the same
display for simplicity.

F Controlling Overall System Variables

Our Computer Vision algorithm is very dependent on color
temperature and chip distances. To fix the issue of chip
distances being inaccurate, we mandated bet positioning for
each player on the poker table. On the Smart Poker Table,
there are blue strips of tape indicating where each player
should place their bet. Each strip of tape is the same distance
from the camera. In addition, we maintained a constant color
temperature by placing a high intensity white lamp over the
poker table. This allowed us to see consistent color detection
from our CV algorithm. For an example of this setup, please
refer to figure 13.

V. SYSTEM DESCRIPTION

A. Subsystem: Computer Vision

The computer vision subsystem includes a USB camera, an
algorithm which takes a picture and scans the stack size in the
captured photo, and an algorithm to calibrate the chip sizes
and mapping of the value of a stack to its color. The code for
the stack size scanning algorithm is given in figure 2.

First, the algorithm takes a photo. Then, it looks for white
checkers using the intensity of the image. Once it has found all
the white checkers, it clusters them into groups based on a
modified version of k-nearest neighbors. It then calculates a
minimum bounding box across each group of checkers to
estimate the warped stack height. Then, a line is fit through
the bottom of each bounding box using the least squares
function from numpy [7] to estimate the rotation of the image.
The inverse rotation is applied to fix any tilt; from there, the
algorithm runs again to compute and aggregate the checkers.
The final resulting bounding boxes are used as the height of
the stack in pixels; dividing by the average chip height gives
the number of chips in the stack. Finally, the algorithm uses
k-means provided by OpenCV [6] to find the dominant color
in each image and matches it to the color-value mapping
produced in calibration for a value. The height of a single
stack is multiplied by the value of a single chip to get the total
value for that stack, with each stack value being summed to
calculate the total bet size.

("debug")

1istOfColors = [dat.colorAssociation[key] key
listOfIntensities - [dat.intensities[key] key

dat.colorAssociation]
dat.intensities]

similarRange
i ran dat.values)):

x1 = rectlList[i][@]

%2 = rectlist[i][1]

yl = rectlist[i][2]

y2 = rectlist[i][3]

height = y2 - y1

section cut_frame[ 2 1x2]

secColor {section})

var = np.linalg.norm{secColor - np.mean(secColor})

inten

secColor

minError

minIndex 1
ind

listOfColors:
listOfIntensities[ind]
np.linalg.norm{secColor

color
intColor
tempError color)
var similarRange:
tempError = np.abs(inten intColor)
tempError minError:
minIndex - ind
minError = tempError
ind 1
chipVal = dat.values[minIndex]
chipH = dat.chipHeight
wvalue = chipVal * np.round{height / chipH)
pr : ", secColor)
pr e Y inten)
pr dat.colorAssociation[minIndex])
pr q i , height)
pr [minIndex])
pr i , np.round(height
Total Value: ", value)

chipH})

totVal
totval

value

Fig. 2 Stack Scanning Algorithm Code

The mechanical assembly is shown in Figure 4, while the
rendering is given in Figure 3. The camera is mounted to a 3D
printed rod with a %”-20 thread. The other end of the rod is
mounted to the servo horn. The servo, Arduino, and Raspberry
Pi are arranged on the box-like mounting assembly to keep the
components close to one another.
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//servo control code snippet on Arduino
void loop(){
int angle;
if(Serial.available()){
String data =
Serial.readStringUntil('\n');
angle = data.toInt();
servo.rotate(angle, 4);
Serial.println(angle);
}

Fig. 3 Servo and Camera Rendering

// Pi to Arduino Serial (python)
B. Subsystem: Servo import serial

The servo subsystem includes a 360 continuous rotation ser = serial.Serial('/dev/ttyUSBO', 9600)
servo with feedback from Adafruit, 6 volt power supply, string = str(Playerlist[currP].angle)

Arduino Uno, and Raspberry Pi. ser.write(string)

Fig 5. Code Snippet for Servo Subsystem

Camera, Servo, and Electronics

The complete servo subsystem diagram is in Fig. 21 under
Section Servo Subsystem Diagram.

C. Subsystem: Dealer Ul

The Dealer Ul has two functions: system configuration and
game state updates. The Dealer Ul is meant to be used by
non-engineers so it is designed to be very simple and user
friendly. It consists of simple controls to calibrate the system
and control the game state.

System configuration can occur in between any round, but
usually happens at the very beginning of a game. With system
configuration, the dealer can enter the chip configuration
screen, the player addition and removal screen, the player
stack sizes screen, and choose when the game begins. These
updates are then relayed to the GST.

Camera

Servo
Raspberry Pi

Ardulno

Fig. 4 Integrated Assembly

To start, we connect 360 servo to arduino. The reason why
we didn’t connect servo directly to Raspberry Pi is because the
Pi lacks the capability to read PWM from a GPIO. However,
the Arduino could do that because it has PWM pins designed
to receive feedback, so not only are we able to get the 360
continuous servo rotating with different RPMs, we could also
set the angle where we want the servo to rotate to. The library
we are using to actually control the servo angle is the
Parallax-FeedBack-360-Servo-Control-Library-4-Arduino [4].

In order to make the servo rotate to the correct position, the
Arduino will need to receive a signal from the Raspberry Pi
containing the angle to turn to. Once received, the Arduino
will then begin spinning the servo. After it has reached the
target position, the Arduino will transmit a confirmation signal
to the Raspberry Pi, allowing the GST to call the Vision
Subsystem. For the communication protocol, we will use
USB, and we will import the python serial library on the
Raspberry Pi and use the builtin serial function for Arduino. Fig.6 System Configuration Interface

Stack Sizes
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In Fig. 7, the player addition and removal screen is shown.
The dealer can click on the various circles to add players to
that location on the table. Clicking again on that circle will
remove the player from the game. The dealer can also input
the name of the player when prompted.

Fig. 7 Player Addition and Removal Screen

In Fig. 8, the player stack sizes screen is shown. Here, the
dealer can edit the stack sizes of the current players in the
game. Each player starts with a default of $200, but the dealer
can edit that number to be anything the player wants.

Fig. 8 Player Stack Sizes Screen

In Fig. 9, the chip configuration screen is shown. In our
poker game, we allow for 5 different chip types and their
values can be edited here. In addition, the big blind value for
the game can be edited here as well. There is no function for
editing the small blind because it will always be half of the big
blind. In the top right corner of the screen there is a calibrate
button which begins the Computer Vision calibration routine.

Fig. 9 Chip Configuration Screen

In Fig. 10, the game screen is shown. The player
highlighted in light green is currently in their turn to act. The
small blind position is denoted with a blue, small blind chip
image and the big blind position is denoted with a yellow, big
lind chip image. The size of the pot and current round of the
game (preflop, flop, turn, river) is displayed in the middle of
the screen. In the top right corner, the dealer has 4 options to
choose for each player: fold, check, raise, call. When the
dealer makes these updates, they are relayed to the GST and
the game state is updated.

Fig. 10 Game Screen

D. Subsystem: Player Ul

The Player Ul is a graphical user interface for the players
at the table. The purpose of the Player Ul is to display all
relevant table information to the players during the game. The
player Ul communicates with the GST and retrieves all the
necessary information from its modules. Essentially, the player
Ul is displaying the same game screen shown in Fig. 10. This
screen is separate from the Dealer Ul game screen, but they
are both displaying the same thing. We will connect a monitor
to the Raspberry Pi via an HDMI cable to display this
graphical interface.



18-500 Final Project Report: 05/14/2021

Fig. 11 Player UI

E. Subsystem.: Game State Tracker

The Game State Tracker is the nucleus of our project. The
role of the GST is to first and foremost to track the game state
of the match, and relay this information to the Ul It’s also
responsible for the transfer control between the UI, Servo
System, and Vision System.

Once initialization has occurred and a round has begun, the
order in which the GST transfers power between subsystems
proceeds as follows. First, the GST polls the Dealer UI for a
player action. Given this action, the GST will update its
internal game state then possibly transfer control to the Vision
subsystem to update stack sizes, but then it will always need to
transfer control to Servo subsystem to rotate to the next player.
Then, the cycle repeats and GST will poll the Dealer UI for
the next player’s action. This flow within the software is
depicted in Fig. 18 at the end of the document, and a
pseudocode algorithm is given below:

GST.init()
dealerUI.init()
playerUI.init()
servo.init()
camera.init()
while !(exit):
next_move = dealerUI.poll()
GST.round_start = false
switch next_move
case add_or_remove
dealerUI.add remove players()
playerUI.update()
case start_round
Gst.round_start = true
case calibrate_chip_colors
cam.calibration_routine()

while (GST.round_start):
player = player_order.get next()
if player == null:
GST.next_phase()
continue
input = dealerUI.poll()

switch input
case fold
GST.remove(player)

case bet
servo.move(player)
bet size = cam.scan_stack()
GST.pot size += bet size
GST.update_player_order()
dealerUI.render()
playerUI.update()
GST.calculate_payout()
update_player UI()

Fig. 12 Abstracted game state tracker pseudocode

F Overall System

The overall system combines all the previous subsystems:
the Dealer/Player Ul, the Game State Tracker, the Servo
subsystem, and the Computer Vision subsystem. The camera
is placed in front of the dealer’s seat, and rotates to the current
player acting in the game. If the player raises, it’s bet size is
scanned and the GST will update the game state. These actions
will need to be inputted by the dealer though the dealer UL
The servo will then rotate to the next player and the cycle will
repeat until the round ends. At the end of the game, the dealer
will be prompted to select the winner and that player will win
the pot.

Full setup, on poker table
Dealer and Player Ul

Camera and
Raspbarry Pi

Player seats

Markings for stack placement

Fig. 13 Physical Smart Poker Table
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Fig. 14 Model of Smart Poker Table Setup

VI. TEST AND VALIDATION

A. Results for Servo Subsystem

For testing and validation for the servo subsystem, we did
two tests in order to meet our original specifications. The first
metric is that servo has to rotate to the correct target within
+/-4 degree offset. The second metric is that the camera rotates
to a specific position within 5 seconds.

For both tests, we used the same inputs: the player angle
that is defined in Player Class in the dealer software. We did
20 trials in total. For the angle test, we used a protractor to see
what the difference is. For the timing test, we simply used a
timer.

The result for the angle test is the average error was within
1 degree, which beats our expectation. For the timing test, on
average, the servo was able to rotate to the correct position in
1 second, which also beats our expectation.

Servo Subsystem Test Result

Original Metrics Test Inputs Method Result

Average error was 1
degree from target

Camera Angle
offset +/-4 degrees

Player position sent
by dealer SW

Compare the result
with the protractor;

through serial 20 trials
Camera rotate to Player position sent | Use a Timer Average time within
spot with 5 secs by dealer SW (20 trials ) 1 seconds

through serial

Our measurements beat our original predictions by a huge
margin. Originally, we were concerned about whether the
servo could provide enough torque and support to rotate the
camera. However, the testing shows that the power supply
from Arduino itself is enough to provide enough torque.
Another change we made was that we placed the servo at the
edge of the table to not only mimic the player positions in the
Player UI but also avoid the issue of cables getting tangled up
while the servo rotates more than 360 degrees.

B. Results for Computer Vision

The tests we performed to measure the accuracy of the stack
measuring algorithm involved placing a different amount of
chips in front of the camera with individual values of 1, 2, 5,
and 10. We ended up testing four different combined chip
values of $46.00, $84.00, $150.00, and $210.00.

The performance difference between the original algorithm,
which relied on blob detection (denoted by the B.D.), versus

the method we created dubbed checker counting (abbreviated
by C.C.), is presented in the table below:

Tuble 1. Algorithm Comparison Test Result
CV Algo  [Stack Val. |Avg Error (%) |# Tests
C.C. $46.00 6.49% 10
B.D. $46.00 25.47% 7
C.C. $84.00 8.68% 10
B.D. $84.00 30.61% 7
C.C. $150.00 18.48% 10
B.D. $150.00 47.29% 9
C.C. $210.00 22.46% 10
B.D. $210.00 52.38% 9

Fig. 15: Results of Comparing Computer Vision Algorithm Performance

B Checker Counting

Comparison of Algorithms B Blob Detection

60.00%

40.00%

20.00%

Mean Error in Percentage

0.00%

$46.00 $84.00

$150.00

$210.00

Stack Value

Fig. 16: Table 1 Data, Represented as Bar Chart

Note that we have a different number of tests for the B.D.
algorithm since the data was taken at an earlier iteration of the
code that we were unable to properly set up again. In any case,
the data suggests that the rewritten algorithm performs better
for each stack value and combination tested. The C.C.
algorithm performs far better with small stack values than it
does for large ones, with the error percentage growing faster
than the stack value.

The averaged mean error when measuring stacks, in
percentage, is presented below. Given the tests were measured
on different stack heights, we have elected to leave out
standard deviation as it would not represent the proper statistic
here.

Table 2. Stack Scanning Test Results
Algorithm Type | Mean Stack Error
C.C. 17.38%
B.D. 44.56%
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Fig. 17: Overall Mean Stack Error Measured by Algorithm

This figure reaffirms the notion that the checker counting
algorithm performs better than the blob detection algorithm.

Our initial requirement was to have the measured stack
value be within +/- 10% of the real stack value. Based on our
results, we did not achieve our metric as intended. Although
the algorithm could meet the requirements fairly consistently
for stacks with a small value, it was not able to do so for larger
stack values.

There were several challenges that made this problem very
non-trivial. The first issue we ran into was different chip sizes.
People do not place stacks at exactly the same locations, so
some stacks appear smaller or larger in the image. While this
can normally be handled by computing a homography
between the corrected image and a reference image, since each
stack was in reality not placed in a line. This caused the
transformed images to have unusual warping detrimental to
stack counting. Moreover, a monocular camera on a
non-translating platform cannot get depth without a reference;
as a result, it was fairly difficult to estimate the depths of each
stack. To simplify this problem, we made the assumption that
all chips were roughly the same distance away and used an
averaged chip height and width amongst the different values
for chips. This resulted in some stacks being measured as
larger or smaller than they were in reality.

Perhaps the biggest issue we ran into was finding the
correct chip height in pixels for a single chip. Most of the
algorithm hinged on a fairly good estimate of chip height. The
checkers were expected to be around the chip height, and the
stack height in pixels would be divided by the chip height in
pixels to calculate the number of chips in a stack. Acquiring
this automatically was impossible; as a result, finding it
became part of the calibration process. The problem is that
calibrations were done by hand. Due to the tilts in the
calibration images (which could not be fixed until a chip
height was inputted), it is quite difficult to select the correct
chip height. As a result, this uncertainty is baked into the
system. As far as we are aware, there is not an easy way to
resolve this issue.

C. Results for Software

The main requirement for the software components was that
the GST and the Dealer Ul would have a 100% accurate
simulation of a poker game. This metric just means that there
are no logical errors with the gameflow of the poker game.
After robust gameplay testing and intentionally trying to break
the software, no bugs were found. The Dealer Ul acts as it is
supposed to and the poker logic stays consistent and holds
true. Therefore, our software succeeded in passing this test and
met the 100% accurate simulation metric.

In addition, we also required our Dealer Ul to be easily
learnable by non-engineers. The Dealer UI will be handled by
casino employees or recreational poker players who should be
assumed to not have previous software engineering
experience. This is why we required the Dealer Ul to be
learnable in under 5 minutes. After introducing the software to
5, non-software engineering individuals, the average time to

learn and master the Dealer Ul was 2 minutes and 55 seconds.
As a result, the Dealer Ul passed the requirement of being
learnable in under 5 minutes.

D. Results for Overall System

Our main requirement for the overall system was an update
time of 10 seconds. These 10 seconds include the camera
scanning chips, the servo rotating the camera, and GST
updating the display. Our overall system shattered this
requirement, and consistently updated in approximately 1
second per update.

The other requirement for our overall system was that
previous subsystems metrics hold for the overall system. The
software metrics and servo metrics held constant, but there
were a few deviations with the Computer Vision subsystem.
As discussed in the design trade offs, the Computer Vision
algorithm is very dependent on the positioning of chips and
lighting in the room during the scanning routine. As a result, it
is more difficult to control these variables when playing a real
poker game versus when controlling these variables in a
subsystem testing environment. When chip positioning and
lightning were held constant during overall system testing, the
previous subsystem metrics for CV were held.

VII. PROJECT MANAGEMENT

A. Schedule

We organized our schedule
Brainstorming/Designing, Development, and Finalization.
Right now we are nearing the end of the
Brainstorming/Designing phase. The remaining tasks in this
phase is to finalize our design choices in this document, and
wait on the shipment of outstandings part orders.

The next phase will be the Development phase. Once
each team member receives the parts they need to begin
working, this phase will ramp up and include the bulk of our
work throughout the semester. The Development phase entails
setting up our Raspberry Pi environment, and developing each
subsystem of our project within this Raspberry Pi
environment. At the end of the development phase, we left
time to thoroughly test each subsystem before the Finalization
phase.

into 3 phases:

The Finalization phase could also be called the
Integration phase. In this phase, our team will integrate each
subsystem together and develop a final product. Our team will
mainly be working virtually so we need to be very conscious
about how we integrate our subsystems and develop
interconnections. We believe this task isn’t the least bit trivial,
so we left a good portion of time at the end of semester to
make sure this phase goes smoothly.

A full diagram of our schedule is depicted below in
Figure 19, under the_Schedule section.

B. Team Member Responsibilities

Each team member has more or less taken ownership of the
subsystem they specialize in. Brandon has most background
with Computer Vision, so he has taken the lead on developing
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the algorithm for scanning stacks. Zongpeng has the most
background on hardware, so he has taken the lead on
developing the Servo subsystem and writing the firmware for
the Servo. Patrick has the most background on software
development, so he has taken the lead on writing the Dealer
User Interface and the Player User Interface..

The overarching subsystem that the entire team will be
working on together is the Game State Tracker. The GST is
the central part of the project which transfers control from
subsystem to subsystem, so it is necessary that each team
member contributes significantly to its architecture and
development.

Lastly, the entire team is responsible for the overall system
construction. This entails putting all the subsystems together
and developing a product that will be user ready and
presentable to the stakeholders/professors. The construction of
the overall system will require knowledge of individual
subsystem interconnections, so it is necessary that each team
member contributes significantly to its production.

C. Budget
Our Bill of Materials can be found in Figure 20.

D. Risk Management

Component Risk

Servo Motor Motor provides enough torque;
power supply; servo doesn’t burn;

servo burned

Computer Lighting changes, image noise
Vision

Software Bugs and undefined behavior
Hardware Successful hardware integration

For servo, to mitigate the risk, we could purchase additional
hardware. For instance, if the servo burns out we could
purchase another one; if the power supply is too small to
provide enough torque, we could purchase a higher wattage
power supply. These risk mitigation plans will work because
we currently only used /5 of our budget, giving us room to buy
replacements.

On the computer vision side, there are several ways we can
mitigate inaccuracies in scanning. One way is to implement
image pre-processing techniques such as blurring or closing to
reduce the amount of noise. Another way is through the
calibration routine. By having it accessible at the beginning of
every round, the dealer has the ability to counter changes in
lighting or chip color. While these methods aren’t a guaranteed
way to fix a catastrophic failure, we believe they are suitable
enough to mitigate the smaller risks associated with the CV.
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Unfortunately, there isn’t much we can do to mitigate
undefined behavior in the software other than rigorous testing.
The best way we can deal with a crash is to crash gracefully
and ensure the program restarts quickly. That being said,
rigorous testing should allow us to catch and eliminate enough
of the bugs to where this won’t be an issue, especially given
how little access an end user has to the underlying software
subsystems.

One approach to hardware risk mitigation is simply to have
multiple components ready for replacement; this way, if
something fails we can quickly replace it. Combining this with
a thorough electrical schematic and reading of each data sheet
should allow us to wire up the system without likely risks of
failure.

VIIL.

Our product is a smart poker table that uses computer vision
to track bet sizes and displays pot sizes and stack size onto a
monitor in a casino. The main source of errors comes from
Computer Vision, and there are a couple implications that
come with using a camera and computer vision in a casino.

The first implication is that the computer vision algorithm is
not sophisticated enough to be 100% reliable. One thing that
could cause computer vision to fail is lighting. One of our
constraints is that we have to keep the lighting source
consistent, which is easy when casinos are indoor. However,
once we move outside, we can't guarantee that we will have
constant light temperatures. Another constraint we have is
that players need to position chips at designated areas. Players
can manipulate their stack and exploit this constraint in order
to trick computer vision algorithms to their advantage.

Moreover, once the computer vision algorithm fails, it will
reflect incorrect information on the display, which could be
misleading to players, cause mayhem, and slow down the
game, which ultimately will affect both the casino’s profit and
the player’s profit. In a situation where incorrect information
is displayed, poker players' experiences and casinos’
reputations and revenue streams will both be adversely
affected. This may result in legal issues where players sue the
casino or the casino sues our team for inaccuracies in
technology.

Another ethical issue that comes with the Smart Poker Table
is privacy. Using a camera for the smart poker table will mean
players at the table and individuals walking around the table
will be caught on camera. This threatens these individuals’
privacies. Therefore, casinos will have to get the permission of
poker players and other individuals in the casino in order to
use the camera at the tables. This means casinos will not only
need to attain additional clearances and permits in order to use
our product, they also have to dedicate additional cost to
security so that people’s privacy is protected.

ETHicAL ISSUES
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GLOSSARY OF ACRONYMS
CV - Computer Vision
GST - Game State Tracker
RPi - Raspberry Pi
C.C - Checker Counter
B.D. - Blob Detection
UI - User interface
Fig - Figure
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SOFTWARE BLOCK DIAGRAM
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SCHEDULE

Brainstorm/ Designing Phase

Development Phase

Finalization

Fig. 19  Schedule

Task Week 4 Week 5 Week6 Week7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14
Purchase components

Pick CV library

Design Ul Interface

Design Wotor and how it hooks up to the camera

Design control for game state

Design the Physical table

Set up environment for Rasberry Pi

do research on 12c and libary -

Write firmware for the motor

research on open cv library

Write firmware for the CV ;
- I

Write code for Ul

Write code for Game State control
Test Motor Control

Test CV component for one player
Ul testing

Game State control Testing
Integrate Servo with Dealer SW
Integrate camera with Dealer SW
Final testing

Slack

Steve

Pat
Brandon

All
steve/pat
brandon/pat
Slack

BuUDGET
ltem Quantity Unit Price Total Price Link to ltem
Raspberry Pi 4B 2 61.5 123 https:/’www amazon.com/Raspbe
IFROO Webcam 2 21.99 4398 https/fwww.amazon.com/IFROO-
16 Channel Servo Driver 1 14.95 2326 https:/iwww digikey com/en/produ
Servo 1 27.99 40 https:/iwww. adafruit. com/product/.
Power Strip 1 9.88 9.88 https./fwww amazon.com/GE-Proi
Power supply adaptor 1 12.99 12.99 hitps //www amazon.com/Adapter
0
0 Overall Total 253.11

Fig. 20 Bill of Materials
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STEM DIAGRAM
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Fig. 21  Servo Subsystem Diagram
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ELECTRICAL SCHEMATIC

Fig. 22 Electrical Schematic
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