
1
18-500 Final Project Report: 05/14/2021

Graduating Gardeners
Author: Hiroko Abe, Sarah Jang, Kanon Kihara:

Electrical and Computer Engineering, Carnegie Mellon
University

Abstract — An automatic greenhouse system capable of
maintaining specific temperature, lighting, and watering
conditions, as well as detecting plant growth status and defects
with an accuracy of over 90%. The greenhouse is connected to an
interactive web application where users can receive alerts if any
changes occur to the plants, monitor their plants live, and
manually control environmental variables in a timely fashion,
where the greenhouse environment will be adjusted to the new
settings within an hour. Compared to complex and expensive
industrial greenhouse systems, we aim to provide an intuitive,
compact, low-cost, and effective greenhouse system for new
gardeners.

Index Terms — Automation, Computer vision (CV), Edge
Detection, Greenhouse, HSV Color Detection, Microcontroller,
NumPy, OpenCV, Web application

I. INTRODUCTION

The demand for gardening supplies has increased
significantly and caused frequent supply shortages throughout
2020 as more and more people started gardening for the first
time during the Covid-19 pandemic. For many who are new to
gardening, creating a gardening environment at home could be
an expensive and complicated task. Growing plants that have
specific environmental needs is also challenging for beginners.
Greenhouse technology has been around for a very long time,
and there are many greenhouses on the market that have
advanced features to increase environmental sustainability,
plant growth, and productivity. However, these systems are
intended for large-scale industrial usage, which require a lot of
investment in infrastructure and specialized knowledge to
operate. We are planning to implement some of these features
that help optimize plant growth on a small-scale greenhouse
system with a user-friendly website in order to cater towards
normal people who want to enjoy gardening at home.

Our greenhouse system automatically maintains specific
temperature, lighting, and watering conditions, and alerts users
of plant growth status and defects. The greenhouse is
connected to an interactive web application where users can
receive the alerts, monitor their plants live, and manually
control environmental variables. With the assumption that this
greenhouse system will be used to grow common household
plants, our goal was to build a greenhouse that is able to
maintain a target soil moisture percentage with a 5% tolerance,
a target temperature with a 5°F tolerance, and provide the
plants with a target of 4 hours of light everyday. The system
should accurately detect plant growth stages and defects with
an accuracy greater than 90%. When a user changes the target
temperature, soil moisture, or light duration on the web
application, the new target should be met within an hour of the
command. The web application UI should be intuitive and

user friendly to provide the user with an effortless, yet
successful gardening experience.

II. DESIGN REQUIREMENTS

In order to set specific, quantitative requirements for our
project, we decided to focus the scope of our greenhouse to
automatically grow pea shoots. They are relatively easy to
grow and only take about 2 to 3 weeks until harvest, which
gives us enough time to test the greenhouse with a full growth
cycle of the pea shoots. Based on specific growing conditions
of pea shoots, we are requiring our greenhouse to be able to
maintain a target soil moisture percentage (volumetric water
content) with a 5% tolerance, in order to ensure that the soil
moisture percentage will stay well in between the field
capacity and permanent wilting point. We are also requiring
our greenhouse to be able to maintain the target temperature
with a 5°F tolerance, since pea shoots should ideally be grown
in temperatures between 55°F and 65°F. By setting the
minimum target temperature to 60°F, we are ensuring that the
ideal temperature range is maintained within the greenhouse
even during the winter. The greenhouse should be able to
provide a target amount of light to the plants (in hours/day),
which is determined by the lighting schedule set by the user on
the web application. The greenhouse needs to adjust quickly to
manual changes of environmental variables too; when a user
changes the target temperature, soil moisture, or light duration
on the web application, the new target should be met within an
hour of the command.

On the software side, we require that our greenhouse is able
to classify certain growth stages like germination, young plant,
flowering/ fruiting, and harvest with an accuracy of greater
than 90%, and detect common defects like diseases and
withering with a false positive rate of less than 10% and a
false negative rate of less than 5%. We also expect the stem
bending detection to categorize stems as bending greater or
less than 45° with an error rate less than 10%. Different plants
have different growth stages, but in the case of pea shoots,
growth stages like sprouting and harvesting can be classified
based on simple metrics such as height and the number of
leaves, so we are requiring our CV algorithm to accurately
classify the plants’ growth stages. Detecting plant defects is
more challenging, but since we do not want to risk ignoring
plant defects that lead to serious complications, we are
tolerating a higher false positive rate than the false negative
rate. Security is also an important aspect, so we will map a
single account registered on the web application to a single
greenhouse by asking users to create an account with a
password and authenticating requests to control the
greenhouse. The user’s commands to change temperature, soil
moisture, or light duration conditions should be sent and
received by the greenhouse hardware within a minute to help
ensure that the previous requirement of adjusting conditions
within an hour of the command is met. We plan to live stream
the plant on the web application, which will require a camera
with day and night vision, a wide field of view, and a reliable
connection to keep the video streaming available 24/7.

https://www.degreesymbol.net/

2
18-500 Final Project Report: 05/14/2021

Through the same wifi, we hope that the live stream latency is
less than 10 seconds. Finally, the UI of the web application
should be intuitive and easy to navigate to provide the user
with a pleasant experience.

Fig. 1. Labeled picture of the greenhouse in operation

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

In our project, we have 3 main crucial components which
are

○ Hardware system
○ CV analysis
○ Web application

The key to the success of this project will be the hardware
system setup. In Fig. 1, we have overall system design of the
greenhouse, indicating the location of each of the components.
Because the greenhouse has shelves, we can place a water tank
and plant grow light on the top shelf. On the middle shelf, we
will have two plant trays with moisture sensors, Raspberry Pi
that holds our IR-cut camera, and ESP32. We will also have
two water pumps for each of the plant trays. Lastly, on the
bottom shelf, we have a mini heater, 5V relay, and extension
cord. Unlike what we indicated in our initial design report, we
decided to get rid of the fan or cooling system because we
were not able to find any compact AC within our budget.
Therefore, we are only focusing on the heating system.

A soil moisture sensor, light intensity sensor, and
temperature sensor are connected to the ESP32 board. The

data collected from these sensors are processed within ESP32
and then sent to our web application backend by using AWS

Fig. 2. Initial web application UI design

IoT and AWS DynamoDB. ESP32 also sends signals to the 5V
relay so that it can turn on/off the mini heater, water pumps,
and LED plant grow light.

The plants are always monitored by an IR-cut camera that
has day and night vision. The captured video is sent to a web
application via WI-FI and with a live streaming script. This
video or image is also sent to our CV analysis system which is
operated by OpenCV. We have 3 detections within our CV
algorithm: leaf shape detection, HSV color detection, and stem
detection. OpenCV is able to achieve these detections swiftly
as it already has HSV color detection, edge detection,
size/shape detection functions within its library. Our 3 main
detections are then used for growth stage classifier, defect
detector, and stem/vine bending measurer. CV analysis
information is sent to the web application backend for further
use.

Our users will interact most with our web application. The
user will first register or login to our web application by
creating a new account or logging in with Google OAuth2.
Then the user will be led to the main user page that shows the
information about their greenhouse, shown in Fig. 2. While
the user can monitor the live video of the greenhouse, the user
page also indicates the current temperature and soil moisture,
and whether the light is turned on/off. The user can change the
value of these parameters manually within the web
application. The user can also indicate if the greenhouse is
placed indoors or outdoors. This information is necessary
since regular light intensity sensors cannot differentiate
between indoor lighting and sunlight, but indoor lighting does

3
18-500 Final Project Report: 05/14/2021

not contain the necessary wavelengths for optimum plant
growth. Therefore, we assume that all light measured by the
light intensity sensor is indoor lighting if the user indicates
that the greenhouse is located indoors, while we assume that
all light measured by the light intensity sensor is sunlight if the
user indicates that the greenhouse is located outdoors. By
using data from our hardware and CV analysis, we send out
notifications to users through our web application. For
example, when the temperature gets too high or if some of the
plants start to wither, the user receives a SMS notification on
their mobile phone. The user can also specify what kind of
notifications or how often they want to receive them.

Fig. 3. Final web application UI

There are several changes that we made to the design as we
progressed. Within the greenhouse, we were initially planning
to place two plant trays on the middle shelf. However, because
we also had to place the RPi camera on the middle shelf, and it
requires a certain distance to perform CV on our plants, we
decided to set up only one plant tray. As a result of this, we are
no longer using our second soil moisture sensor. Another
change we made was with the light. Our initial plan was to
automate turning on/off the LED grow light depending on how
much sunlight the plant has already received. However, it was
difficult for us to move our entire greenhouse outside and
conduct multiple tests to calibrate the light intensity for the
sunlight. Therefore, we got rid of this function, and instead,
the users can now schedule the light on their own (Fig. 3). Our
goal of web UI design was to fit every component within a
single page without scrolling because that is how most of the
mobile app works. Because our new UI design took up a bit

more space than we expected, we decided to remove a
notification section to achieve our goal. For the CV
application, we added a background removal and pot removal
step, because there was a lot of noise in our video that kept
making our analysis jump from one measurement to another.
Instead of distinguishing leaves and stems by their shapes, we
decided to extract the leaves with HSV Color Detection.
Therefore, we measure the angle of a stem between the
vertical axis and the line that goes from the plant center to the
flower centers collected from the flower detector, as this
approach was producing much more accurate stem bending
measurements and bending seems to happen mostly when
fruits or flowers are weighing the plant down. Finally, our
website will no longer be deployed on EC2. While one
greenhouse should be linked to one user, our currency setup
provides a system where every user is linked to one
greenhouse. This is because there was no time for us to build
another greenhouse and test out this user linking process.
Therefore, there was a concurrency issue when multiple users
try to change parameters on a deployed website. Moreover,
our live video only works when the website is under the same
wifi as the RPi camera. Hence, we realized that deployment on
EC2 is not what we want to focus within this project.

IV. DESIGN TRADE STUDIES

V. ESP32 vs Arduino vs. Raspberry Pi

TABLE I. MICROCONTROLLER COMPARISON

Board
Comparison Aspect

Required Parts Price
(Sparkfun) Max Temp

ESP32S Micro USB Cable $19.95 125°C

Arduino
Uno USB-B Cable $22.95 85°C

Raspberry
Pi 3 B+

Micro USB Cable, SD
Card, SD Card Reader $35.00 85°C

We are using an ESP32 board to gather sensor data, send
sensor data to AWS, and control the 5V relays. There are other
microcontrollers like the Raspberry Pi and Arduino that could
also perform the same functions. All 3 of these boards support
WiFi and Bluetooth connectivity, and can be connected to
temperature, soil moisture, and light intensity sensors.
However, there are some key differences between them that
helped us decide to use the ESP32 board. Table 1 above shows
that the ESP32 board is the cheapest option, and can operate at
a higher temperature than the Raspberry Pi or the Arduino
Uno. While it is true that the Raspberry Pi is more expensive
because it has more memory and processing power than the
other 2 boards, our greenhouse does not require those extra
capabilities since most of the data will be stored and processed
using AWS IoT. It is also worth noting that some household
plants that originate from tropical regions thrive in higher
temperatures, so it is safer to use a board with a higher
maximum operating temperature just in case the internal
temperature of the greenhouse is set very high.

4
18-500 Final Project Report: 05/14/2021

VI. Irrigation Systems
While designing the automatic watering system, we

compared different types of irrigation systems to choose the
most effective one for our purpose. The 3 common types of
irrigation that could be used within a greenhouse are drip
irrigation, sprinkler irrigation, and sub-irrigation. Drip
irrigation delivers water at or near the root of plants using a
drip, spray or stream. Sprinkler irrigation utilizes overhead
high-pressure sprinklers or guns to distribute water.
Sub-irrigation distributes water across land by raising the
water table through a system of pumping stations, canals,
gates, or ditches. A simple drip irrigation system only requires
a water pump and a soaker hose to build, while evaporation
and runoff are minimized. Sprinkler irrigation is also simple to
implement, since it only requires a hose connected to a
sprinkler. However, there would be a need to carefully contain
the water within the greenhouse since the greenhouse is
mainly tested for use indoors. Sub-irrigation can control water
flow more efficiently and precisely than a sprinkler, but would
be the most complicated to implement, since it requires a
system of pumping stations, canals, gates, or ditches to control
the water table. Thus, we came to the conclusion that the drip
irrigation system would be the most simple and effective way
to water the plants within the greenhouse.

A. AWS vs. Other Cloud Solutions
As mentioned before, we are using AWS IoT in order to

send/receive commands to/from our ESP32. Even though
there are many other cloud solutions such as Microsoft Azure,
we wanted to achieve a quicker communication between
hardware and software by completing all systems within
AWS.

Similarly, while we have options such as MongoDB that can
hold more complex data, we decided to use AWS DynamoDB
as we will be able transfer our data quickly from/to AWS IoT
when we try to send commands to the hardware. Moreover, all
the data we need to store are simple values, therefore
DynamoDB is sufficient for our purpose.

B. Django vs. Other backend web frames
We chose Django over other web frameworks because it is a

high-end Python web framework. Our CV analysis will also
be written in Python. Once our CV analysis detects problems
on plants, we need to organize this information and send them
to the users as a notification. Therefore, it is the best practice
for us to use Django and keep our overall programming
language the same by using Python for faster communication.

C. Twilio vs Nexmo SMS Messaging
Our SMS API, Twilio, can be also customized with Python.

We also looked into other SMS APIs but most of them have
limited or superabundant services. For example, Nexmo SMS
Messaging, the one we were also looking at, has many
features including calling and also global texting; however,
these features are unnecessary for the project. The cost
performance of Twilio also seemed reasonable. The overall
cost depends on how many messages we receive/send, so it

would stay within our budget since the greenhouse system
sends only a couple messages per day.

D. Computer Vision vs. Machine Learning Model
Initially, we were planning on implementing a Machine

Learning model to categorize growth stages and to compare
healthy or diseased plant images to the greenhouse plants, but
through further research we found that this process holds high
risks and complicates visual plant growth analysis. Because
every plant grows so differently even within a species of
plants, there is much room for error and misleading
classification with image-fed learning models. We would also
have had to be reliant on common images from online for our
training data, but with most images online taken with specific
lighting and grown in commercial amounts, such data would
not be appropriate for the small scale system we’ve designed.

Alternatively, computer vision applications are much more
common and foreseeable in smart planting systems. With the
CV approach, not only is a growth stage classifier and defect
detection possible, but also vine bending is much more viable.
We could much more efficiently customize the analysis to
work with the lighting system that the plants are under as well,
as opposed to the online images we may have had to rely on
for the learning model. The growth stage classifier could also
be much easily implemented with a pixel per metric method,
where the height of the plant in the image can be converted to
real-life size by a conversion constant, rather than being
trained with images. Because of the simplicity and safety of
the CV approach compared to the learning model, we decided
to take the former path.

E. Raspberry Pi IR-Cut Camera vs. Logitech C920

TABLE I. CAMERA COMPARISON

Camera Price Resolution Strengths

RPi IR-Cut $24.99 1080p/30fps Day & Night
Vision

Logitech C920 $69.99 1080p/30fps RightLight Tech.

Initially, we had looked into the Logitech C920 camera, as it
is a popular webcam for CV projects and it had RightLight
technology, which adjusts the video quality to the lighting
conditions. This would reduce the complications of trying to
adjust the LED lights of the greenhouse for the pea shoots to
be visible. Further, with constant image quality, we would not
need to change the specific HSV color values for edge
detection of the video. However, when we pivoted to adding a
live stream monitoring system, we realized that we would
need both day and night vision. The RPi IR-Cut camera was
the only camera we could find which integrated both vision
types in one camera, and we would’ve needed to add a filter or
work with two cameras if we chose the Logitech C290.
Because of the lower price, equal resolution, and the day and
night camera, we continued with the RPi IR-Cut camera. As
for the lighting conditions for high quality imaging, we adjust
the LED plant lights to accommodate for the RPi camera.

5
18-500 Final Project Report: 05/14/2021

F. Raspberry Pi vs. ESP32 Integration for Computer
Vision

Initially, we were planning on connecting the Raspberry Pi
Camera to the ESP32 and uploading the CV application to the
ESP32 since the ESP32 is cheaper and all the hardware would
be connected to one board. However, the pins used to connect
a RPi camera module to the ESP32 are not compatible.
Further, there are no ESP32 camera modules that have both
day and night vision, which is integral for the live stream.
Because Sarah and Hiroko are working separately, we thought
it would be best to work with hardware that suits their
respective components that they were working on. Further, the
RPi was available for rental from the ECE department. Hence,
we decided to implement the CV application on the RPi, since
there is a larger community of CV projects made with
Raspberry Pi Camera Modules, the Raspberry Pi ensures the
processing power for constant live streaming, the RPi could be
borrowed, and its compatible camera module comes with both
day and night vision.

Fig. 4. Hardware Block Diagram

VII. SYSTEM DESCRIPTION

A. Hardware Subsystem
The hardware subsystem of the greenhouse revolves around

the ESP32 board that gathers sensor data, sends sensor data to
AWS, and controls the watering, heating, and lighting systems.
Temperature is measured by the waterproof 18B20
temperature sensor, which uses the Dallas 1-Wire Protocol to
send the data over to the ESP32 using 1 GPIO port. Light
intensity is measured by the BH1750 photodetector, which
communicates with the ESP32 via the I2C bus. In order to
extract the sensor data from the input signals, the ESP32 has
the BH1750 sensor library, OneWire library, and the
DallasTemperature library installed. As shown in Fig. 1, our
greenhouse has space for 1 tray of pea shoot plants, so there is

6
18-500 Final Project Report: 05/14/2021

a capacitive soil moisture sensor SEN0193 that sends analog
signals to the ESP32, which has built-in ADCs to convert
them into digital signals. All of the sensors except the
temperature sensor are powered by the 5V output from the
ESP32, while the temperature sensor is powered through the
data line. Once the ESP32 has all of the input signals
converted into temperature, soil moisture percentage, and light
intensity values, the information is sent to AWS using the
MQTT protocol, so that the software subsystem can analyze
the data.

On the other hand, the ESP32 receives commands from
AWS to turn the water pumps, heater, and LED plant light
on/off. The ESP32 is connected to 5V relays that are wired to
an electrical outlet where the various appliances are plugged
into, which gives the board the power to turn the appliances on
and off. As shown in Fig. 1, the small space heater is placed at
the bottom of the greenhouse shelf since the warm air will rise
and create a convection current to maintain a constant
temperature throughout the greenhouse. The special LED
plant light is placed above the plants to provide light with
PAR, the range of light that can be used by plants to
photosynthesise. A water pump is placed inside a water tank to
pump water through a tube to water the plant tray.

In order to provide the computer vision subsystem with live
images of the plant, a Raspberry Pi IR-cut camera connected
to a Raspberry Pi is placed inside of the greenhouse shelf. The
details of these components will be explained later in the
computer vision section, since the camera has been separated
from the other sensors and appliances in order for us to
parallelize the workflow. The camera and Raspberry Pi were
brought to Pittsburgh and integrated into the physical
greenhouse system once the computer vision algorithm was
completed towards the end of the semester.

After the electric components were wired and placed within
the greenhouse, we used a waterproof electrical junction box
to contain the sensors and microcontrollers to protect the parts
from water.

B. Web Application Subsystem
Web application backend is developed with Django while

the frontend is developed with Javascript and HTML. With
Twilio API, we send out SMS alerts and notifications to users.
The data used within our web application is stored in AWS
DynamoDB.

From Fig. 5, the ESP32 sends data to AWS DynamoDB
using AWS IoT with MQTT protocol and AWS Lambda.
From here, our backend retrieves this data from the database
by using boto3, which is an AWS software development kit
for python, and renders these values on the website. Whenever
the user modifies the parameters of the greenhouse, this data is
sent to AWS DynamoDB and then to AWS IoT by using
python requests library, so that our web application and
hardware can communicate with each other. We are sending a
3-bit signal back to ESP32 via AWS IoT. Each bit corresponds
to turning on/off the heater, water pump, and LED grow light.

The sensor data from ESP32 is further analyzed within the
backend. Especially for the soil moisture sensor, because it is

sending analog signals, we calibrate these values into soil
moisture percentage that is easier for the users to understand.
We are also using these data to send users notifications. For
example, if the temperature target is met, we will send users a
notification and turn off the heater automatically. If it goes
below the target temperature, we will automatically turn the
heater on while also sending alerts. We are periodically
checking whether these target values are met by having a
python script run every 10 minutes to analyze the data.
Moreover, even when the user is not interacting with the
website, AWS IoT is constantly sharing information from the
hardware to the web application every 15 seconds. Hence,
within the database, the current information of the greenhouse
is always updated.

From Fig. 6, the data from CV analysis and live streaming
system is handled in a similar manner. By using our live
stream script, the unprocessed video data is directly rendered
onto the website using the IP address of the IR-Cut Camera.
The data from the camera is also analyzed within OpenCV.
This analyzed data holds information about growth stage and
defects. The backend receives this information and sends
alerts or notifications accordingly.

The website frontend structure is pretty simple because all
the important information is handled within the backend. It is
a single page application that the user can access from a PC
and also from their mobile phones.

Fig. 5. Web Application Block diagram

C. Computer Vision Subsystem
The computer vision application is reliant on the OpenCV

and NumPy libraries, specifically in the HSV Color Detection
and Edge Detection functionalities. We first extract the
contours of the plants using a more rigorous edge detection
algorithm and white out the pixels outside of the contour
which is the background so that the colors of the background
do not interfere with the later analysis. Then, the
background-removed image goes through a pot removal

7
18-500 Final Project Report: 05/14/2021

algorithm which looks for an object that is of typical pot HSV
values and size. During this process, we collect the midpoint
of the pot which is the plant center and whites out the pot for
cleaner analysis later on.

There are three main components in the CV application: the
classification of four growth stages (germination, young plant,
flowering/ fruiting, and harvest), the detection of common
diseases or withering, and the measurer for extreme vine or
stem bend. The application is integrated onto a Raspberry Pi 3
Model B+ and a real-time video is captured through the
Raspberry Pi IR-Cut Camera Module which includes both day
and night vision for 24/ 7 monitoring. The camera must be
placed sideways to capture a side view of the pea shoots in
order for the detectors to work properly.

The first parameter that determines which growth stage the
pea shoots are at is the height of the plant, which is measured
through the pixel per metric method. To initialize the method,
it takes in the distance from the camera to an object along with
the height of an object, and divides the pixels by the real
height of the object. With this pixel per metric conversion
scale, we multiply it by the height of the pixels captured in the
camera to determine the real life plant height. The second
parameter that most likely distinguishes flowering from
harvest is the detection of flower and fruits, which is
implemented by passing another layer of the HSV Color
Detection onto the non-stem parts, since the leaves and flower
shapes of pea shoots are similar. We also collect the centers of
the clusters of flowers or fruits for later analysis.

The defect detector analyzes the leaves distinguished by the
leaf shape detector and searches for any spotting, a common
disease and insect bite pattern. For withering, we look for
yellowish or brownish colors.

For detecting extreme bending of stems or vines, we find the
line between each flower or fruit center and the plant center
collected earlier. Then, we find the angle between each of
these lines and the positive y-axis that goes through the plant
center. Any angle greater than 45 degrees is considered
extreme and is advised to be staked.

The first time a growth stage is reached, the user will be
alerted. Users are also notified of every new defect or
withering leaf that is detected. Notifications are sent as a SMS
text message through the Twilio API.

Further, there is a live stream monitoring system that is
captured and ran through the same Raspberry Pi and camera
used for CV analysis. The live stream is available through
referencing its IP address and is embedded into the website for
the user to interact with.

For further information and details, refer to the block
diagram, Fig. 6.

Fig. 6. Computer Vision Application Block Diagram

VIII. TEST AND VALIDATION

A. Results for Computer Vision Application
For the CV application, there were 5 separate tests for the

growth stage classifier, disease detection, withering detection,
stem bending, and latency.

For the growth stage classifier, 15 images of a pea shoot
plant were taken over 12 days, and 5 images of flowering
plants with 4 of them being different snapdragons each in
different growth stages were tested. The tallest pea shoot’s
height and the flower plants’ heights were measured with a
ruler and predicted through CV, and we saved the difference
between these heights as the height difference. The tallest pea
shoots’ height differences averaged about .47 cm. The flower
and fruit detection was also tested, and with no errors from the
flower/ fruit detection, we achieved an error rate of 10%
which was our initial ideal threshold. Most of the error rate
seemed to come from the transition period of when a plant
goes from one stage to another. Pea shoots’ only indication of
maturity are its height, so without the flower/ fruit detection
applied to reaffirm a growth stage, there was more error in
classifying the pea shoot growth stage.

8
18-500 Final Project Report: 05/14/2021

TABLE II. GROWTH STAGE CLASSIFIER

Since it is difficult to assert diseases onto a plant and due to
safety concerns, we simulated white and dark spotting
diseases. For the white spotting, we used flour and some
cotton to simulate moldy diseases. For the dark spotting, we
drew some dots and patches of disease with black and red ink
pen. Simulating disease on some leaves while keeping other
leaves clean, we took 5 different side profiles for each 4
flower plants which in total are 20 images: the blue pansy, the
purple pansy, the pink snapdragon, and the red seed geranium.
A patch is considered the area of a bounding box that the CV
analysis draws that contains a cluster of spotting or a large
rectangular area outside the bounding box that doesn’t contain
spotting. For each image, we count the total number of
patches, the number of patches that contain spotting which are
the true positives and the number of patches that contain
healthy green leaves which are the true negatives. We then run
the analysis, and count the number of bounding boxes in the
disease detection image that don’t contain any spotting which
is the false positives. After, we look for clusters of spotting
that are not in bounding boxes and count them as the false
negatives. With this data, we calculate the false positive and
negative rates and find that for white spotting, the false
positive rate is around 2% which is less than the 10% we had
in mind and the false negative is around 3% which is less than
the 5% goal. For the dark spotting, the false positive rate was
higher than our goal with 15% and the false negative rate was

higher as well with 9%. This could be because the shadow and
dents of the leaves are being confused for disease patterns,
while white stands out much more in the HSV scale.

TABLE III. DISEASE DETECTION

The withering was also tested with 20 images, but we tested
with just pea shoots, blue pansy, and purple pansy plants.
Once the first pea shoots matured, sections of the pea shoots
and soil were cut out and dried while the remaining soil and
pea shoots in the planting tray were watered as usual. Then,
the next days after that the dried pea shoots and soil patches
were placed in different spots of the planting tray, and we ran
the CV analysis which grouped withered pea shoots in
bounding boxes. Blue and purple pansy flowers with some
withered leaves mixed in were bought so that we could test
whether the CV could distinguish healthy leaves from
withered leaves. The true positive is the number of healthy
leaves in the image, while the true negative is the number of
withered leaves in the image. Then, the false positive is the
number of healthy leaves that were within the bounding boxes
that were meant for withered leaves. The false negative is the
number of withered leaves that were undetected. With these
measurements, the false positive rate is around 8% which is
less than the 10% goal metric, and the false negative rate is
5.4% which is slightly higher than the 5% goal metric. There
seems to be more false positives and negatives in the
flowering plants than the pea shoots. This may be due to the
larger range of colors present in the pansy flower plants that
may contain the HSV parameters similar to those of
yellow-brown colors of withering leaves.

9
18-500 Final Project Report: 05/14/2021

TABLE IV. WITHERING DETECTION

For the stem binding, 5 different side view images of the
blue pansy, purple pansy, pink snapdragon, and red seed
geranium flowers are analyzed. For each image, we count the
number of stems which have a fruit or flower on the top and
are connected to the plant center on the bottom. Then, we
measure the real angle that the flower stem is relative to the
vertical axis that goes through the plant center and count how
many are categorized as greater than or less than 45°. The
image goes through the CV application, and we calculate the
stem angles from the y-axis and count how many stems are
categorized as greater than or less than 45°. For each image,
the largest angle difference between a real stem angle and the
CV’s stem angle measurement is calculated, and we compare
the number of stems categorized greater than or less than 45°
between the real data and the CV analysis output. If the
numbers do not match, we add that to the number of stems
erroneously calculated. We then divide the number of errors
by the total number of stems. The stem bending measurer has
around a 9% error rate, and the average largest angle
difference is 5°. The error rate comes from the stems that are
around 45° which may be categorized incorrectly due to the
small differences in measured and predicted angles. The
slightly off flower centers also lead to slight differences
between the angle measurements.

TABLE V. STEM BENDING DETECTION

For the latency, an object was placed near the plants and we
recorded the time it took between the object being placed and
the object appearing in the live stream. The average latency
time was 8.77 seconds, which is less than the 10 second metric
goal we had set.

TABLE VI. LATENCY

B. Results for Data Transmission
There are two components to our data transmission:

between hardware and web application, and between hardware
and DynamoDB. Between hardware and web application, we
had to time how long it takes for the hardware to receive 3-bits
signal from our web application backend. To determine this,
we printed out the time stamp on the backend when it sent the
signal and did the same on ESP32 once it received the data.
Table 7 is our result. We conducted 10 tests and achieved an
average of 1.76 seconds to send/receive data between
hardware and web application.

Between hardware and DynamoDB, we also did a similar
test by printing out a time stamp of ESP32 once it sends
sensor data and compared that time stamp to the one that is
stored within DynamoDB. The time stamp within DynamoDB
indicates when it received the data. We again conducted 10
tests. From Table 8, our result showed the average of 1.75

10
18-500 Final Project Report: 05/14/2021

seconds. We actually have conducted another 10 other tests
twice on different days, and we got an average of 0.29 seconds
and 12.6 seconds. While we are not sure the exact cause of
this fluctuation, we assumed this was because of our internet
upload speed and operating conditions of AWS.

Because our initial goal was to transfer data within an hour,
we achieved this goal as the transmission took less than 2
seconds on average in both cases.

TABLE VII. DATA TRANSMISSION FROM WEB APP TO HARDWARE

Time stamp (web) Time Stamp (hardware)

Time
Difference

(sec)

13:56:32.438969 13:56:35.777 3.338031

13:57:46.985887 13:57:49.653 2.667113

13:58:6.27398 13:58:07.430 1.15602

13:58:19.935543 13:58:20.785 0.849457

13:58:35.108173 13:58:37.047 1.938827

13:58:47.736421 13:58:48.966 1.2233579

13:58:59.339266 13:59:00.747 1.407734

13:59:12.373659 13:59:14.064 1.690341

13:59:23.139495 13:59:24.460 1.32055

13:59:32.858402 13:59:34.856 1.997598

Avg =1.76

TABLE VIII. DATA TRANSMISSION FROM HARDWARE TO WEB APP

Time stamp (web) Time Stamp (hardware)

Time
Difference

(sec)

14:09:11.509 13:56:35.777 3.338031

14:09:26.276 13:57:49.653 2.667113

14:09:41.025 13:58:07.430 1.15602

14:09:55.819 13:58:20.785 0.849457

14:10:10.585 13:58:37.047 1.938827

14:10:25.363 13:58:48.966 1.2233579

14:10:40.128 13:59:00.747 1.407734

14:10:54.874 13:59:14.064 1.690341

14:11:09.650 13:59:24.460 1.32055

14:11:24.440 13:59:34.856 1.997598

Avg =1.75

C. Results for Web Application
For the web application, we decided to test the usability on

our web UI. We randomly chose 10 people and let them
navigate through the website without any explanation.

On our first survey, 4 out of 10 people found our website
confusing. This was because even when the users changed the
settings of the greenhouse, they were not able to confirm
whether the change was saved or not. Because we were aiming
to have 80% ease-of-use, we failed on the first survey.

After improving this issue, we gave out the survey again to
the same 10 people. As a result, 10 out of 10 people answered
that it was much easier to understand the functionality of the
website, and therefore they could flawlessly navigate through.
Therefore, we eventually succeeded in this test by having
100% positive feedback.
D. Results for Heating and Watering System

We tested the heating and watering system of our
greenhouse to make sure that we met our previously set
requirements. When the current greenhouse temperature was
74°F, we set the goal temperature to 80°F. The greenhouse
internal temperature reached 84°F in 10 minutes, and the
heater automatically turned off after reaching 84°F. This
testing result satisfied our requirements of maintaining the
target temperature with a 5°F tolerance, and reaching the new
target within an hour. The heater that we are using in our
greenhouse is effective enough to raise the internal
temperature of the greenhouse 1°F per minute.

In order to test the greenhouse’s watering system, we set the
target soil moisture percentage higher and lower than current
sensor value. The water pump turned on when the target was
set higher than the current sensor value, and stayed off when
the target was set lower than the current sensor value.

IX. PROJECT MANAGEMENT

A. Schedule
Overall, we were on time with our schedule. Kanon built the

overall web application, including the login and registration
page, the greenhouse controls page, and the setup for the
DynamoDB. Hiroko was in charge of the hardware; she
connected the sensors to the ESP32, as well as the appliances
that control the greenhouse environment to the ESP32. Sarah
implemented the HSV Color Detection and edge detection,
and applied that to the growth stage classifier and withering
detection. For specifics of the schedule, please refer to
Appendix I: Schedule Chart.

As we researched more about greenhouses and plants, we
made some changes to the schedule. After deciding on pea
shoots as our testing subject, we updated the schedule to
include when to start planting pea shoots for our tests. We
gave the pea shoots a week head start before the testing
period, because a week is needed for their germination.

We also had to factor in when Sarah would be bringing the
Raspberry Pi camera and Raspberry Pi to Pittsburgh, so we
pushed back the CV integration into the physical greenhouse
and live stream work until her arrival.

B. Team Member Responsibilities
We divided the work such that Hiroko worked on most of

11
18-500 Final Project Report: 05/14/2021

the hardware, specifically arranging the relays, setting up a
feedback loop with the sensors, the MQTT protocol
connection between the ESP32 and the website, and the
assembling of the sensors, greenhouse, and equipment. Kanon
worked on the cloud database setup with AWS, integrating
DynamoDB and Twilio with the website, managing the data
received and sent between the hardwares and software, and
creating a web platform with Django for users to interact with
the greenhouse, and assisting in the hardware setup. Sarah
focused on creating a remote CV application and was
responsible for setting up the day and night vision RPi Camera
with the RPi and implementing analysis on recognizing
growth stages, defects such as withering, diseases, or deforms,
and extreme vine curvature that requires plant staking. She
also completed a 24/7 live stream of the greenhouse and a
SMS notification system when attention is needed on the
plants.

C. Budget
The Bill of Materials is located at the bottom of the report,

in Appendix II: Budget and Parts List. With Sarah not being in
the same location as Hiroko and Kanan, we decided that it
would be best to work with several boards instead of
integrating all the hardware together, so Sarah’s CV
implementation will be integrated to the RPi and will work
remotely from the ESP32 system. In the Bill of Materials, the
first column contains the web development service and API
credits and all the hardware components bought the first week
after the project proposal. The second column contains the
AWS services that have prices dependent on how much of the
service we use, so we estimated how much we would use
these web development tools and gave enough room in the
remaining AWS credit for any changes in the future.

D. AWS Credits
Our main use for the AWS credits was for DynamoDB.

With the total write/read within the database, we consumed
$0.62 out of our $50 credits. We would like to thank the ECE
department and professors for giving us an opportunity to
learn more about AWS products with these credits.

E. Risk Management
The risks we had in mind changed considerably between

when we pitched our idea and when we began implementing
the components and designing the project. For the hardware,
we were concerned about the response time being too low for
the communication between the hardware, cloud, and
software, the feedback loop appropriately adjusting conditions
without overshooting or taking too much time, and placing
hardware such that it will all fit in the greenhouse while being
safely away from the water and organic material we are
working with, and the instability of the connection between
hardware and software. Plans for mitigating such challenges
included setting a threshold for the frequency of the feedback
loop updates and changes and putting the hardware in a
container. For the software, we were aware of the potential
issues with the latency of the live stream monitoring, the lag in

the website, the proper automation of multiple plant types,
overlapping leaves and plants that may hinder CV analysis of
defects, and high measures of false negatives for classifying
growth stages and defects. To mitigate this, we chose the RPi
to run the CV application and live streaming script as it has
the computing power to run both components and in the future
we may add more cameras or moving cameras to get all angles
of the plant.

Further into the project, we also had to consider the risk of
receiving the wrong data from the database, and to mitigate
this issue we planned to either regain the data before
outputting the value to the website or to notify the website if
drastic changes take place. We also hoped that the night vision
of the IR-Cut cameras would work properly, but in the case
that it did not, we planned to reconfigure the LED lights to
turn on for the night vision to work. After testing the OpenCV
module, we found it very important that the subject we are
analyzing contrasts with the background or the unnecessary
components of an image, so we looked into making a
monochrome backdrop in the greenhouse that provides the
best contrast. We also discovered that parts of the soil
moisture sensor were fragile and not waterproof, so Hiroko
used heat shrink tubes to cover the sensor’s outer electrical
components.

X. ETHICAL ISSUES

Our automatic greenhouse seeks to help people grow plants
at home, since most greenhouse technologies that are available
on the market are for industrial uses and require a lot of
investment in infrastructure and technical expertise to operate.
An ideal user would be a home gardener who needs help
growing plants, but there are users that may be vulnerable to
failure or misapplication of our project. There is a possibility
that someone might try to use the greenhouse to grow illegal
plants, even though we do not intend on encouraging illegal
activities. One might try to grow plants that can be used as
ingredients for illegal drugs such as cannabis or opium poppy,
or grow illegal or restricted plants classified as invasive
species that can threaten the ecosystem of the region.

In order to prevent this kind of misapplication of our
greenhouse, it may be helpful to create a instruction manual
that contains recommendations for ideal plants to grow using
the greenhouse, as well as warnings that give a list of illegal
plants to grow and explain the consequences of growing them.
Furthermore, it may be useful to implement a plant detection
algorithm for identifying common illegal plants using the
already existing CV detection system and send alerts or
warnings when it detects the growth of illegal plants.
However, it is ultimately the user’s decision and responsibility
if they decide to grow illegal plants using the greenhouse.
Therefore, there will always be a small possibility that a user
may misuse the greenhouse no matter how many preventative
measures are taken.

XI. RELATED WORK

Agricultural technology is one of the most rapidly

12
18-500 Final Project Report: 05/14/2021

developing fields, and we took some inspiration from the
industrial greenhouses that are already automated at large
farms. The standard sensing systems for these greenhouses are
LED lights, hydrometers, and thermometers, so we decided to
include these components to our project and include a heating
system, irrigation system, and lighting system to adjust such
environmental parameters. There are many smaller projects
online that use sensors compatible to the Raspberry Pi, but
none of them seem to implement lighting, watering, and
temperature altogether, so we hoped to scale down the size of
industrial greenhouses, combine all the sensors and equipment
through an ESP32 instead, and create a cheaper, smarter
system with convenient control through a website and CV
analysis.

XII. SUMMARY

Our team has been successful in completing the deliverables
on time, and creating detailed, thorough designs for our
subsystems. We also had enough room in our budget to attend
to any unexpected issues and risk mitigation.

A. Future work
Beyond the end of the course, we hope to scale the types of

plants the greenhouse accounts for, so ordering a larger
greenhouse and more sensors and equipment are in the bigger
picture. Adding a camera that moves around the greenhouse
and could take both side and top views of a plant would also
make our CV analysis much more accurate.

Due to financial and technical constraints, we could not
include an air cooler, but if the greenhouse were to be used in
a more tropical environment, an air cooling system would be
necessary. Depending on the future scale of the greenhouse,
we may need more compact and customized containers for the
hardware, especially if the greenhouse is subject to high levels
of humidity and moisture. A customized PCB board could also
simplify the wiring and complications that come with
breadboards.

Some of our members hope to use the systems in the
greenhouse to grow plants in an urban setting, and depending
on the living situation the systems may be adjusted to run
without an enclosed greenhouse.

B. Lessons Learned
Through this project, we learned how to set ambitious yet

realistic goals and how to collaborate and take time out of our
schedules in order to complete a complex project. We found
that clear communication and honesty about our progress in
the project prevented time wasting and misunderstanding
when we would coordinate tasks. In doing so, we found more
time to research and implement our individual tasks. Unlike
some Capstone experiences, we did not feel rushed to finish
our project at the end of the semester because the amount of
time spent on it was evenly distributed throughout the
semester. Always showing up to meetings, maximizing
productivity during the allotted Capstone time, and asking
well-developed questions to the course staff are a few of the

habits that we developed early on in the semester that helped
our team work efficiently.

GLOSSARY OF ACRONYMS

ADC – Analog to Digital Converter
AWS – Amazon Web Services
CV – Computer Vision
GPIO – General-Purpose Input/Output
HSV – Hue Saturation Value
IR-Cut – Infrared Cut
LED – Light Emitting Diode
MQTT – Message Queuing Telemetry Transport
OBD – On-Board Diagnostics
PAR – Photosynthetically Active Radiation
RPi – Raspberry Pi
UI – User Interface

REFERENCES

[1] Aufranc, Jean-Luc. “Know the Differences between Raspberry Pi,
Arduino, and ESP8266/ESP32.” Embedded Systems News, CNX
Software, 24 Mar. 2020,
www.cnx-software.com/2020/03/24/know-the-differences-between-rasp
berry-pi-arduino-and-esp8266-esp32/.

[2] Badgery-Parker, Jeremy. “Light in the Greenhouse.” NSW Agriculture,
Agnote, Sept. 1999,
https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0007/119365/light-in-
greenhouse.pdf.

[3] “BH1750 (GY-302), measure the lighting quality of your home (Arduino
/ ESP8266 / ESP32).” diyprojects.io, 12 Feb, 2021,
https://diyprojects.io/bh1750-gy-302-measure-lighting-quality-home-ard
uino-esp8266-esp32/#.YJ58iBNKj6a.

[4] Campbell, Scott. “TURN ANY APPLIANCE INTO A SMART
DEVICE WITH AN ARDUINO CONTROLLED POWER OUTLET.”
Circuit Basics,
https://www.circuitbasics.com/build-an-arduino-controlled-power-outlet/
.

[5] Cat, Invisible. “DIY a Webcam for MacBook with Raspberry Pi
[Tutorial].” Medium, Medium, 19 July 2020,
www.medium.com/@invisiblecat233/diy-a-webcam-for-macbook-with-r
aspberry-pi-tutorial-2efc8213d9e7.

[6] Chris. “Image Background Removal Using OpenCV.” Medium,
Medium, 21 June 2020,
www.chris-s-park.medium.com/image-background-removal-using-openc
v-part-1-da3695ac66b6.

[7] Datta, Sumon, et al. “Understanding Soil Water Content and Thresholds
for Irrigation Management.” Oklahoma State University, Aug. 2018,
https://extension.okstate.edu/fact-sheets/understanding-soil-water-conten
t-and-thresholds-for-irrigation-management.html.

[8] David, Christopher. “Soil Moisture Sensor Tutorial for Arduino,
ESP8266 and ESP32.” DiyI0t,
https://diyi0t.com/soil-moisture-sensor-tutorial-for-arduino-and-esp8266
/.

[9] Hassan, Murtaza, director. LEARN OPENCV in 3 HOURS with Python |
Including 3xProjects | Computer Vision. Murtaza's Workshop, YouTube,
25 Mar. 2020, www.youtube.com/watch?v=WQeoO7MI0Bs.

[10] Hattersley, Lucy. Monitor Plant Growth with AI and OpenCV. The
MagPi Magazine,
www.magpi.raspberrypi.org/articles/monitor-plant-growth-ai-opencv.

[11] Miles, Carol A, et al. “Pea Shoots.” Pacific Northwest Extension,
http://pubs.cahnrs.wsu.edu/publications/wp-content/uploads/sites/2/publi
cations/PNW567.pdf.

[12] nathancynathancy. “How to Get the Size of an Object Using OpenCV
Python?” Questions, Stack Overflow, 11 Feb. 2020,
www.stackoverflow.com/questions/60171143/how-to-get-the-size-of-an-
object-using-opencv-python.

http://www.cnx-software.com/2020/03/24/know-the-differences-between-raspberry-pi-arduino-and-esp8266-esp32/
http://www.cnx-software.com/2020/03/24/know-the-differences-between-raspberry-pi-arduino-and-esp8266-esp32/
https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0007/119365/light-in-greenhouse.pdf
https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0007/119365/light-in-greenhouse.pdf
https://diyprojects.io/bh1750-gy-302-measure-lighting-quality-home-arduino-esp8266-esp32/#.YJ58iBNKj6a
https://diyprojects.io/bh1750-gy-302-measure-lighting-quality-home-arduino-esp8266-esp32/#.YJ58iBNKj6a
https://www.circuitbasics.com/build-an-arduino-controlled-power-outlet/
http://www.medium.com/@invisiblecat233/diy-a-webcam-for-macbook-with-raspberry-pi-tutorial-2efc8213d9e7
http://www.medium.com/@invisiblecat233/diy-a-webcam-for-macbook-with-raspberry-pi-tutorial-2efc8213d9e7
http://www.chris-s-park.medium.com/image-background-removal-using-opencv-part-1-da3695ac66b6
http://www.chris-s-park.medium.com/image-background-removal-using-opencv-part-1-da3695ac66b6
https://extension.okstate.edu/fact-sheets/understanding-soil-water-content-and-thresholds-for-irrigation-management.html
https://extension.okstate.edu/fact-sheets/understanding-soil-water-content-and-thresholds-for-irrigation-management.html
https://diyi0t.com/soil-moisture-sensor-tutorial-for-arduino-and-esp8266/
https://diyi0t.com/soil-moisture-sensor-tutorial-for-arduino-and-esp8266/
http://www.youtube.com/watch?v=WQeoO7MI0Bs
http://www.magpi.raspberrypi.org/articles/monitor-plant-growth-ai-opencv
http://pubs.cahnrs.wsu.edu/publications/wp-content/uploads/sites/2/publications/PNW567.pdf
http://pubs.cahnrs.wsu.edu/publications/wp-content/uploads/sites/2/publications/PNW567.pdf
http://www.stackoverflow.com/questions/60171143/how-to-get-the-size-of-an-object-using-opencv-python
http://www.stackoverflow.com/questions/60171143/how-to-get-the-size-of-an-object-using-opencv-python

13
18-500 Final Project Report: 05/14/2021

[13] Pennisi, Svoboda Vladimirova, and Robert Westerfield. “Care of
Holiday and Gift Plants.” University of Georgia Extension, 1 June 2006,
https://extension.uga.edu/publications/detail.html?number=B1318&title
=Growing%20Indoor%20Plants%20with%20Success.

[14] Rizza, Matteo. Greenhouse Monitoring with Discovery Kit IoT and
Android. Hackster.io, 6 June 2019,
www.hackster.io/matteo-rizza/greenhouse-monitoring-with-discovery-kit
-iot-and-android-333430.

[15] Rosebrock, Adrian. “Measuring Size of Objects in an Image with
OpenCV.” Tutorials, PyImageSearch, 28 Mar. 2016,
www.pyimagesearch.com/2016/03/28/measuring-size-of-objects-in-an-i
mage-with-opencv/.

[16] Santos, Rui. “ESP32 DS18B20 Temperature Sensor with Arduino IDE
(Single, Multiple, Web Server).” Random Nerd Tutorials,
https://randomnerdtutorials.com/esp32-ds18b20-temperature-arduino-ide
/.

[17] “The Twilio Python Helper Library.” Twilio Docs,
www.twilio.com/docs/libraries/python.

[18] “Types of Agricultural Water Use.” Centers for Disease Control and
Prevention, www.cdc.gov/healthywater/other/agricultural/types.html.

[19] “Video Streaming Raspberry Pi Camera.” Courses, Random Nerd
Tutorials, 1 Nov. 2019,
www.randomnerdtutorials.com/video-streaming-with-raspberry-pi-came
ra/.

[20] Zara, Moheeb, “Building an AWS IoT Core device using AWS
Serverless and an ESP32.” AWS Compute Blog, 3 Jan. 2020,
https://aws.amazon.com/blogs/compute/building-an-aws-iot-core-device
-using-aws-serverless-and-an-esp32/.

https://extension.uga.edu/publications/detail.html?number=B1318&title=Growing%20Indoor%20Plants%20with%20Success
https://extension.uga.edu/publications/detail.html?number=B1318&title=Growing%20Indoor%20Plants%20with%20Success
http://www.hackster.io/matteo-rizza/greenhouse-monitoring-with-discovery-kit-iot-and-android-333430
http://www.hackster.io/matteo-rizza/greenhouse-monitoring-with-discovery-kit-iot-and-android-333430
http://www.pyimagesearch.com/2016/03/28/measuring-size-of-objects-in-an-image-with-opencv/
http://www.pyimagesearch.com/2016/03/28/measuring-size-of-objects-in-an-image-with-opencv/
https://randomnerdtutorials.com/esp32-ds18b20-temperature-arduino-ide/
https://randomnerdtutorials.com/esp32-ds18b20-temperature-arduino-ide/
http://www.twilio.com/docs/libraries/python
http://www.cdc.gov/healthywater/other/agricultural/types.html
http://www.randomnerdtutorials.com/video-streaming-with-raspberry-pi-camera/
http://www.randomnerdtutorials.com/video-streaming-with-raspberry-pi-camera/
https://aws.amazon.com/blogs/compute/building-an-aws-iot-core-device-using-aws-serverless-and-an-esp32/
https://aws.amazon.com/blogs/compute/building-an-aws-iot-core-device-using-aws-serverless-and-an-esp32/

14
18-500 Final Project Report: 05/14/2021

APPENDIX I: SCHEDULE CHART

15
18-500 Final Project Report: 05/14/2021

APPENDIX II: BUDGET AND PARTS LIST

