
18-500 Design Review - March 17, 2021 Page 1 of 10

E7: PokerCam
Saisiddarth Domala, Jeremy Klotz, Ethan Rich

Electrical and Computer Engineering, Carnegie Mellon University

Abstract—A compact, standalone card shoe that
images cards as they are dealt and provides a web in-
terface to visualize the state of any card game.

Keywords—Playing card image classification, card
shoe, computer vision, machine learning

1 INTRODUCTION

PokerCam automates the live analysis of card games by
exactly determining the rank and suit of cards as they are
dealt. To track card games, many casinos place multiple
cameras around the table, and operators manually inspect
the footage to identify each card player’s hand. Our solu-
tion automates this process by imaging cards as they are
dealt, providing real-time information about each player’s
hand. This product is targeted both at casinos tracking
card hands to ensure game fidelity and casual competitions
whose live, online spectators wish to follow along. This ap-
proach is cheaper than manually reviewing video cameras,
both in equipment and labor costs. Furthermore, the card
shoe will be approximately the same size as any other card
shoe without adding any cables to the table.

PokerCam is completely self-contained. It is a modified
card shoe with an Nvidia Jetson Nano and a printed circuit
board holding the camera, lighting, and sensors that con-
trol the imaging system. This system must classify cards
within 2 seconds with at least a 98% accuracy and no false
classification triggers to accurately track the game state.

2 DESIGN REQUIREMENTS

2.1 Classification Accuracy

To properly track the state of a card game, the audience
must have accurate information. In a single card deck of 52
cards, this system allows for exactly one misclassification.
A single misclassification is easy to detect as the software
can identify the two card labels classified as the same and
the single card label that was never predicted. This allows
the audience to localize the misclassification to a pair of
cards having two labels.

We believe 98% classification accuracy is reasonable
given recent work in image classification on playing card
images. In 2011, cards were classified by rank and suit with
94.4% accuracy using lower-resolution images with varying
warps and illumination [1]. Our system of imaging cards in
a card shoe enables a more consistent pose and illumina-
tion with higher resolution images. This design will enable
us to achieve a higher classification accuracy.

2.2 Classification Latency

To compete with systems that include live footage with
human reviewers, we require the system to update the web
display at most 2 seconds after dealing a card. This bal-
ances processing time on a low-power SBC with user de-
mands for a responsive, real-time system. Furthermore, we
require that the system classify an entire deck of 52 cards
in less than 104 seconds (52 × 2). If the system imple-
ments a buffer, it must not sacrifice latency in classifying a
continuously-dealt deck.

2.3 Card Retrieval Speed

The dealer must retrieve the card over a 1
2 second pe-

riod to ensure adequately sharp images given the camera
framerate limitations. A Bicycle Standard card is 8.9× 5.7
cm. (see Figure 3). Given that the camera will image
only the top left corner of the card (see section 5.1), the
suit and rank are approximately 0.6 cm. wide, and as-
suming constant card velocity v and shutter time T , we
calculate Roverlap, the fraction of the card that overlaps
due to motion-blur in a single capture:

v =
5.7

0.5
= 11.4cm/ sec (1)

D = vT =
11.4

180
= 0.0633cm (2)

Roverlap =
D

0.6
= 0.106 (3)

With a 1
2 second card retrieval time, the image cap-

ture is equivalent to convolving a sharp image of the region
of interest (ROI) with a 1-dimensional box function whose
width is 11% of the ROI’s width. This upper-limit on the
card retrieval speed balances the consumer need to quickly
retrieve cards with the prohibitively expensive cost of high-
framerate cameras.

2.4 Battery Life

A game of poker (or any other card game) lasts ap-
proximately two hours. We require a portable, rechargable
power system to power PokerCam through a typical card
game of at least two hours. A portable battery will sit
inside of the card shoe to power the Jetson Nano for the
required time without any external cables.

2.5 No False Triggers

Because there is no user-input to track which player
receives a dealt card, it is critical that the system have

18-500 Design Review - March 17, 2021 Page 2 of 10

Figure 1: PokerCam: Augmented Card Shoe Diagram

no false triggers. Any false trigger would prematurely ad-
vance the system’s game state, creating inaccurate reports
of cards dealt afterward.

3 ARCHITECTURE OVERVIEW

3.1 Imaging System

Beneath the card shoe, the imaging stage consists of an
off-the-shelf camera module and LED’s mounted on a cus-
tom PCB enclosed in diffuse black acrylic to keep light out.
The diffuse black acrylic walls will enable controlled and
consistent lighting while avoiding specular reflections. The
camera views the playing card from a small angle to reduce
height requirements for the card shoe while maintaining the
minimum object distance from the lens to remain in focus.
The imaging system is triggered by an infrared reflection
detector to trigger the imaging pipeline.

Once the card shoe detects a card moving over the imag-
ing stage, the Nvidia Jetson Nano triggers continuous high-
framerate captures from the camera. The camera sends the
RAW captures over the camera serial interface (CSI) to the
Jetson Nano. The Jetson Nano then stores the captures in
memory and performs image demosaicing and preprocess-
ing to identify the best capture and ROI for classification
(see section 5.1).

3.2 Hardware System

The core of PokerCam’s hardware is an Nvidia Jetson
Nano which sits underneath the rear side of the card shoe
(see figure 1). It is powered by a rechargeable USB-C
powerbank. The Jetson Nano controls the hardware and
performs image classification. It includes a USB wireless
internet interface to allow the Jetson Nano to perform web
updates without a physical connection. This hardware sys-
tem is completely portable as it relies on an internal battery
and wireless interface.

An IR reflection sensor will be placed at the base of
plate where the card exits the shoe. This sensor will de-

termine when a card has left the shoe and will trigger the
imaging and classification systems. The sensor is both an
emitter and receiver for IR signals in one package.

The Jetson Nano is passively cooled by its heatsink.
We do not anticipate adding active cooling since we will
only draw intermittent full-loads during image preprocess-
ing and classification. The excess heat caused by this pro-
cess can easily be dissipated by the stock heatsink.

3.3 Software

The Jetson Nano stores a model trained offline to per-
form image classification. This model will be manually
trained using existing python libraries (Scikit-learn and Py-
torch). When an image arrives for classification from the
imaging pipeline, the Jetson Nano executes the forward
pass and uploads that classification result to the web ap-
plication. This result is sent to the web application via
a RESTful API request, and the web application updates
a centralized MongoDB database containing the cards of
each player. Visitors to the web application will then see
the updated cards of each player. The web application and
centralized database are stored on the cloud via AWS host-
ing services.

Python will be used to train the model, classify im-
ages, and constitute the back-end of our web application
through the Flask framework. HTML and JavaScript will
be utilized to create the front-end of our web application.
The PyMongo module will be used by our Python code
to make queries (getting, deleting, updating, and insert-
ing data) to our MongoDB database. All Python, HTML,
and JavaScript code will be developed, and cloud hosting
services will be purchased to host our application.

18-500 Design Review - March 17, 2021 Page 3 of 10

4 DESIGN TRADE STUDIES

4.1 Imaging System

4.1.1 Lens Geometry

We chose a low-distortion, 75◦ field-of-view lens with an
IR cut filter for the camera sensor. While we considered
fish-eye lens that provide a significantly wider field-of-view,
we chose to avoid that non-linear perspective since it would
add complexity to training a classification model with non-
linear projections. We also explored lens distortion correc-
tion algorithms, but the added complexity offline was not
worth the benefits of having more images containing the
ROI for classification. Furthermore, using a wider-angle
lens reduces the resolution of the ROI.

The IR cut filter is critical to avoid any interference
from infrared wavelengths transmitted from the card pres-
ence sensor.

4.1.2 Sensor Framerate and Resolution

Sensor framerate and resolution are conflicting param-
eters that both increase PokerCam’s price. To balance the
need for high framerates to avoid motion-blur and high res-
olution to enable accurate classifications, we examined the
trade-offs in the overlap ratio of a card image and pixel size.
We selected a relatively cheap sensor (Sony IMX219) that
provides 720p resolution at 180 fps. As we show in equa-
tion 5, 720p provides excellent resolution of the region of
interest for classification. Therefore, we selected the high-
est possible framerate to enable fast card motions without
significantly increasing PokerCam’s price by relying on spe-
cialty sensors.

The SBC’s memory requirements increase linearly with
the camera framerate in our current capture algorithm that
saves every capture while the card is moving. Future im-
provements to PokerCam include a lower-power embedded
processor to reduce the power and cost. To enable future
memory-limited hardware, we limit our framerate to 180
fps to balance reasonable memory requirements with rapid
user card motions.

4.1.3 Illumination

While multispectral illumination may enable improved
discrimination between red and black suits based on re-
flectance values under different illuminants (hearts and di-
amonds v. clubs and spades), that configuration would
require narrow-bandwidth laser diodes for each illuminant.
We do not believe that is worth the added hardware to dis-
criminate the card’s rank from four options to two. Cur-
rently, we can accomplish a similar effect by examining red
sensor values for black and red suits from the RGB cam-
era. Furthuremore, multispectral illumination would re-
quire alternating images between two different illuminants.
If the classifier requires images under both illuminations,
this would halve the effective framerate, reducing the num-
ber of possible images to classify. Finally, any reliance

on multispectral illumination would require future imag-
ing systems to include a multispectral sensor. Since Pok-
erCam aims to replace current surveillance systems with a
cheaper alternative, we hope future iterations may include
a monospectral camera that can classify images indepen-
dent of the illumination choice. A monospectral camera
would nullify any gains from multi-spectral illumination.

We will install multiple LED’s around the PCB that
holds the camera to illuminate the card. Those LED’s
will be appropriately spaced and angled from the sensor
to avoid specular highlights. While we cannot comment on
the spacing without finishing the prototype, we will include
details in the final report of how the lighting geometry cre-
ates or avoids specular highlights.

4.2 Image Classification

For our machine learning classification algorithm, we
will experiment with several Scikit-learn and PyTorch mod-
els to implement SVMs and neural networks. PyTorch uti-
lizes CUDA-accelerated routines, and Scikit-learn utilizes
vectorized NumPy calculations. These prebuilt optimized
libraries allow us to achieve our latency requirement during
classification without the added complication of building a
machine learning system from scratch.

We will dedicate several weeks to experimenting with
training these models. SVMs are relatively fast to train,
but they may not provide the best classification accura-
cies. Fully connected neural networks have more weights,
but they also have the potential to increase accuracy. Con-
volutional neural networks may achieve similar accuracies
with fewer learned parameters. They require less computa-
tion when using small kernels and historically outperform
SVMs on traditional computer-vision tasks.

4.3 Web Application

Our web application will be developed in Python,
JavaScript, and HTML, and it will utilize the Flask web
framework. The main other framework we were consider-
ing was Django. Both frameworks have high performance,
so our decision does not bear influence over our latency
user requirement. The main tradeoff we were analyzing
was that Flask is minimalistic while Django has built-in
packages. The development time with complex applica-
tions on Django might be faster because there might al-
ready be a package that handles the logic we need. How-
ever, we wanted a flexible framework to give us complete
control over our web app’s components. Having flexibility
and complete control over our code would allow us to op-
timize our web application logic to most effectively reduce
latency. This was the main reason we chose Flask as our
web framework.

Another reason we chose Flask was that it allows us to
have more control over which database to interface with.
While it has built-in database software packages, Django
has a limited number of SQL databases to choose from.
We decided to use MongoDB as our database program due

18-500 Design Review - March 17, 2021 Page 4 of 10

to its unstructured schema, so it allows for higher flexibil-
ity with regard to our data format. Our data format will
consist of which players have which cards, and this informa-
tion’s structure depends on which card game the users are
playing: poker, euchre, blackjack, etc. Each game might
have a different number of players and a different number
of cards in each hand. If we were to use SQL, there would
need to be a fixed, relational table containing this informa-
tion. However, our information will not follow a structured
schema and will not have a predetermined number of play-
ers and cards in each hand. This is why MongoDB will
better suit our user needs of being able to play multiple
card games.

MongoDB also consists of shared clusters, so data is
replicated across nodes for high availability. This will help
speed up our queries and reduce our overall latency. In
addition, data replication provides fault tolerance, so our
web app will remain functional for our users despite any
failure within a MongoDB node. Since we want to make
the web app’s display a convenient, effortless experience for
audience members, it is imperative that we not only limit
latency but also prioritize fault tolerance. The final reason
we chose MongoDB was because SQL databases are gener-
ally only scalable vertically. This can be expensive in terms
of computation and memory. MongoDB utilizes low-cost
commodity hardware to support horizontal scaling. Hence,
MongoDB represents a more cost-effective decision as our
centralized database.

5 SYSTEM DESCRIPTION

5.1 Imaging System

The imaging system will use an Arducam B0183 cam-
era module with a Sony IMX219 sensor and a low-distortion
M12 lens for capturing photos. We chose the IMX219 since
the Nvidia Jetson Nano’s kernel include prebuilt drivers
and it provides excellent framerate at an adequate resolu-
tion (180fps @ 1280x720). The M12 lens also includes an
IR cut filter to avoid any interference from adjacent IR sen-
sor. The camera will connect to the Jetson Nano’s MIPI
CSI-2 connector.

This camera requires a 3cm minimum object distance.
We will place the camera 3cm from the card, aimed at the
top left corner of the card. Note that the position of the
card’s rank and suit is invariant to rotation when the dealer
loads the cards into the shwo since the cards are symmetric
when rotated 180◦.

This camera module provides a FOV = 75◦ horizontal
field of view and W = 1280px horizontal resolution. As-
suming the object is Dobj = 30mm away from the lens, we
estimate the imaged target size Dtarget and pixel size P for
a planar object parallel to the imaging plane:

Dtarget = 2Dobj tan

(
FOV

2

)
= 46 mm (4)

P =
Dtarget

1280
= 0.0359 mm/px (5)

Given the ROI containing the card’s suit and rank is
0.6×1.8 cm (see Figure 3), that corresponds to 167×500px
ROI on the image. We believe this resolution is more than
sufficient to enable the 98% classification accuracy require-
ment, especially with little motion blur due to the high
framerate.

When the dealer retrieves a card from the shoe, it
trips the card presence sensor. That triggers the cam-
era to begin the 180 fps captures. Once the sensor is
no longer triggered, the camera captures hault. At that
point, the camera has captured approximately 90 frames
over the 0.5 second period. This requires approximately
1280 ∗ 720 ∗ 90 ∗ 4bytes/px = 316MB to store the uncom-
pressed captures in system memory. The pipeline then de-
termines the correct image on which to perform the classi-
fication. Given that the rank and suit appear in the first
0.6cm of the 5.7cm width and assuming the card moves at
a constant velocity, we estimate that the images contain-
ing the rank and suit will appear in the first 0.6

5.7 = 10.5%.
We then select an image from that initial subset of cap-
tures to preprocess and classify. Based on the latency of
our trained model, we will determine if there is headroom
to perform classification on all 10 images and save the la-
bel with the highest certainty or randomly select a single
image for classification. We will report this finding in the
final report.

To preprocess the image before classification, we will
identify the corners that surround the card suit and rank.
The program will crop that ROI, resample it to a con-
stant image size through bilinear interpolation, and pass it
through the classifier.

The Nvidia Jetson Nano will compute the forward pass
of our machine learning model to classify cards. As op-
posed to other popular SBC’s, we chose the Jetson Nano be-
cause it includes more memory and CUDA cores for GPU-
accelerated networks.

18-500 Design Review - March 17, 2021 Page 5 of 10

Figure 2: Imaging subsystem block diagram

Figure 3: ROI of Bicycle Standard playing card contains
suit and rank highlighted in the red box. The card size is
approximately 5.7× 8.9cm. The ROI size is approximately
0.6 × 1.8 cm. The card will be imaged as it moves from
right to left.

5.2 Hardware System

Our hardware system (see figure 4) will consist of an
Nvidia Jetson Nano with 2GB of memory with a USB
Wifi module for over-the-air data transmission, an Ard-
ucam IMX219 camera module with a low-distortion M12
lens, a 10000mAh USB-C battery bank, a custom PCB
with LED illumination, and an IR reflection sensor to de-
tect card motion.

The custom PCB will include the lighting system and
IR sensor. This PCB will be stacked on top of the camera
module board using standoffs (modeled in Figure 4).

We will use the QRD1114 Reflective Object Sensor from

Fairchild Semiconductor. It comes in a 4-pin through-hole
package with pins 1/2 connected to a phototransistor and
pins 3/4 connected to an IR LED.

Figure 5: QRD1114 Normalized Collector Current vs. Dis-
tance [3]

Using this output current in conjunction with a resistor
network (as shown below), we will convert this current into
a voltage readable by the Jetson Nano’s GPIO pins.

18-500 Design Review - March 17, 2021 Page 6 of 10

Figure 4: Hardware subsystem block diagram

5V

10kΩ

Jetson GPIO

470Ω

QRD1114

Figure 6: QRD1114 System Circuit

The battery bank we plan on using is a 10000mAh USB-
C battery bank. It supplies 5.0V with a 2.1A max current
limit. We estimate the battery life assuming the Jetson
Nano draws the maximum current and completely drains
the battery’s listed capacity:

Ebatt = V I · ∆t (6)

= 5V · 10000mA h ·
(

3600 s

1 hour

)
(7)

= 180, 000J (8)

Ejetson = 5V · 2.1A · ∆t (9)

180, 000J = 10.5 · ∆t (10)

∆t = 17142.857s = 4.761 hours (11)

This is a conservative estimate. We only anticipate us-
ing full power during the image preprocessing and classifi-
cation step. We aim to provide battery life for twice the
length of a typical card game, having our device last ap-
proximately 4 hours. If we find the battery’s banks usable

capacity significantly differs from the listed capacity, we
will transition to a 15000mAh battery bank to meet the
technical requirements for battery life.

The LEDs we will be using are the Seoul Semicon-
ductor S1W0-2835408003 [2]. They are a SMD-mounted
4000K white LED. The LEDs will be powered by the Jet-
son Nano’s builtin 5V power supply rail and controlled by
a GPIO pin through a NPN Bipolar Junction Transistor
(BJT)

5V

10kΩ

Jetson GPIO

100Ω

x6

100Ω

Figure 7: LED Array Circuit

The 100Ω resistors are current limiting resistors restrict-
ing the current to I = V

R = 5V
100Ω = 50mA. The max cur-

rent ratings for the LEDs is 65mA. The maximum supply

18-500 Design Review - March 17, 2021 Page 7 of 10

Figure 8: Software subsystem block diagram

current for the Jetson Nano’s 5V rail is 500mA, thus our 6
LEDs consuming their maximum power will be using only
78% of this rating.

5.3 Software System

Our image classification algorithms will utilize a ma-
chine learning model implemented in an existing Python li-
brary. We will obtain training, validation, and testing data
by manually imaging 4 decks of Bicycle Standard playing
cards and noting their ground-truth labels. We will pre-
process those images with the same pipeline that identifies
and crops the ROI.

After obtaining the training data, we will train the fol-
lowing models on the preprocessed images: support vector
machines, neural networks, and convolutional neural net-
works. We will use scikit-learn to train the SVMs and Py-
Torch to train GPU-accelerated neural networks offline on
a PC. If necessary, each ROI will be resampled to a con-
sistent size for training. SVMs with a radial basis function
(RBF) kernel are faster to train and evaluate, but neural
networks may learn a more complex decision-boundary that
produces more accurate classifications. Using the model
with the best validation accuracies, we will report the train-
ing, validation, and test accuracies in the final report and
implement that model on the Jetson Nano.

Each model will predict 2 labels: 1 label for the rank
and 1 label for the suit. We will train an ensemble of SVMs
to predict these labels. The neural networks will output two
vectors corresponding to label probabilities for the rank and
suit. The overall loss function will be the sum of the binary
cross-entropy losses for the rank and suit labels.

The chosen machine learning model will output its clas-
sification result in a RESTful API request to the web ap-
plication (see figure 8). This POST request will contain
information about the suit and rank of each card. Since

the card dealing order is fixed in these card games, the web
app will automatically determine which player the card be-
longs to based on the dealing order. It will then update
its display of the cards of each player. The user will select
the card game at the beginning of the session. This ini-
tial HTTP request with the game type will allow the web
app to implement the correct state machine in determining
dealer order.

The web page’s back-end logic will be written in
Python. It will work with the Flask framework to handle
GET and POST requests. When handling these requests,
the Python code will interface with a MongoDB database
hosted on AWS. This will be accomplished through Py-
Mongo, a Python distribution tool that allows Python code
to make queries to a MongoDB database. When the Nvidia
Jetson submits a POST request to the web page, the Mon-
goDB database will be updated with which players have
which cards. The web page, which automatically refreshes
every 0.5 seconds (to meet our 2 second latency require-
ment), will then display the updated content. This updated
content will be obtained by making a query to the Mon-
goDB database to see the current state of the game. We
need a centralized database to ensure all visitors to our web
application view the same, consistent card data. Without
a centralized database that is shared by all users, different
visitors would see different data.

The web page’s front-end logic will be written in HTML
with inline JavaScript. The HTML web page will showcase
a table consisting of players as rows and cards as columns.
The inline JavaScript is necessary to make a new HTTP
GET request to the web page every 0.5 seconds. This en-
sures the web page on the user’s browser is displaying the
most up-to-date information about the game’s state with-
out requiring the user to refresh the page.

18-500 Design Review - March 17, 2021 Page 8 of 10

6 VALIDATION PLAN

6.1 Subsystem Testing

6.1.1 Image Classification

Using the hardware prototype, we will image four un-
opened decks of Bicycle Standard playing cards as they are
retrieved from the card shoe. Those images will constitute
the training, validation, and testing sets. The test images
will correspond to a single card deck exclusively for testing.
We will train SVM and neural network models offline on
a local PC. We will save the best performing model and
upload it to the Jetson Nano. We will validate the model
by examining classification accuracies on the validation set.

6.1.2 Hardware

The card presence IR sensor will need to be thoroughly
tested to ensure there are no false/failed triggers. We will
test this system by drawing cards from the shoe, making
note of any false/failed triggers and adjusting the sensitiv-
ity/thresholds accordingly. We will also test the device in
several common environments: under incandescent light-
ing, fluorescent lighting and outdoors in sunny conditions.

6.1.3 Web Application

The main testing for the web application is ensuring
that users from various geographic locations can visit the
web page. Since our web page will be ultimately configured
on the cloud, we will have access to inbound security rules
for our web application. We need to ensure that all IP
addresses can successfully send GET requests to the web
page. In addition, we will test the latency of these HTTP
requests. Users of various geographic locations should be
able to visit the web page and see updates within 2 sec-
onds of the card being retrieved. To test the web app dur-
ing development, we will send POST requests with player
and card data to the web app to update the current state.
This should hold true for all users regardless of their geo-
graphic location. If we observe delays in the web app for
certain users, we will look into any AWS services provid-
ing content delivery networks. Since these services would
help configure our web app on geographically distributed
servers, latency could be greatly reduced for users. How-
ever, this can also incur higher costs, so it should only be
purchased if necessary.

6.2 Full System Testing

To verify the product meets the design requirements,
we will host a card game where the dealer exclusively deals
a new, unopened deck of Bicycle Standard cards from Pok-
erCam for at least two hours (the length of a typical card
game). One of the team members will be present during the
game to note ground-truth labels of cards as they are dealt.
The team member will inform the dealer that PokerCam
requires the user to retrieve a card over a 0.5 second period

to enable accurate image classification. The team member
will watch the web display to note any false triggers during
the game. The system will be configured to automatically
measure latency between the card trigger and classification
result.

If the battery dies in less than two hours of gameplay,
the system fails to meet the power requirements. After
the game, we will review the classification results with the
ground-truth labels to verify it achieves the accuracy re-
quirement without any false triggers. We will also review
latency data to verify the two-second latency is achieved
for each classification.

7 PROJECT MANAGEMENT

7.1 Schedule

Our schedule includes an aggressive timeline to design
the PCB to allow time for a second revision. Secondly,
the schedule requires that Jeremy configure the imaging
prototype quickly after the hardware arrives to enable ex-
perimentation with the lighting system and time to collect
the training and testing set. This will require collaboration
with Ethan, who is in charge of designing and configur-
ing the hardware setup with the card shoe. Once Jeremy
finishes the imaging prototype on the card shoe, he will
hand it off to Sid to collect training, validation, and test-
ing images from different unopened decks of playing cards
for training. Sid will then work on training various ML
models. After training and validation, he will choose the
most optimal for our use case requirements to be stored on
the Nvidia Jetson.

The schedule includes two weeks at the end for slack
time and integration.

7.2 Team Member Responsibilities

Jeremy is primarily responsible for designing the imag-
ing system. He will prototype the camera and lighting
setup to provide the best images without specular high-
lights, motion blur, or defocus. He will implement the im-
age preprocessing and selection algorithm. He will work
with Sid on the machine learning image classification.

Sid is primarily responsible for the web application and
machine learning. He will design and implement the soft-
ware for the web app and work with Jeremy to collect
training, validation, and testing photos to train appropriate
models for classification.

Ethan is primarily responsible for the hardware setup.
He chose sensors, will design the PCB, and will lead the
physical design of the card shoe. He will assist with the
imaging setup to include black acrylic walls to control the
lighting.

7.3 Budget

Figure 10 contains our proposed budget. To work on the
project remotely, we budget for three Nvidia Jetson Nanos

18-500 Design Review - March 17, 2021 Page 9 of 10

and appropriate accessories. We also purchased two cam-
era modules to allow us to build two separate prototypes
remotely. To recreate the project, one must only purchase
a single Jetson Nano, one microSD card, one battery bank,
one card shoe, and one PCB with the associate BOM.

All parts are purchased using our capstone budget, and
none are borrowed from the course inventory.

7.4 Risk Management

Our most critical risk is achieving the 98% accuracy
requirement while obtaining less than 2 seconds in la-
tency. To reduce motion blur, we are working with
a high-framerate camera. It is very possible that the
high-framerate captures will overwhelm the Nvidia Jetson
Nano’s system memory if there is more capture overhead
we have not accounted for. If that occurs, we will either
drop frames or purchase a Jetson Nano with 4GB of sys-
tem memory instead of 2GB. If we find that we can only
achieve the classification accuracy with complex classifica-
tion models or expensive preprocessing, we may sacrifice
latency to achieve the desired accuracy.

Secondly, the image selection process prior to classifi-
cation is risky at this stage since we cannot determine the
number of images sufficient for classification before building
the prototype. Similar to the memory overflow scenario, we
may have to sacrifice latency to implement more complex
algorithms to identify the image that classifies the card
with the highest certainty.

The long shipping and turnaround time for the hard-
ware is risky. We plan to mitigate this risk by manufac-
turing the first revision of the PCB quickly to allow for a
second revision. In addition, we will build two prototypes
to limit the number of hardware exchanges between team-
mates and dependencies on a single part.

7.5 AWS Credit Usage

Our AWS credits were used to configure an Ubuntu vir-
tual machine through the EC2 web service. Located in
northeastern US, our server currently hosts our web appli-
cation. As of now, we have not yet utilized any of the AWS
credits, so our bill is currently $0. We anticipate to spend
$3 a month for as long as the web application and server
are running. Thank you for providing us with AWS credits.

References

[1] Paulo Martins, Lúıs Paulo Reis, and Lúıs Teófilo.
“Poker Vision: Playing Cards and Chips Identification
Base on Image Processing”. In: Pattern Recognition
and Image Analysis (June 2011), pp. 436 –443.

[2] Mid-Power LED: 3528 Series. Datasheet. Rev 1.2.
Seoul Semiconductor, 2020. url: https : / / www .

digikey . com / en / products / detail / seoul -

semiconductor-inc/S1W0-2835408003-0000003S-

0P002/9686996.

[3] Reflective Object Sensor, QRD1113, QRD1114.
Datasheet. Rev. 3. Semiconductor Components In-
dustries, LLC. 2019. url: https://www.onsemi.com/
support / design - resources / datasheets ? part =

QRD1114/D.

18-500 Design Review - March 17, 2021 Page 10 of 10

A Appendix

A.1 Project Timeline

PokerCam Schedule
Group Member Task

2/22 - 2/26 3/1 - 3/5 3/8 - 3/12 3/15-3/19 3/22 - 3/26 3/29 - 4/2 4/5-4/9 4/12 - 4/16 4/19-4/23 4/26-4/30 5/3 - 5/7

M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F

Jeremy

Determine camera geometric/optical/electrical requirements

Determine lighting requirements

Finalize and purchase camera evaluation board and LED options Parts Shipping
Configure camera drivers

Test camera geometry, resolution, and blurring while moving playing cards

Research lens distortion correction

Prototype lighting setup. Determine if multi-illuminant lighting is neccessary

Create card segmentation

Implement corner & edge detectors to crop card's rank and suit

Build and test camera and lighting system beneath card shoe with custom hardware

Test camera geometry and lighting changes based on preliminary ML results

Verify final housing produces images of similar quality and lighting

Slack time

Sid

Develop static web app components

Set up MongoDB cluster and connect web app with cluster

Make web pages dynamic/interactive to HTTP requests

Migrate web app from local machine to AWS

Test RESTful API requests from Jetson Nano

Research OpenCV, tensorflow, PyTorch, and other ML algorithms for low latency and sufficient accuracy

Collect and preprocess training/validation/testing dataset

Train with second dataset

Train SVM, fully-connected networks

Train convolutional neural network (if necessary)

Integration

Ethan

SBC Selection + Board Ship Time Eval Board Ship Time
Camera Module Selection Eval Board Ship Time
Lighting/Card Detection System

Power System Design

Order Parts/Housing Parts Shipping Parts Shipping
Build Test Bed
PCB Design + Fab Time 1st Revision Fabrication Time 2nd Rev. Fabrication Time
Work on Camera Drivers

Integration/Assembly

Slack Time

Team

Prepare design presentation

Prepare design review report

Prepare final presentation

Prepare final video

Prepare final report

Figure 9: Gantt Chart detailing individual tasks and contributions

A.2 Proposed Budget

Item Part No. Vendor Quantity Unit Price Price
Nvidia Jetson Nano 2GB - Amazon 3 $49.99 $149.97
32GB MicroSD card 3-pack - Amazon 1 $16.99 $16.99
5V 4A DC Power Supply* - Amazon 2 $14.95 $29.90
10000mAh USB-C batterybank - Amazon 2 $16.00 $32.00
Arducam OV9281 Camera Module* B0165 Amazon 1 $42.00 $42.00
Arducam IMX219 Camera Module B0183 Amazon 1 $35.99 $35.99
Brybelly Six Deck Blackjack Dealing Shoe - Amazon 3 $16.99 $50.97
Bicycle Standard card deck (8pk)* - Amazon 1 $24.00 $24.00
AWS credits - Tamal 10 $0.00 $0.00
PCB Rev. 1 - OSHPark 1 $20.00 $20.00
PCB Rev. 2 - OSHPark 1 $20.00 $20.00
IR Reflector Sensor QRD1114 Sparkfun 2 $0.95 $1.90
SMD LED 3528 White, Neutral 4000K S1W0-283540800 Digikey 12 $0.18 $2.16
SMD NPN BJT TO-236AB PMBT2222A,235 Digikey 2 $0.50 $1.00
100R 1W SMD Chip Resistor 3520100RJT Digikey 12 $0.33 $3.95
10K SMD Chip Resistor 352010KJT Digikey 2 $0.46 $0.92
Shipping (Estimate) - - - $15 $15.00

Total $446.75
*Only used for prototyping

Figure 10: Proposed Budget

