
1
18-500 Final Project Report: 03/17/2021

Graduating Gardeners

Author: Hiroko Abe, Sarah Jang, Kanon Kihara:
Electrical and Computer Engineering, Carnegie Mellon

University

Abstract ​— An automatic greenhouse system capable of
maintaining specific temperature, lighting, and watering
conditions, as well as detecting plant growth status and defects
with an accuracy of over 90%. The greenhouse is connected to an
interactive web application where users can receive alerts if any
changes occur to the plants, monitor their plants live, and
manually control environmental variables in a timely fashion,
where the greenhouse environment will be adjusted to the new
settings within an hour. Compared to complex and expensive
industrial greenhouse systems, we aim to provide an intuitive,
compact, low-cost, and effective greenhouse system for new
gardeners​.

 Index Terms ​— Automation, Computer vision (CV), Edge
Detection, Greenhouse, HSV Color Detection, Microcontroller,
NumPy, OpenCV, Web application

I. I​NTRODUCTION
The demand for gardening supplies has increased

significantly and caused frequent supply shortages throughout
2020 as more and more people started gardening for the first
time during the Covid-19 pandemic. For many who are new to
gardening, creating a gardening environment at home could be
an expensive and complicated task. Growing plants that have
specific environmental needs is also challenging for beginners.
Greenhouse technology has been around for a very long time,
and there are many greenhouses on the market that have
advanced features to increase environmental sustainability,
plant growth, and productivity. However, these systems are
intended for large-scale industrial usage, which require a lot of
investment in infrastructure and specialized knowledge to
operate. We are planning to implement some of these features
that help optimize plant growth on a small scale greenhouse
system with a user friendly website in order to cater towards
normal people who want to enjoy gardening at home.

Our greenhouse system will automatically maintain specific
temperature, lighting, and watering conditions, and alert users
of plant growth status and defects. The greenhouse will be
connected to an interactive web application where users can
receive the alerts, monitor their plants live, and manually
control environmental variables. With the assumption that this
greenhouse system will be used to grow common household
plants, our goal is to build a greenhouse that is able to
maintain a target soil moisture percentage with a 5% room of
error, a target temperature with a 5°F room of error, and
provide the plants with a target of 4 hours of light everyday.
The system should accurately detect plant growth stages and
defects with an accuracy greater than 90%. When a user
changes the target temperature, soil moisture, or light duration
on the web application, the new target should be met within an
hour of the command. The web application UI will be intuitive

and user friendly to provide the user with an effortless, yet
successful gardening experience.

II. D​ESIGN​ R​EQUIREMENTS
In order to set specific, quantitative requirements for our

project, we have decided to focus the scope of our greenhouse
to automatically grow pea shoots. They are relatively easy and
only take about 2 to 3 weeks to fully grow, which will give us
enough time to test the greenhouse with a full growth cycle of
the pea shoots. Based on specific growing conditions of pea
shoots, we are requiring our greenhouse to be able to maintain
a target soil moisture percentage (volumetric water content)
with a 5% room of error, in order to ensure that the soil
moisture percentage will stay well in between the field
capacity and permanent wilting point. We are also requiring
our greenhouse to be able to maintain a minimum target
temperature with a 5°F room of error, since pea shoots should
ideally be grown in temperatures between 55°F and 65°F. By
setting the minimum target temperature to 60°F, we will
ensure that the ideal temperature range is maintained within
the greenhouse even during the winter. The greenhouse should
be able to provide a target amount of light to the plants (in
hours/day) if the greenhouse is placed indoors, or if there is no
sunlight available outside on a particular day. The greenhouse
needs to adjust quickly to manual changes of environmental
variables too; when a user changes the target temperature, soil
moisture, or light duration on the web application, the new
target should be met within an hour of the command.

On the software side, we require that our greenhouse is able
to classify certain growth stages like germination, sprouting,
and harvesting, with an accuracy of greater than 90%, and
detect common defects like bending, wilting, and leaves
changing color with a false positive rate of less than 10% and
a false negative rate of less than 5%. Different plants have
different growth stages, but in the case of pea shoots, growth
stages like sprouting and harvesting can be classified based on
simple metrics such as height and the number of leaves, so we
are requiring our CV algorithm to accurately classify the
plants’ growth stages. Detecting plant defects are more
challenging, but since we do not want to risk ignoring plant
defects that lead to serious complications, we are tolerating a
higher false positive rate than the false negative rate. Security
is also an important aspect, so we will map a single account
registered on the web application to a single greenhouse by
asking users to create an account with a password and
authenticating requests to control the greenhouse. The user’s
commands to change temperature, soil moisture, or light
duration conditions should be sent and received by the
greenhouse hardware within a minute to help ensure that the
previous requirement of adjusting conditions within an hour of
the command is met. We plan to live stream the plant on the
web application, which will require a camera with day and
night vision, a wide field of view, and a reliable connection to
keep the video streaming available 24/7. Finally, the UI of the
web application should be intuitive and easy to navigate to
provide the user with a pleasant experience.

2
18-500 Final Project Report: 03/17/2021

Fig. 1. Overall system design of the greenhouse (Images are from Amazon

product description pages)

III. A​RCHITECTURE​ ​AND​/​OR​ P​RINCIPLE​ ​OF​ O​PERATION
In our project, we have 3 main crucial components which

are
○ Hardware system
○ CV analysis
○ Web application

The key to the success of this project will be the hardware
system setup. In Figure 1, we have overall system design of
the greenhouse, indicating the location of each of the
components. Because the greenhouse has shelves, we can
place a water tank and plant grow light on the top shelf. On
the middle shelf, we will have two plant trays with moisture
sensors, Raspberry Pi that holds our IR-cut camera, and
ESP32. We will also have two water pumps for each of the
plant trays. Lastly, on the bottom shelf, we have a mini heater,
5V relay, and extension cord. Unlike what we indicated in our
initial design report, we decided to get rid of the fan or cooling
system because we were not able to find any compact AC
within our budget. Therefore, we are only focusing on the
heating system.

On ESP32, two soil moisture sensors, light intensity sensor,
and temperature sensor will be connected. The data collected
from these sensors will be processed within ESP32 and then
sent to our web application backend by using AWS IoT and
AWS DynamoDB. ESP32 will also send signals to the 5V
relay so that it can turn on/off the mini heater, water pumps,
and LED plant grow light.

Fig. 2. Web application UI

The plants will be always monitored by an IR-cut camera
that has day and night vision. The captured video will be sent
to a web application via WI-FI and with a live streaming
script. This video or image will also be sent to our CV analysis
system which is operated by OpenCV. We will have 3
detections within our CV algorithm: leaf shape detection, HSV
color detection, and stem detection. OpenCV will be able to
achieve these detections swiftly as it already has HSV color
detection, edge detection, size/shape detection functions
within its library. Our 3 main detections will then be used for
growth stage classifier, defect detector, and stem/vine bending
measurer. CV analysis information will be sent to the web
application backend for further use.

Our users will interact most with our web application. The
user will first register or login to our web application by
creating a new account or logging in with Google OAuth2.
Then the user will be led to the main user page that shows the
information about their greenhouse, shown in Figure 2. While
the user can monitor the live video of the greenhouse, the user
page will also indicate the current temperature and soil
moisture, and whether the light is turned on/off. The user can
change the value of these parameters manually within the web
application. The user can also indicate if the greenhouse is
placed indoors or outdoors. This information is necessary
since regular light intensity sensors cannot differentiate
between indoor lighting and sunlight, but indoor lighting does
not contain the necessary wavelengths for optimum plant

3
18-500 Final Project Report: 03/17/2021

growth. Therefore, we assume that all light measured by the
light intensity sensor is indoor lighting if the user indicates
that the greenhouse is located indoors, while we assume that
all light measured by the light intensity sensor is sunlight if the
user indicates that the greenhouse is located outdoors. By
using data from our hardware and CV analysis, we will be
sending out notifications to users through our web application.
For example, when the temperature gets too high or if some
plants start to wither, the user will receive a SMS notification.
The user can also specify what kind of notifications or how
often they want to receive them.

IV. D​ESIGN​ T​RADE​ S​TUDIES

A. ESP32 vs Arduino vs. Raspberry Pi

TABLE I. M​ICROCONTROLLER​ C​OMPARISON

We will be using an ESP32 board to gather sensor data,

send sensor data to AWS, and control the 5V relays. There are
other microcontrollers like the Raspberry Pi and Arduino that
could also perform the same functions. All 3 of these boards
support WiFi and Bluetooth connectivity, and can be
connected to temperature, soil moisture, and light intensity
sensors. However, there are some key differences between
them that helped us decide to use the ESP32 board. Table I.
above shows that the ESP32 board is the cheapest option, and
can operate at a higher temperature than the Raspberry Pi or
the Arduino Uno. While it is true that the Raspberry Pi is more
expensive because it has more memory and processing power
than the other 2 boards, our greenhouse does not require those
extra capabilities since most of the data will be stored and
processed using AWS IoT. It is also worth noting that some
household plants that originate from tropical regions thrive in
higher temperatures, so it is safer to use a board with a higher
maximum operating temperature just in case the internal
temperature of the greenhouse is set very high.

B. Irrigation Systems
While designing the automatic watering system, we

compared different types of irrigation systems to choose the
most effective one for our purpose. The 3 common types of
irrigation that could be used within a greenhouse are drip
irrigation, sprinkler irrigation, and sub-irrigation. Drip
irrigation delivers water at or near the root of plants using a
drip, spray or stream. Sprinkler irrigation utilizes overhead
high-pressure sprinklers or guns to distribute water.
Sub-irrigation distributes water across land by raising the
water table through a system of pumping stations, canals,
gates, or ditches. A simple drip irrigation system only requires

a water pump and a soaker hose to build, while evaporation
and runoff are minimized. Sprinkler irrigation is also simple to
implement, since it only requires a hose connected to a
sprinkler. However, there would be a need to carefully contain
the water within the greenhouse since the greenhouse will be
tested for use indoors. Sub-irrigation can control water flow
more efficiently and precisely than a sprinkler, but would be
the most complicated to implement, since it requires a system
of pumping stations, canals, gates, or ditches to control the
water table. Thus, we came to the conclusion that the drip
irrigation system would be the most simple and effective way
to water the plants within the greenhouse.

C. AWS vs. Other Cloud Solutions
As mentioned before, we are using AWS IoT in order to

send/receive commands to/from our ESP32. Even though
there are many other cloud solutions such as Microsoft Azure,
we chose AWS EC2 for our cloud solution because we are
aiming for quicker communication between hardware and
software by completing all systems within AWS.

Similarly, while we have options such as MongoDB that can
hold more complex data, we decided to use AWS DynamoDB
as we will be able transfer our data quickly from/to AWS IoT
when we try to send commands to the hardware. Moreover, all
the data we need to store are simple values, therefore
DynamoDB should be sufficient for our purpose.

D. Django vs. Other backend web frames
We chose Django over other web frameworks because it is a

high-end Python web framework. Our CV analysis will also
be written in Python. Once our CV analysis detects problems
on plants, we need to organize this information and send them
to the users as a notification. Therefore, it would be the best
practice for us to use Django and keep our overall
programming language the same by using Python for faster
communication.

E. Twilio vs Nexmo SMS Messaging
 Our SMS API, Twilio, can be also customized with Python.

We also looked into other SMS APIs but most of them have
limited or superabundant services. For example, Nexmo SMS
Messaging, the one we were also looking at, has many
features including calling and also global texting; however,
these features are unnecessary for the project. The cost
performance of Twilio also seems reasonable. The overall cost
depends on how many messages we receive/send, so it can
stay cheap and is perfect for our project as we will be sending
only a couple messages per day.

F. Computer Vision vs. Machine Learning Model
 Initially, we were planning on implementing a Machine

Learning model to categorize growth stages and to compare
healthy or diseased plant images to the greenhouse plants, but
through further research we found that this process holds high
risks and complicates visual plant growth analysis. Because
every plant grows so differently even within a species of
plants, there is much room for error and misleading
classification with image-fed learning models. We would also
have had to be reliant on common images from online for our

Board
Comparison Aspect

Required Parts Price
(Sparkfun)

Max
Temp

ESP32S Micro USB Cable $20.95 125°C

Arduino
Uno USB-B Cable $22.95 85°C

Raspberry
Pi 3 B+

Micro USB Cable, SD
Card, SD Card Reader $35.00 85°C

4
18-500 Final Project Report: 03/17/2021

training data, but with most images online taken with specific
lighting and grown in commercial amounts, such data would
not be appropriate for the small scale system we’ve designed.

Alternatively, computer vision applications are much more
common and foreseeable in smart planting systems. With the
CV approach, not only is a growth stage classifier and defect
detection possible, but also vine bending is much more viable.
We could much more efficiently customize the analysis to
work with the lighting system that the plants are under as well,
as opposed to the online images we may have had to rely on
for the learning model. The growth stage classifier could also
be much easily implemented with a pixel per metric method,
where the height of the plant in the image can be converted to
real-life size by , rather than being trained with images.
Because of the simplicity and safety of the CV approach
compared to the learning model, we decided to take the former
path.

G. Raspberry Pi IR-Cut Camera vs. Logitech C920

TABLE II. C​AMERA​ C​OMPARISON

Initially, we had looked into the Logitech C920 camera, as it

is a popular webcam for CV projects and it had RightLight
technology, which adjusts the video quality to the lighting
conditions. This would reduce the complications of trying to
adjust the LED lights of the greenhouse for the pea shoots to
be visible. Further, with constant image quality, we would not
need to change the specific HSV color values for edge
detection of the video. However, when we pivoted to adding a
live stream monitoring system, we realized that we would
need both day and night vision. The RPi IR-Cut camera was
the only camera we could find which integrated both vision
types in one camera, and we would’ve needed to add a filter or
work with two cameras if we chose the Logitech C290.
Because of the lower price, equal resolution, and the day and
night camera, we continued with the RPi IR-Cut camera. As
for the lighting conditions for high quality imaging, we will
adjust the LED lights to accommodate for the RPi camera.

H. Raspberry Pi vs. ESP32 Integration for Computer
Vision

 Initially, we were planning on connecting the Raspberry Pi
Camera to the ESP32 and uploading the CV application to the
ESP32 since the ESP32 is cheaper and all the hardware would
be connected to one board. However, the pins used to connect
a RPi camera module to the ESP32 are not compatible.
Further, there are no ESP32 camera modules that have both
day and night vision, which is integral for the live stream.
Because Sarah and Hiroko are working separately, we thought
it would be best to work with hardware that suit their
respective components that they were working on. Further, the
RPi was available to be borrowed from the ECE department.

Hence, we decided to implement the CV application on the
RPi, since there is a larger community of CV projects made
with Raspberry Pi Camera Modules, the Raspberry Pi ensures
the processing power for constant live streaming, the RPi
could be borrowed, and its compatible camera module comes
with both day and night vision.

Camera Price Resolution Strengths

RPi IR-Cut $24.99 1080p/30fps Day & Night
Vision

Logitech C920 $69.99 1080p/30fps RightLight Tech.

5
18-500 Final Project Report: 03/17/2021

Fig. 3. Hardware Block Diagram

V. S​YSTEM​ D​ESCRIPTION

A. Hardware Subsystem
The hardware subsystem of the greenhouse revolves around

the ESP32 board that gathers sensor data, sends sensor data to
AWS, and controls the watering, heating, and lighting
systems. Temperature is measured by the waterproof 18B20
temperature sensor, which uses the Dallas 1-Wire Protocol to
send the data over to the ESP32 using 1 GPIO port. Light
intensity is measured by the BH1750 photodetector, which
communicates with the ESP32 via the I2C bus. In order to
extract the sensor data from the input signals, the ESP32 will
have the BH1750 sensor library, OneWire library, and the
DallasTemperature library installed. As shown in Fig. 1, our
greenhouse will have space for 2 trays of pea shoot plants, so
there will be 2 capacitive soil moisture sensors SEN0193 that

send analog signals to the ESP32, which has built-in ADCs to
convert them into digital signals. All of the sensors except the
temperature sensor is powered by the 5V output from the
ESP32, while the temperature sensor is powered through the
data line. Once the ESP32 has all of the input signals
converted into temperature, soil moisture percentage, and light
intensity values, the information is sent to AWS using the
MQTT protocol, so that the software subsystem can analyze
the data.

On the other hand, the ESP32 will receive commands from
AWS to turn the water pumps, heater, and LED plant light
on/off. The ESP32 is connected to 5V relays that are wired to
an electrical outlet where the various appliances are plugged
into, which gives the board the power to turn the appliances on
and off. As shown in Fig. 1, the small space heater is placed at
the bottom of the greenhouse shelf since the warm air will rise
and create a convection current to maintain a constant
temperature throughout the greenhouse. The special LED
plant light is placed above the plants to provide light with
photosynthetically active radiation (PAR), the range of light
that can be used by plants to photosynthesise. 2 water pumps
are placed inside a water tank to pump water through a tube to
water the 2 separate plant trays.

6
18-500 Final Project Report: 03/17/2021

In order to provide the computer vision subsystem with live
images of the plant, a Raspberry Pi IR-cut camera connected
to a Raspberry Pi will be placed inside of the greenhouse
shelf. The details of these components will be explained later
in the computer vision section, since the camera is separate
from the other sensors and appliances in order for us to
parallelize the workflow. Once the computer vision algorithm
is complete towards the end of the semester, the camera and
Raspberry Pi will be sent to Pittsburgh, and integrated into the
physical greenhouse.

After the electric components are wired and placed within
the greenhouse, we will use a clear acrylic display case to
contain the sensors and microcontrollers to protect the parts
from water. We may need to cut holes into the acrylic display
case to let the temperature sensor and wires stick out, in which
case we will put an order in with TechSpark once we get
specific dimensions.

Fig. 4. Web Application Block diagram

B. Web Application Subsystem
As shown in Figure 4, we will be deploying our website

with AWS EC2. Backend will be developed with Django
while the frontend will be developed with Javascript. Within
our backend, we are using Twilio for sending SMS alerts and
notifications. The data used within our web application will be
stored within AWS DynamoDB.

From Figure 3, the ESP32 will be sending data to AWS. It
will be first stored in AWS DynamoDB, using AWS IoT.
From here, our backend is retrieving this data from the
database and renders these values on the website. Whenever
the user modifies the parameters of the greenhouse, this data
will be sent to AWS DynamoDB and then to AWS IoT so that
our web application and hardware can communicate with each

other. The sensor data will be further analyzed within the
backend. We will use this analyzed data to send users
notifications. For example, if the temperature sensor detects
the greenhouse to be 60-70°F over the target temperature, our
web application will warn the user. If it goes below our target
temperature, we will automatically turn the heater on while
also sending alerts. Once we hit the target temperature, we
will automatically turn off the heater. Even when the user is
not interacting with the website, AWS IoT is constantly
sharing information from hardware to the web application.
Hence, within the database, the current information of the
greenhouse will be always updated.

From Figure 5, the data from CV analysis and live
streaming system will be handled in a similar manner. By
using our live stream script, the unprocessed video data will be
directly rendered onto the website using the IP address of
IR-Cut Camera. The data from the camera will also be
analyzed within openCV. This analyzed data will hold
information about growth stage and defects. The backend will
receive this information and send alerts or notifications
accordingly.

The website frontend will be pretty simple because all the
important information can be handled within the backend. It
will be a single page application so that the user can access
from PC and also from their phones.

Fig. 5. Computer Vision Application Block Diagram

C. Computer Vision Subsystem
The computer vision application will be reliant on the

OpenCV and NumPy libraries, specifically in the HSV Color
Detection and Edge Detection functionalities. After extracting
the outlines of the pea shoots, we will determine the different

7
18-500 Final Project Report: 03/17/2021

parts to the plant such as the flowers, peas, stems, and leaves.
There will be three types of detectors: the classification of
three main growth stages (germination, flowering, and
harvest), the detection of common diseases or withering, and
the measurer for extreme vine or stem bend. The application
will be integrated onto a Raspberry Pi 3 Model B+ and a
real-time video will be captured through the Raspberry Pi
IR-Cut Camera Module which includes both day and night
vision for constant monitoring. The camera must be placed
sideways to capture a side view of the pea shoots in order for
the detectors to work properly.

The first parameter that will determine which growth stage
the pea shoots are at is the height of the plant, which will be
measured through the pixel per metric method. To initialize
the method, it takes in the distance from the camera to an
object along with the height of an object, and divides the
pixels by the real height of the object. With this pixel per
metric conversion scale, we multiply it by the height of the
pixels captured in the camera to determine the real life plant
height. The second parameter that would likely distinguish
flowering from harvest is the detection of flower and fruits,
which will be implemented by passing another layer of the
HSV Color Detection onto the non-stem parts, since the leaves
and flower shapes of pea shoots are similar.

The defect detector will analyze the leaves distinguished by
the leaf shape detector and search for any spotting which is a
common disease and insect bite pattern. For withering, we will
look for yellowish or brownish colors.

For detecting extreme bending of stems or vines, we will
distinguish the base stem of a pea shoot, and determine
whether the rest of the stem strays significantly from the
x-axis point of the base. Then, we find the starting point of the
bend and if the bend is greater than 45 degrees from the
straight part of the vine, we will categorize that as urgent.

The first time a growth stage is reached, the user will be
alerted. When harvest is reached, a notification may be sent
more than once so that the peas are picked and the plant is
snipped to promote further growth or to prevent overgrowth.
Defect and vine bending notifications may be sent out multiple
times a day based on the severity of the plant health.

Further, there will be a live stream monitoring system that
will be captured and run through the same Raspberry Pi and
camera used for CV analysis. The live stream will be available
through referencing its IP address and will be embedded into
the website for viewing.

For further information and details, refer to the block
diagram in Figure 5.

VI. P​ROJECT​ M​ANAGEMENT

A. Schedule
Currently, we are on time with our schedule, as we are all

working on our individually assigned components. Kanon
built the website’s login and registration page along with the
greenhouse controls page with Django, and she is working on
setting up DynamoDB. Hiroko is connecting the sensors to the
ESP32 and will be adding the relays to the equipment. Sarah
has implemented the HSV Color Detection and edge detection,
and is applying that to the growth stage classifier. For

specifics of the schedule, please refer to Appendix I: Schedule
Chart.

As we researched more about greenhouses and plants, we
made some changes to the schedule. After deciding on pea
shoots as our testing subject, we updated the schedule to
include when to start planting pea shoots for our tests. We
gave the pea shoots a week head start before the testing
period, because around a week is needed for their germination.

We also had to factor in when Sarah would be sending the
Raspberry Pi camera and board to the greenhouse in
Pittsburgh, so we would send it two weeks before the project
is due so that Kanon and Hiroko have time to set it up and
make adjustments to make the CV implementation and live
stream work on the greenhouse environment.

B. Team Member Responsibilities
We have divided the work such that Hiroko is working on

most of the hardware, specifically arranging the relays, setting
up a feedback loop with the sensors, the MQTT protocol
connection between the ESP32 and the website, and the
assembling of the sensors, greenhouse, and equipment. Kanon
is working on the cloud database setup with AWS EC2,
integrating DynamoDB and Twilio with the website,
managing the data received and sent between the hardwares
and software, and creating a web platform with Django for
users to interact with the greenhouse, and assisting in the
hardware setup. Sarah will be focused on creating a remote
CV application and is responsible for setting up her day and
night vision RPi Camera with the RPi and implementing
analysis on recognizing growth stages, defects such as
withering, diseases, or deforms, and extreme vine curvature
that requires plant staking. She will also complete a 24/7 live
stream of the greenhouse and a notification system when
attention is needed on the plants.

C. Budget
The Bill of Materials is located at the bottom of the report,

in Appendix II: Budget and Parts List. With Sarah not being in
the same location as Hiroko and Kanan, we decided that it
would be best to work with several hardware instead of
integrating all the hardware together, so Sarah’s CV
implementation will be integrated to the RPi and will work
remotely from the ESP32 system. In the Bill of Materials, the
first column contains the web development service and API
credits and all the hardware components bought the first week
after the project proposal. The second column contains the
AWS services that have prices dependent on how much of the
service we use, so we estimated how much we would use
these web development tools and gave enough room in the
remaining AWS credit for any changes in the future. We saved
some room in our budget as well for the shipping cost of
Sarah’s hardware components to Hiroko and Kanon, and
sending back the material borrowed from the ECE
Department.

D. Risk Management
The risks we had in mind changed considerably between

8
18-500 Final Project Report: 03/17/2021

when we pitched our idea and when we began implementing
the components and designing the project. For the hardware,
we are concerned about the response time being too low for
the communication between the hardware, cloud, and
software, the feedback loop appropriately adjusting conditions
without overshooting or taking too much time, and placing
hardware such that it will all fit in the greenhouse while being
safely away from the water and organic material we are
working with, and the instability of the connection between
hardware and software. Plans for mitigating such challenges
include setting a threshold for the frequency of the feedback
loop updates and changes and putting the hardware in a
container. For the software, we are aware of the potential
issues with the latency of the live stream monitoring, the lag in
the website, the proper automation of multiple plant types,
overlapping leaves and plants that may hinder CV analysis of
defects, and high measures of false negatives for classifying
growth stages and defects. To mitigate this, we chose the RPi
to run the CV application and live streaming script as it has
the computing power to run both components and in the future
we may add more cameras or moving cameras to get all angles
of the plant.

Further into the project, more risks we had to consider were
receiving the wrong data from the database, and to mitigate
this issue we are thinking about either regaining the data
before outputting the value to the website or to notify the
website if drastic changes take place. We also hope that the
night vision in the IR-Cut cameras will work properly, but in
the case that it does not we will need to reconfigure the LED
lights to be on a certain brightness for night vision to work.
After testing the OpenCV module, we found it very important
that the subject we are analyzing contrasts with the
background or the unnecessary components of an image, so
we are looking into making a monochrome backdrop in the
greenhouse that provides the best contrast. Any unexpected
issues that we may come across with the hardware, we have
decided that our system will be able to detect and notify the
user about it. We also found some difficulties in connecting
the sensors properly without damaging them, so Hiroko signed
up for TechSpark to receive some help from the TAs and
professors on soldering the sensors to the ESP32.

VII. R​ELATED​ W​ORK
Agricultural technology is one of the most rapidly

developing fields, and we took some inspiration from the
greenhouses that are already automated at large farms. The
standard sensing systems for these greenhouses are LED
lights, hydrometers, and thermometers, so we decided to
include these components to our project and include a heater,
irrigation system, and lighting system to adjust such
parameters. There are many smaller projects online that use
sensors compatible to the Raspberry Pi, but none of them seem
to implement lighting, watering, and temperature altogether,
so we are hoping to scale down the size of commercial
greenhouses, combine all the sensors and equipment through
an ESP32 instead, and create a smarter system with controls

connected from a website and with CV analysis.

VIII. S​UMMARY
Our team has been successful in completing the deliverables

on time, and creating detailed, thorough designs for our
subsystems. We have enough room in our budget to attend to
any unexpected issues and risk mitigation.

A. Future work
Beyond the end of the course, we hope to scale the types of

plants the greenhouse accounts for, so ordering a larger
greenhouse and more sensors and equipment are in the bigger
picture. To accommodate for more plant types, we could add a
web functionality where users can input the conditions
necessary for each plant type or users can input the type of
plant and we retrieve information about that plant through an
official database on plant conditions.

Due to financial and technical constraints, we could not
include the air cooler, but if the greenhouse were to be used in
a more tropical environment, an air cooling system would be
necessary. Depending on the future scale of the greenhouse,
we may need more compact and customized containers for the
hardware, especially if the greenhouse is subject to high levels
of humidity and moisture. A customized PCB board could also
simplify the wiring and complication that comes with
breadboards.

Some of our members hope to use some of the systems in
the greenhouse to grow plants in an urban setting, and
depending on the living situation the system may be adjusted
to run without an enclosed greenhouse.

R​EFERENCES
[1] Aufranc, Jean-Luc. “Know the Differences between Raspberry Pi,

Arduino, and ESP8266/ESP32.” ​Embedded Systems News​, CNX
Software, 24 Mar. 2020,
www.cnx-software.com/2020/03/24/know-the-differences-between-rasp
berry-pi-arduino-and-esp8266-esp32/​.

[2] Badgery-Parker, Jeremy. “Light in the Greenhouse.” NSW Agriculture,
Agnote​, Sept. 1999,
https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0007/119365/light-in
-greenhouse.pdf​.

[3] Datta, Sumon, et al. “Understanding Soil Water Content and Thresholds
for Irrigation Management.” Oklahoma State University, Aug. 2018,
https://extension.okstate.edu/fact-sheets/understanding-soil-water-conten
t-and-thresholds-for-irrigation-management.html​.

[4] Hattersley, Lucy, and Lucy is Editor of The MagPi. ​Monitor Plant
Growth with AI and OpenCV​. The MagPi Magazine,
www.magpi.raspberrypi.org/articles/monitor-plant-growth-ai-opencv

[5] Miles, Carol A, et al. “Pea Shoots.” Pacific Northwest Extension,
http://pubs.cahnrs.wsu.edu/publications/wp-content/uploads/sites/2/publi
cations/PNW567.pdf​.

[6] Pennisi, Svoboda Vladimirova, and Robert Westerfield. “Care of
Holiday and Gift Plants.” University of Georgia Extension, 1 June 2006,
https://extension.uga.edu/publications/detail.html?number=B1318&title
=Growing%20Indoor%20Plants%20with%20Success

[7] Rizza, Matteo. ​Greenhouse Monitoring with Discovery Kit IoT and
Android​. Hackster.io, 6 June 2019,
www.hackster.io/matteo-rizza/greenhouse-monitoring-with-discovery-ki
t-iot-and-android-333430​.

[8] “Types of Agricultural Water Use.” Centers for Disease Control and
Prevention, ​www.cdc.gov/healthywater/other/agricultural/types.html​.

http://www.cnx-software.com/2020/03/24/know-the-differences-between-raspberry-pi-arduino-and-esp8266-esp32/
http://www.cnx-software.com/2020/03/24/know-the-differences-between-raspberry-pi-arduino-and-esp8266-esp32/
https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0007/119365/light-in-greenhouse.pdf
https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0007/119365/light-in-greenhouse.pdf
https://extension.okstate.edu/fact-sheets/understanding-soil-water-content-and-thresholds-for-irrigation-management.html
https://extension.okstate.edu/fact-sheets/understanding-soil-water-content-and-thresholds-for-irrigation-management.html
http://www.magpi.raspberrypi.org/articles/monitor-plant-growth-ai-opencv
http://pubs.cahnrs.wsu.edu/publications/wp-content/uploads/sites/2/publications/PNW567.pdf
http://pubs.cahnrs.wsu.edu/publications/wp-content/uploads/sites/2/publications/PNW567.pdf
https://extension.uga.edu/publications/detail.html?number=B1318&title=Growing%20Indoor%20Plants%20with%20Success
https://extension.uga.edu/publications/detail.html?number=B1318&title=Growing%20Indoor%20Plants%20with%20Success
http://www.hackster.io/matteo-rizza/greenhouse-monitoring-with-discovery-kit-iot-and-android-333430
http://www.hackster.io/matteo-rizza/greenhouse-monitoring-with-discovery-kit-iot-and-android-333430
http://www.cdc.gov/healthywater/other/agricultural/types.html

9
18-500 Final Project Report: 03/17/2021

IX. A​PPENDIX​ I: S​CHEDULE​ C​HART

10
18-500 Final Project Report: 03/17/2021

X. A​PPENDIX​ II: B​UDGET​ ​AND​ P​ARTS​ L​IST

