
1
18-500 Final Project Report: 3-17-2021

Automatic Gentleman

Authors: Jean Paul Nelson, Logan Kojiro, Juan Pablo
Betello: Electrical and Computer Engineering, Carnegie

Mellon University

Abstract— A system to deliver ping pong balls to the opposite
side of the table into standard sized red solo cups. The system will
serve as an artificial opponent in a game of cup pong, tracking
the state of the game, and launching balls as appropriate.

Index Terms—Design, Robot, Sensor, Object Detection,
Computer Vision, Projectile Dynamics

1. INTRODUCTION

Due to the pandemic, there have been many social
distancing practices put in place to reduce the spread of
COVID. Many of these guidelines restrict social gatherings
like concerts, outings, parties, etc. For college students, this
limits a large portion of the activities they partake in.
Specifically, parties are nonexistent at this time, and because
of this, popular games cup pong cannot be played. The
Automatic Gentleman sets out to alleviate this problem. Our
goal is to create a robotic opponent that can simulate a full cup
pong game. Using computer vision, depth sensing technology,
and projectile dynamics, we can create a robot that can detect
cups and launch ping pong balls into them with the same
accuracy of the average human.

Our robot will simulate a real human game of cup pong. It
will provide real-time detection of cup variable formations,
and accurate motion planning control, and a consistent ball
launching mechanism. The Automatic Gentleman (referred to
as AG from here on), will be able to detect the ellipse edge of
the cups with 90% accuracy and no duplicates in under 1
second. It will then calculate the position of each cup in the
real world coordinate system in order to do motion planning
for the ball’s flight path. Our launching mechanism will be
able to freely rotate +/- 30 degrees to aim and shoot the ball
consistently within 1.5” of a detected cups center.

2. DESIGN REQUIREMENTS

A. Cup Detection
The main requirement to the cup detection algorithm is to

identify the ellipses around the edge of cups positioned across
a table with 90% accuracy and no duplicates. To achieve this,
the detection process is split into 3 steps:

1. Resizing and image type conversion
2. Ellipse Detection
3. Duplicate ellipse filtration

Our cup detection testbench consists of running a series of

images through our detection algorithm and displaying the
depicted ellipses on top of the original BGR image. We use
this visual result to confirm that 90% of the cups have been
detected, and that there is a maximum of 1 ellipse detected per
cup.

B. Depth Sensing
In order to do the motion planning, we need the positional

coordinates of each cup. Using the depth map captured by the
Azure Kinect DK camera, along with the 2D-pixel coordinates
of the detected ellipses. We can derive the 3D-positional
coordinates of the cups in the real world. Our testbench will
output the coordinates of each detected cup, which we can
verify by positioning the cups in predetermined locations on
the table.

C. Game State
The main purpose of the UI display and the game state

system is to keep track of the progression of the game,
particularly what cups have been made and how many shots
have been made or missed. The user will be able to manually
interact, and if needed, change the game state through
overriding cup marking and deciding what shot to try and
make next.

D. Motion Planning
The main requirement here is based on correctly integrating

the cup detection system into the actual gameplay i.e the
launcher. The Automatic Gentleman should be able to intake
the location of the cups and plan shots accordingly. This will
have several sub-requirements such as shooting one ball at a
time and maintaining a minimum level of net accuracy.

E. Ball Delivery
The requirement of this system is to accurately deliver the

ball to the target cup. To do this, the horizontal angle will have
to be adjusted to within 1 degree of the calculated angle, and
the exit velocity will need to be within 1% of the calculated
exit velocity from the motion planning phase. To maintain
accuracy of angle, the system will also have to keep track of
its angle relative to the table at all times.

The testing for angle will consist of a series of given angles
that will be verified by hand whether the machine achieved the
correct angle. These will be done in batches to ensure that
precision is not lost over time. At the end of a game, we
should still see less than 1 degree drift from the target angle.

The velocity testing will also consist of giving target
velocities to the system and directly measuring by hand. This
will be done using a mobile phone slow motion camera and a
grid of squares with known dimensions. Using this setup of
grid squares behind the launcher, we can count the frames and
squares crossed in the slow motion footage to extrapolate the
velocity the ball was traveling at the time it left the launcher.

F. Game Accuracy
The overall goal of the accuracy will be to be within one

2
18-500 Final Project Report: 3-17-2021

standard deviation of a person over the course of a game. This
will be measured by counting the number of shots it takes to
complete the game. The rules of one game are as follows:

● The game will start with 10 cups in a pyramid
formation at the far end of a table

● Once 4 cups are made and removed from the
formation, the remaining 6 cups should be
rearranged, again in a pyramid formation

● After a further 2 cups are made and removed, the
remaining 4 cups should be placed in the ‘diamond’
formation (one single cup at the bottom, then 2, then
1)

● Finally, when only 2 cups remain they should be
placed in the ‘gentleman’s’ formation: 2 cups placed
in a line at the end of the table

We will have each human participant play at least 4 games.
For each game, they will count the total number of shots it
takes them to make a ball in all 10 of the cups. Upon the
completion of the system, we will run the AG on the same
setup and count the number of shots it takes the robot to hit all
the cups.

G. Ball Storage
We have yet to determine the number of balls the average

person needs to complete a game, but the AG should be able
to store at least half of that: enough such that over the course
of a normal game, a player would only have to refill it once.

3. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

A. Jetson TK1
The Jetson TK1 is the main computing source for our

project. The two cameras will connect to the Jetson via USB,
while the arduino will be connected via the UART serial port
and the tablet display via HDMI. Our application executable
will run on the Jetson and will control the capturing of images
on the cameras. The image processing and gameplay control
will be handled by the Jetson.

B. Arduino
As mentioned above, the arduino is connected to the Jetson

via UART a serial port. The arduino will receive the positional
coordinates of the targeted cup and then adjust the launcher
angle to aim at the desired cup. The arduino will control the
aiming of the barrel and launching of the ball by adjusting the
PWM signals of the GPIO pins connected to the motors. The
angle will be adjusted using a stepper motor under the
launcher assembly controlled by an EasyDriver stepper motor
driver. Software on the Arduino will keep track of the previous
angle and steps as to not lose track of its absolute position.
The launch velocity will be controlled via pwm and an L298
bridge IC. It will run for only as much time as needed for a
single launch then stop.

C. Azure Kinect SDK
The images of the opponents cups will be captured by an

Azure Kinect DK camera equipped with IR, Color, and Depth
cameras/sensors. The camera will be positioned opposite the
opponent across the table, angled down towards the cups.
Using the Azure Kinect SDK, we will capture both BGR color
images and depth map data. The sdk also is equipped with
library functions to aid in the transformation of a 3 channel
color image to a 4 channel image (depth value is the 4th
channel).

D. Cup Detection with OpenCV
We are using the C++ OpenCV library to capture and

process the images. Images are captured and processed at the
start of each turn. We use an open-source CNC Ellipse
Detection [1] library to actually detect the ellipse, because the
standard ellipse detector in OpenCV is too slow for our 1
second time limit.

E. UI Display Tablet
We are going to be implementing a user interface on a

touch LCD display through which the user can interact with
the Automatic Gentleman and interfere with the game if need
be. The UI will have the base function of allowing the user to
manually target a specific cup, but will also contain support
features such as a settings page and marking/unmarking cups.

4. DESIGN TRADE STUDIES

These are some of the design considerations we took while
developing this or project.

A. Jetson TK1
We chose to use the Jetson TK1 as our main computing

source over the Raspberry Pi because of its CPU and GPU
specifications. The Azure Kinect camera requires high CPU
and GPU power to efficiently utilize its advanced camera and
depth sensors.

B. CNC Ellipse Detector
OpenCV has standard circle and ellipse detection libraries

available in the C++ package. I tested a suite of pictures
containing ellipses using the standard library, and the closer I
came to our desired camera angle, the detection time increased
exponentially, hitting up to several minutes in some cases.

3
18-500 Final Project Report: 3-17-2021

After some digging, I found a research project, and its github
project, on speeding up ellipse detection time. When I tested
the same suite of pictures using this new library, I was able to
get the detection time down to ~800ms, which is way below
our 1 second threshold

C. Azure Kinect Camera
We chose the Azure Kinect DK camera because of its

advanced cameras and sensors, primarily the depth sensors.
We could have made our lives easier by mounting both
cameras directly above the cup formations. This would have
eliminated the need for ellipse detection since the bird’s eye
view of a cup is a circle and much easier to detect. However,
an important requirement for our project was to simulate a real
game as much as possible. Since we wanted to position our
camera across the table and at an angle, accurate depth sensors
were crucial in order to generate the 3D positional
coordinates. The Azurer Kinect SDK also provides us with a
powerful library to aid in the transformation of 3-channel
images to 4-channel images.

D. Image Processing and Additional Filtering
The Azure kinect camera has several resolutions to capture

images in. While testing the new CNC Ellipse Detection
algorithm, I noticed that our results were more accurate the
smaller the picture was. I eventually settled on downscaling
the image to 512x512 pixels to get better results. Even so, the
dictator would average 7 duplicate ellipses per cup. Duplicate
ellipses in this case are defined as multiple ellipses whose
center points are within 15 pixels from each other. After
reading documentation of the ellipse detector, I altered several
parameters to get duplicate ellipse down to an average of 2-3
per cup. This is where we came to the conclusion that an
additional custom filtering step was necessary. This got us
down to our requirement of 1 ellipse per cup.

E. Hardware Driver (Arduino)
We chose to use an arduino because of its ease of use and

integrated GPIO. While we could have used a separate
Raspberry Pi for hardware control, we did not need the
additional computation power, and the Arduino is much easier
to use. We also opted to have a separate hardware controller
rather than using the Jetson’s GPIO to make the separation of
labor easier. Additionally, we were familiar with using
arduinos to interact with hardware so it was one less thing for
us to learn.

F. DC Motor and Driver
Initial calculations show that for a range of approximately

two meters, and a driving wheel radius of 2cm, we would need
an RPM of around 350 to launch at around 4 m/s. Due to the
light weight of the ball, a 6v,11.5k RPM motor from Pololu
will be sufficient to launch the ball. The 6v mark makes it easy
to power with 4 AA batteries in series as well. In order to
more precisely control the RPM, we may end up undervolting
or gearing down the motor to get more fine grained control
over the lower RPMs as it is unlikely we will need the higher
RPMs this motor can generate. Ideally we would use closer to

a 6v 1000rpm motor but most of the 1000 rpm motors are a
much higher voltage.

G. Stepper Motor and Driver
We chose to use Brian Schmalz’s EasyDriver stepper driver

and a standard 4-wire bipolar stepper motor. This driver is
well documented and will be able to run the stepper motor on
a 12V power supply (either from wall power or a separate 12v
battery assembly)

H. Equations
(1): vi = initial velocity;

5. SYSTEM DESCRIPTION

Our overall system is 3 main components: Cup Detection,
Motion Planning, and Projectile Dynamics.

Fig. 1. Subsystem diagram of Cup Detection Modules

A. Cup Detection
As shown in Figure 2, the cup detection subsystem is split

into 3 main components:
● Image Capturing
● Ellipse Detection
● Additional Filtering

In the image capturing component, our software will utilize
the Azure Kinect SDK to interface with our application. With
the sdk, we can stream and capture both the color and depth
images from the Azure Kinect camera. We will use OpenCV
to interface with the USB webcam to capture images from that
camera. All captured images will be converted to
OpenCV::Mat structs, which is the required input type for the
CNC Ellipse Detector.

In the Ellipse Detection component, we utilize the CNC
Ellipse Detector functions to efficiently and accurately detect
the cup edges. Instead of using the entire executable, I stripped
the open-sourced code to the main functionality that we
needed. This reduced a lot of the dependency overhead. A
large part of the ellipse detection is black-boxed inside the
detector functions, however, many of the parameters we
needed to provide took lots of testing to get accurate results.

4
18-500 Final Project Report: 3-17-2021

The additional filtering component is the final step before
generating the position of the each detected cup. In this step,
we filter out any ellipses whose center points are within 15
pixels of another. This step proved to be vital in generating
accurate position coordinates.

B. Position Coordinate Generation

This component serves as the inputs for the motion planning
process. This component utilizes the array 2D pixel
coordinates of the detected ellipses and the captured depth
map to identify where in our 3D space each cup is located. We
utilized the Azure Kinect SDK to combine the 3 BGR
channels with an additional depth data channel. With this 4
channel image we can determine how far away each cup is by
checking the each pixel returned from our ellipse detection
component.

Fig. 2. Subsystem diagram of Motion Planning and Display Modules

Fig. 3. FSM of game state for motion planning

C. Motion Planning

This system will control the overall flow of the game,
ensuring proper integration and cycling of the cup detection
system as well as maintaining an updated game state. This
system will essentially be the software foundation through
which the Automatic Gentleman’s ability to read and analyze
the environment is linked to it actually taking the shots. The
finite state machine diagram above represents the
implementation of the game progression and has the intent of
keeping a game running smoothly while also giving the player
opportunities to correct any missteps along the way.

D. Display

The display is directly connected to the game state tracking
and this is what will be displayed to the user so the
progression of the game can be easily seen. However, this
won’t just be a display but will also take user input and
facilitate interaction and interference with the game and with
the Automatic Gentleman’s performance. The UI will include
a method of manually marking or unmarking cups as made in
case there are any errors or miscounts. The UI will also
include settings to tune the difficulty and manually adjust shot
trajectory in case the Automatic Gentleman is over or under
performing.

Fig. 4. Subsystem diagram of Launcher Modules

E. Launcher

The main computing and driving device in the delivery
system/launcher is an Arduino. The Arduino is connected via
UART to the Jetson. Figure 3 shows the subsystem diagram of
the launching mechanism. On the Arduino, there will be a
serial listener that will be ready to receive input from the
UART connection. When it receives input, it first parses it into
a velocity and angle. From there, the angle will be sent to the
stepper controller to rotate the device. In the stepper controller,
there will have to be a persistent variable that keeps track of
the current position of the system relative to the table so the
rotation can be appropriate to the angle we need to line up
with the cup. Next, the velocity will be extrapolated to a PWM
voltage to supply to the DC motor. This voltage will be
adjusted such that the launching wheel angular velocity
matches that of our calculated exit velocity. The physical
housing can be seen in figure 5. With the balls being fed by
gravity from behind the DC launching wheel, the ball will sit
in contact with the wheel until it is time to launch. At this
/time, the wheels will quickly spin up to the target RPM,
propelling the ball out towards the target cup.

5
18-500 Final Project Report: 3-17-2021

Fig. 5. Side view of launching mechanism

Fig. 6. Concept drawing of external housing + Kinect mount

PROJECT MANAGEMENT

A. Schedule
The Gantt chart is split up into 4 sections: Project Planning,

Design and Implementation, Integration and Validation, and
Presentation.

During the Project Planning we focused on ensuring that it
was possible to accurately detect ellipses from our desired
camera angle. In this step is where we discovered the CNC
Ellipse Detector. This section was also spent determining the
launching mechanism that would be consistent enough for our
purposes. We made sure to allot extra time for our Integration
and Validation section because we are not all in Pittsburgh. By
this section we aimed to have all of our individual components
fully functional independently.

One change that we made was to add a couple items related
to changing the design in the launcher. This didn’t put us too
far off track, but it did add a bit of extra work in the next two
weeks modeling a physical housing for the new launching
system.

B. Team Member Responsibilities
Our responsibilities were split up into our 3 system

components:

JP - Implement image capturing and ellipse detection
algorithm to detect ellipses around each cup. Use the depth
data to generate 3D positional coordinates of each detected
cup.

Logan - Extrapolate a relationship of voltage to exit velocity
for our DC motors. Design and assemble our physical
launching component. Implement arduino application to
control and trigger launching mechanism, specifically to rotate
the mechanism to point directly at the target cup and send the
ball out of the front at the appropriate velocity. Design and
implement motor controller circuitry.

Juan Pablo - Design overall software gameplay foundation.
Integrate cup detection component to run each turn. Monitor
game state and progression. Integrate launching component to
fire a single ping pong ball per turn. Create an interactive UI
display.

C. Budget

We tried to use as many items that we could get from the

Fig. 7. Bill of Materials

inventory or personal inventories as possible. The camera and
Jetson were the most expensive items but we were able to
secure both of those for free. Figure 7 shows a detailed list of
our materials.

D. Risk Management
Our biggest risk was in the consistency of our launching

mechanism. Logan focused on mitigating this risk by making
it his first task in our Project Planning phase. We initially tried
to use a real ping pong ball launcher, and strip it down its main
components that we would be able to control with arduino
PWM signals. This proved to be inadequate. The real ball
launchers used a spring loaded mechanism which we would

6
18-500 Final Project Report: 3-17-2021

not have precise control over using an arduino. Additionally,
this mechanism had a degree of uncertainty in the exit
velocities that was much too high. We had to pivot to design
our own custom ball launcher.

Another tisk was the computing power of the SoC we
chose. We initially did testing on a personal computer and then
a Raspberry Pi. We quickly found out that a Jetson TK1 would
be the easiest SoC to get our hands on that had the necessary
computing power.

Finally, one last risk was the accuracy of detecting ellipses
from an angle using the standard OpenCV libraries. To
mitigate this risk, JP focused on this in our first Project
Planning phase. We ran multiple tests of ellipse detection from
various angles. Based on the detection time and result
accuracy, we came to the conclusion that an external ellipse
detector was necessary in order to reach our requirements.

6. RELATED WORK

We have found similar projects that touched on independent
components of our project. For example, the Stanford ball
launchers featured in their ‘battle of the bots’ 2015
competition. As a class project, students from Stanford were
tasked with designing robots to shoot balls into a hoop at a
short distance. Many of the designs appear to use a similar
approach of a spinning wheel to deliver the balls. With the size
of the hoop and the size of the balls they are using it looks like
a similar degree of accuracy that we need in our project. The
CNC Ellipse Detector was a project centered around speeding
up ellipse detection processes. This proved to be vital in
ensuring our application ran within our time constraints. The
ellipse detector project is open source which made it very
useful in our project development. While there is little
documentation on a hackathon project from 6 years ago, the
Stanford robots are a good indication that this design is on the
right track and capable of delivering the accuracy we are
looking for.

REFERENCES

[1] CNC Ellipse Detector Github,.
https://github.com/dlut-dimt/ellipse-detector

[2] CNC Ellipse Detector Research Paper,.
https://www.sciencedirect.com/science/article/pii/S0031320314001976

[3] Stanford Robots,.
https://www.youtube.com/watch?v=fXsB7fXcWO8

https://github.com/dlut-dimt/ellipse-detector
https://www.sciencedirect.com/science/article/pii/S0031320314001976
https://www.youtube.com/watch?v=fXsB7fXcWO8

7
18-500 Final Project Report: 3-17-2021

8
18-500 Final Project Report: 3-17-2021

