
18-500 Final Project Report: 03/17/2021 1

Team E8: Smart Poker Table
Authors: Brandon Hung: Carnegie Mellon University;

Zongpeng Yu: Electrical and Computer Engineering, Carnegie Mellon University;

Patrick Kollman: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—The current standard for live poker uses the
outdated method of human estimation to track valuable
information about the game state, such as the overall pot size and
bet sizes. This practice often leads to slower playing times and
shifts a player’s focus from the crucial decision making processes
involved in playing towards bookkeeping, which ultimately takes
away from the playing experience. We propose a system to track
and display important game elements for real-life poker players.
Motivated by online poker, our system will track individual bet
sizes, the overall pot size, and player order through a device
controlled by a Raspberry Pi. The device will include a computer
vision system to scan stacks, an actuation system to direct the
camera to the correct location, and a real-time display to show
this information to the players. The game state will be controlled
by a dealer through an intuitive UI. Our goal is to provide a
simple device that a dealer can use to provide an online
poker-like experience to in-person games, improving overall
gameplay quality.

Index Terms—Computer Vision, Mechatronics,
Microcontrollers, Motor Control, Python, Servo, Systems, User
Interface

I. INTRODUCTION

The rules of poker state that all table information should be
available to players at all times. Table information is crucial to
competitive poker players for making informed decisions
during a game. For example, knowing the stack size of other
players is very important when choosing to either call, raise,
or fold. If an opponent has more money than themself, they
may want to rethink about raising the bet size. If the opponent
has less money than themself, it may be an opportune time to
step on the pedal and raise. In a real life poker match, if a
player wanted to know the size of another player’s stack, they
would need to ask the casino dealer to physically count that
player’s stack chip by chip. This method is becoming outdated
given the efficiency of online poker games.

Online poker games have revolutionized the poker
environment by constantly displaying all table information
directly to the players. In an online poker game, players can
always view the pot size, player stack sizes, bet sizes, and
whose turn it is to act during a round. This is the way poker is
meant to be played, with all table information readily
available. The goal of the Smart Poker Table is to display the
same information provided in an online poker game to real life
poker players. With a maximal update time of 10 seconds, the
Smart Poker Table will successfully imitate the online poker
environment for real life casino poker players.

II. DESIGN REQUIREMENTS

Our goal with this project is to create an environment that

creates a smooth play experience like one found in online
poker games; as a result, the most important requirement is
providing the players and dealer with real-time, accurate
information. Since there is no objective measurement of
real-time speed as defined in a poker game, we have chosen a
maximal update time of 10 seconds (allotting for turning,
image capturing and computer vision processing, and updating
the display). In person, a round of poker with a full table takes
anywhere from 30 seconds to 10 minutes. Averaging round
lengths gives us 5 minutes and 15 seconds; with a full table of
eight, our device will require 8 * 4 * 10 = 320 seconds per
round, or about 5 minutes and 20 seconds a round in the worst
case scenario. An update speed bounded by 10 seconds will
allow our device to keep pace with standard live poker games
in the worst case.

Our metric for the accuracy of estimating the pot size will
be within +/- 10% of the actual pot size. This number may
seem quite low, but it is sufficient in the context of the
problem. At the end of the game, the winner’s payout is based
on the physical chips on the table --- which is unrelated to our
estimated pot value. Instead, the main purpose of the pot
estimation is to help players make better betting choices; a
rough idea of the pot size works well for this purpose, which is
why 90-110% estimates are just as useful 100% accurate ones.

Our device is intended to be easy to use and require only 5
minutes to learn for the average poker dealer. This represents a
way to metric the ease of use since end users ultimately want
something which works as out of the box as possible. While
this is admittedly an arbitrary value, it provides a good
guideline to follow on the eventual simplification/streamlining
of the design. As for the computer vision, we would like the
image capture and processing pipeline to occur within 3
seconds. This will provide us ample time to meet our maximal
update time listed in the first paragraph. Turning the camera to
the correct position using a servo will need to occur within 5
seconds to fit alongside our computer vision processing time
and maximal update time requirements.

Here, we’ll address the more physical requirements of the
system. The camera will be positioned at 10 inches off the
surface of the table, which allows for average-sized stacks to
be placed underneath it. A height of 10 inches and a shortest
distance to stacks of 20 inches means the camera will need an
FOV of at least 53.12 degrees based on our current design
(arctan(10/20)*2 = 53.12). The servo will need to turn within
a 4.735 degrees of our reference stack reading position. This
translates to a worst case scenario (when the stacks are 48
inches away) of +/- 4 inches of deviation from the horizontal
line of our stack reading position (arctan(4/48) = 4.735

18-500 Final Project Report: 03/17/2021 2

degrees). Anything beyond this point will result in the camera
pointing in the wrong direction and being unable to read the
stack, which will result in a completely incorrect bet size.
Finally, our camera will need a minimum resolution of 63x460
pixels. This is derived from our window size of 48x48 square
inches and a chip area of 1.53x0.209 square inches, with the
formula . Plugging in𝑎𝑥𝑖𝑠𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 2 𝑥 𝐹𝑂𝑉 / 𝑚𝑖𝑛𝑆𝑖𝑧𝑒
the values 2*(48/1.53) and 2 * (48 /0.209) gives us a minimum
bound of 62.74 and 459.33 pixels in the x and y directions,
respectively.

Finally, we want our internal game state to perfectly match
the current state of the game in real life. These two must be
exactly the same or else synchronization issues will occur in
the software.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Fig. 1 Overall System Architecture
Broadly speaking, we can divide our project into five main

subsystems: the dealer UI, the player UI, the game state
tracker, the servo system, and the vision system. Since our
design presentation, we have decided that the vision and servo
systems were disconnected enough to warrant their own

subsystems and separated them from our original hardware
subsystem. In the diagram above, each system has hardware
component(s) in its green box and software component(s)
within its yellow box. The orange arrows show the
connections between different hardware components, and the
blue arrows represent the conditions and order in which
software functions are called. In addition to the block diagram
above, we have provided two more block diagrams at the end
of the page. The Software Block Diagram details specifically
the interplay between the dealer UI and the game state tracker,
while the Communications Block Diagram describes in detail
the protocols used to communicate between different
devices/drivers.

When a game is started, the game state tracker is initialized.
The game state tracker (or GST, for short) then initializes the
Player UI, the Dealer UI, the Vision System, and the Servo

System. Control is then handed to the Dealer UI, which
waits for the dealer’s input to start a round or to configure the
system. Once the dealer starts a round, the “Play Round”
loop in the Software Block Diagram begins. During this loop,
the Dealer UI collects information regarding players folding

18-500 Final Project Report: 03/17/2021 3

and/or betting and transmits it to the GST, which then hands
over control to the appropriate subsystem. If a player folds, the
GST removes them from the order tracking and proceeds to
the Dealer UI. If a player raises or calls, the GST will first
proceed to the Servo System. Once the Servo System has
moved to the appropriate position, control is returned to the
GST which in turn calls the Vision System. After the Vision
System collects the stack size information, it transmits the
information back to the GST to update the state and repeat the
cycle. For a pseudocode explanation of this process, please
refer to figure 10 under the Subsystem: Game State Tracker
section.

The hardware architecture consists of a Raspberry Pi, a
camera, a dealer display monitor, a servo motor / servo driver,
and a player display monitor. The Raspberry Pi serves as the
main controller of the system, to which the peripherals are
connected. To send and receive image data, the Pi
communicates with the camera over UART. To actuate the
servo with positional feedback, the Pi uses I2C to
communicate with the servo driver which in turn uses PWM to
drive the servo itself. Both monitors contain different windows
which are updated over HDMI as the game progresses. Most
of the design is abstracted behind libraries, allowing us to
focus more on the algorithms than connecting the subsystems.

IV. DESIGN TRADE STUDIES

A. Stack Scanning: Computer Vision vs RFID
One of the biggest design decisions we made as part of our

design process was choosing to go with computer vision
instead of RFID for the stack height reading. The most
prominent reason for this change is feasibility. While we have
little actual data on the feasibility of scanning a stack of chips
using RFID, feedback from the professors generally suggested
it was a nigh impossible task to achieve. While there are a few
examples of RFID being used to scan items quickly (RFID
Blog, 2020), our problem is fundamentally harder due
occlusion from RFID tags. This is less of a problem when
scanning items such as the clothes mentioned in the above
article, but can prove to be a strong issue when dealing with
stacked playing chips. Even the most sophisticated leaders in
RFID technology can struggle with scanning thin stacks of
more than 25 chips (RFID Journal, 2013). In contrast,
computer vision can scan chips using fairly simple methods if
properly structured. In the end, we decided to go with a
tradeoff of a method that is more likely to provide a guarantee
of being able to scan stack heights to some accuracy over
experimenting with a relatively unknown technology
potentially unable to fulfill our requirements.

B. Servo Subsystem: Continuous vs Regular
Another design decision we made was choosing between a

standard 180 degree servo and a continuous rotation servo. A
180 degree servo tends to be fairly positionally accurate and
easy to use; the ability to simply write an angle to the motor is
built into the driver chip we initially wanted to use.
Meanwhile, a continuous rotation servo provides 360 degrees

of rotation but is more complex in terms of control.
Additionally, its feedback is not readable by a Raspberry Pi so
using this component requires introducing an Arduino to
communicate between the motor and the Pi. Our device
placement on the poker table (see Fig. 11, Overall CAD
Model) also depends on what motor we choose, as the range
of rotation limits how far we can place the device from the
dealer. In the end, we chose to go with continuous servo.
Despite introducing more complexity, the continuous servo
allows us to place the device in the middle of the table and
close to the players --- thereby reducing the difficulty of
scanning stacks. We believe this will translate into an
increased accuracy, making the continuous servo well worth
the extra complexity involved with implementation.

C. Hardware Components Consolidated vs Distributed

Deciding between a placement of components in which
parts were distributed versus a placement that consolidated the
parts in one area actually proved to be quite difficult.
Distributed components allow us to hide the less visually
appealing electrical components. This would create a prettier
setup which is less distracting from a standard poker
environment. However, this method creates complex wiring
schemes that increase both the chance of failure (i.e a wire
getting cut) and the difficulty of setup and troubleshooting
(since devices must be individually repositioned and
inspected). On the other hand, consolidating the various
components as much as possible allows us to shorten wires
and more quickly identify any hardware issues that crop up
during gameplay --- but doing so involves more mechanical
design and construction. Our choice to go with consolidated
components is based on the decision to invest more in design,
as we believe that a good design preemptively mitigates many
risks associated with possible system failure later on.

V. SYSTEM DESCRIPTION

A. Subsystem: Computer Vision
The computer vision subsystem includes a USB camera, an

algorithm which takes a picture and scans the stack size in the
captured photo, and an algorithm to calibrate the colors
according to the current lighting conditions. The pseudocode
for the stack size scanning algorithm is given in the code block
below:

photo = capture_photo(camera)

bet_size = 0

for color in chip_colors:

value = get_value(color)

masked = mask_photo(photo, color)

masked = open_and_close(masked)

stk_size = get_bounding_box(masked)

n_chips = stk_size.height/chip_height

bet_size = bet_size + value * num_chips

Fig. 2 Stack Scanning Algorithm Pseudocode

18-500 Final Project Report: 03/17/2021 4

First, our camera will need to capture the photo. It will then
loop through the colors of each chip and segment the image by
color to obtain just the chips which are the color associated
with a value. For each of these color-masked images, the
computer vision will perform morphological operations to
make the image more robust and then find the size of the
maximal bounding box. It then references the stored value of
chip height and calculates from there the expected number of
chips. The height of the stack is then multiplied by the value
of each chip to get a value for that stack. The total size of the
bet is calculated by summing the value of each stack.

The algorithm used to capture photos leverages existing
software in OpenCV:

import cv2

cap = cv2.VideoCapture(0)

ret, frame = cap.read()

Fig 3. Photo Capture Algorithm

In the snippet above, frame is a variable containing an
image of what the webcam was looking at when the picture
was taken.

The mechanical assembly for the camera and camera
mount will look like the following:

Fig. 4 Camera Mount Assembly

where the camera is mounted to a 3D printed rod with a
¼”-20 threaded end section. The other end of the rod is
mounted to the servo horn, which allows the camera to pivot
with the servo. The servo, Arduino, and Raspberry Pi will in
turn be arranged on the box-like mounting assembly to keep
the components close to one another.

B. Subsystem: Servo
The servo subsystem includes a 360 continuous rotation

servo with feedback from adafruit, 6 volt power supply,
arduino uno, and raspberry pi.

To start, we connect 360 servo to arduino. The reason why
we didn’t connect servo directly to Raspberry Pi is because the
Pi lacks the capability to read PWM from a GPIO. However,
the Arduino could do that because it has PWM pins designed
to receive feedback, so not only are we able to get the 360
continuous servo rotating with different RPMs, we could also
set the angle where we want the servo to rotate to. The library
we are using to actually control the servo angle is the
Parallax-FeedBack-360-Servo-Control-Library-4-Arduino.

In order to make servo rotate to the correct position, the
Arduino will need to receive a signal from the Raspberry Pi
containing the angle to turn to. Once received, the Arduino
will then begin spinning the servo. After it has reached the
target position, the Arduino will transmit a confirmation signal
to the Raspberry Pi, allowing the GST to call the Vision
Subsystem. For the communication protocol, we will use
USB, and we will import the python serial library on the
Raspberry Pi and use the builtin serial function for Arduino.

// Servo control example (with +/-4 degrees

error) each 1 second.

void move_servo_example(){

servo.rotate(270, 4);

delay(1000);

servo.rotate(-180, 4);

delay(1000);

}

// Pi to Arduino Serial (python)

import serial

ser = serial.Serial('/dev/ttyUSB0', 9600)

ser.write(b'3')

//Arduino receives from Pi

void loop(){

if(Serial.available()){

r = r * (Serial.read() - '0');

Serial.println(r);

}

}

//Arduino to Pi Serial

void loop(){

Serial.println("Sending stuff to Pi");

delay(2000);

}

// Pi Receives from Arduino (python)

import serial

https://github.com/HyodaKazuaki/Parallax-FeedBack-360-Servo-Control-Library-4-Arduino

18-500 Final Project Report: 03/17/2021 5

ser = serial.Serial('/dev/ttyUSB0', 9600)

while 1:

if(ser.in_waiting >0):

data_from_arduino = ser.readline()

Fig 5. Code Snippet for Servo Subsystem

The complete servo subsystem diagram is in Fig. 15 under
Section Servo Subsystem Diagram.

C. Subsystem: Dealer UI
The Dealer UI has two functions: system configuration and

game state updates. The Dealer UI is meant to be used by
non-engineers so it is designed to be very simple and user
friendly. It consists of simple controls to calibrate the system
and control the game state.

System configuration can occur in between any round, but
usually happens at the very beginning of a game. With system
configuration, the dealer can control chip denominations, chip
colors, the number of players, the location of these players at
the table, the stack sizes of these players, and controls when
the round begins. These updates are then relayed to the GST.

Fig. 7 System Configuration Interface

Game state updates occur after system configuration and
when a round has begun. The dealer has at most 4 options
when the UI has entered the game state update mode: Check,
Fold, Raise, and Call. These are the 4 actions a player can take
on any turn, though it may not always be possible to check.
The action chosen is then relayed to the GST. The GST will
then properly update the game state, scan the player’s stack if
needed, and rotate the servo. In this manner, the GST is
polling the Dealer UI during the round for player actions.
When an action is inputted into the Dealer UI, control returns
to the GST which takes the appropriate response based on the
input.

Fig. 8 Game State Update Interface

D. Subsystem: Player UI
The Player UI is a graphical user interface for the players

at the table. The purpose of the Player UI is to display all
relevant table information to the players during the game. The
player UI communicates with the GST and retrieves all the
necessary information from its modules. This information
includes the pot size, player stacks sizes, bet sizes, the amount
of players at the table, and which player’s turn it is to act. The
Player UI is designed to imitate an online poker game and to
display the exact same information. An example of an online
poker game is depicted in Figure 9, which we envision our
Player UI to mimic. We will connect a monitor to the
Raspberry Pi via an HDMI cable to display this graphical
interface.

Fig. 9 Online Poker, https://pokerlivenews.com/free-online-poker-games/

VI. Subsystem: Game State Tracker
The Game State Tracker is the nucleus of our project. The

role of the GST is to first and foremost to track the game state
of the match, and relay this information to the Player UI. It’s
also responsible for the transfer control between the Dealer
UI, Servo System, and Vision System.

Once initialization has occurred and a round has begun, the
order in which the GST transfers power between subsystems
proceeds as follows. First, the GST polls the Dealer UI for a
player action. Given this action, the GST will update its
internal game state then possibly transfer control to the Vision

https://pokerlivenews.com/free-online-poker-games/

18-500 Final Project Report: 03/17/2021 6

subsystem to update stack sizes, but then it will always need to
transfer control to Servo subsystem to rotate to the next player.
Then, the cycle repeats and GST will poll the Dealer UI for
the next player’s action. This flow within the software is
depicted in Fig. 10 at the end of the document, and a
pseudocode algorithm is given below:

GST.init()

dealerUI.init()

playerUI.init()

servo.init()

camera.init()

while !(exit):

next_move = dealerUI.poll()

GST.round_start = false

switch next_move

case add_or_remove

dealerUI.add_remove_players()

playerUI.update()

case start_round

Gst.round_start = true

case calibrate_chip_colors

cam.calibration_routine()

while (GST.round_start):

player = player_order.get_next()

if player == null:

GST.next_phase()

continue

input = dealerUI.poll()

switch input

case fold

GST.remove(player)

case bet

servo.move(player)

bet_size = cam.scan_stack()

GST.pot_size += bet_size

GST.update_player_order()

dealerUI.render()

playerUI.update()

GST.calculate_payout()

update_player_UI()

Fig. 10 Abstracted game state tracker pseudocode

VII. PROJECT MANAGEMENT

A. Schedule
We organized our schedule into 3 phases:

Brainstorming/Designing, Development, and Finalization.
Right now we are nearing the end of the
Brainstorming/Designing phase. The remaining tasks in this
phase is to finalize our design choices in this document, and
wait on the shipment of outstandings part orders.

The next phase will be the Development phase. Once
each team member receives the parts they need to begin
working, this phase will ramp up and include the bulk of our
work throughout the semester. The Development phase entails
setting up our Raspberry Pi environment, and developing each
subsystem of our project within this Raspberry Pi
environment. At the end of the development phase, we left
time to thoroughly test each subsystem before the Finalization
phase.

The Finalization phase could also be called the
Integration phase. In this phase, our team will integrate each
subsystem together and develop a final product. Our team will
mainly be working virtually so we need to be very conscious
about how we integrate our subsystems and develop
interconnections. We believe this task isn’t the least bit trivial,
so we left a good portion of time at the end of semester to
make sure this phase goes smoothly.

A full diagram of our schedule is depicted below in
Figure 12, under the Schedule section.

B. Team Member Responsibilities
Each team member has more or less taken ownership of the

subsystem they specialize in. Brandon has most background
with Computer Vision, so he has taken the lead on developing
the algorithm for scanning stacks. Zongpeng has the most
background on hardware, so he has taken the lead on
developing the Servo subsystem and writing the firmware for
the Servo. Patrick has the most background on software
development, so he has taken the lead on writing the Dealer
User Interface and the Player User Interface..

The overarching subsystem that the entire team will be
working on together is the Game State Tracker. The GST is
the central part of the project which transfers control from
subsystem to subsystem, so it is necessary that each team
member contributes significantly to its architecture and
development.

Lastly, the entire team is responsible for the overall system
construction. This entails putting all the subsystems together
and developing a product that will be user ready and
presentable to the stakeholders/professors. The construction of
the overall system will require knowledge of individual
subsystem interconnections, so it is necessary that each team
member contributes significantly to its production.

C. Budget
Our Bill of Materials can be found in Figure 13.

18-500 Final Project Report: 03/17/2021 7

D. Risk Management

Component Risk

Servo Motor Motor provides enough torque;
power supply; servo doesn’t burn;
servo burned

Computer
Vision

Lighting changes, image noise

Software Bugs leading to undefined
behavior

Hardware Successful hardware integration

For servo, to mitigate the risk, we could purchase additional
hardware. For instance, if the servo burns out we could
purchase another one; if the power supply is too small to
provide enough torque, we could purchase a higher wattage
power supply. These risk mitigation plans will work because
we currently only used ⅓ of our budget, giving us room to buy
replacements.

On the computer vision side, there are several ways we can
mitigate inaccuracies in scanning. One way is to implement
image pre-processing techniques such as blurring or closing to
reduce the amount of noise. Another way is through the
calibration routine. By having it accessible at the beginning of
every round, the dealer has the ability to counter changes in
lighting or chip color. While these methods aren’t a guaranteed
way to fix a catastrophic failure, we believe they are suitable
enough to mitigate the smaller risks associated with the CV.

Unfortunately, there isn’t much we can do to mitigate
undefined behavior in the software other than rigorous testing.
The best way we can deal with a crash is to crash gracefully
and ensure the program restarts quickly. That being said,
rigorous testing should allow us to catch and eliminate enough
of the bugs to where this won’t be an issue, especially given
how little access an end user has to the underlying software
subsystems.

One approach to hardware risk mitigation is simply to have
multiple components ready for replacement; this way, if
something fails we can quickly replace it. Combining this with
a thorough electrical schematic and reading of each data sheet
should allow us to wire up the system without likely risks of
failure.

REFERENCES

[1] RFID Blog. (2020, June 11). UNIQLO announced the introduction of
RFID tags in 3000 stores worldwide during the year. rfidcard.com.
https://rfidcard.com/uniqlo-announced-the-introduction-of-rfid-tags-in-3
000-stores-worldwide-during-the-year/

[2] RFID Journal. (2013, March 10). Can I Scan Multiple RFID Tags
Simultaneously When They Are Kept in Alignment? rfidjournal.com.
https://www.rfidjournal.com/question/can-i-scan-multiple-rfid-tags-simu
ltaneously-when-they-are-kept-in-alignment

[3] Poker Live News. https://pokerlivenews.com/free-online-poker-games/

https://www.rfidjournal.com/question/can-i-scan-multiple-rfid-tags-simultaneously-when-they-are-kept-in-alignment
https://www.rfidjournal.com/question/can-i-scan-multiple-rfid-tags-simultaneously-when-they-are-kept-in-alignment
https://pokerlivenews.com/free-online-poker-games/

18-500 Final Project Report: 03/17/2021 8

SOFTWARE BLOCK DIAGRAM

Fig. 10 Software Block Diagram

OVERALL CAD MODEL

Fig 11: 3D model of assembly on poker table

18-500 Final Project Report: 03/17/2021 9

COMMUNICATIONS BLOCK DIAGRAM

Fig. 12 Communications Block Diagram

18-500 Final Project Report: 03/17/2021 10

SCHEDULE

Fig. 13 Schedule

BUDGET

Fig. 14 Bill of Materials

18-500 Final Project Report: 03/17/2021 11

SERVO SUBSYSTEM DIAGRAM

Fig. 15 Servo Subsystem Diagram

ELECTRICAL SCHEMATIC

Fig 16. Electrical Schematic

