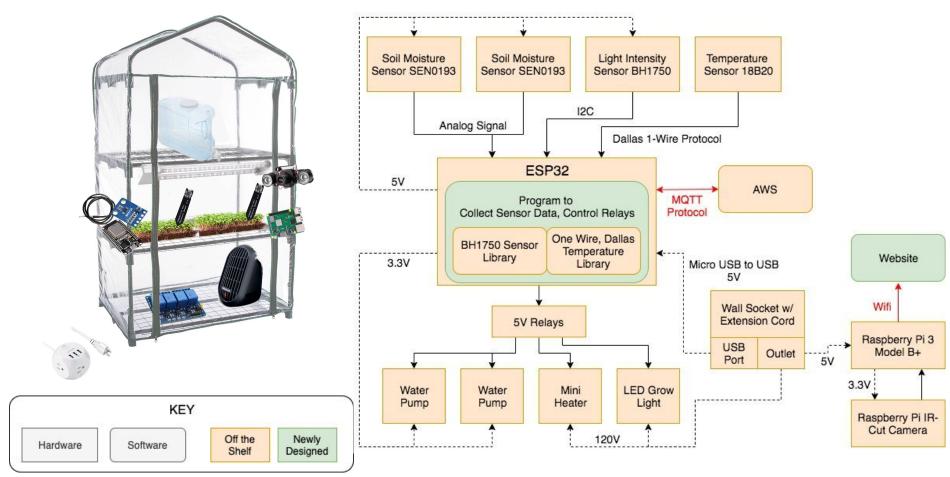
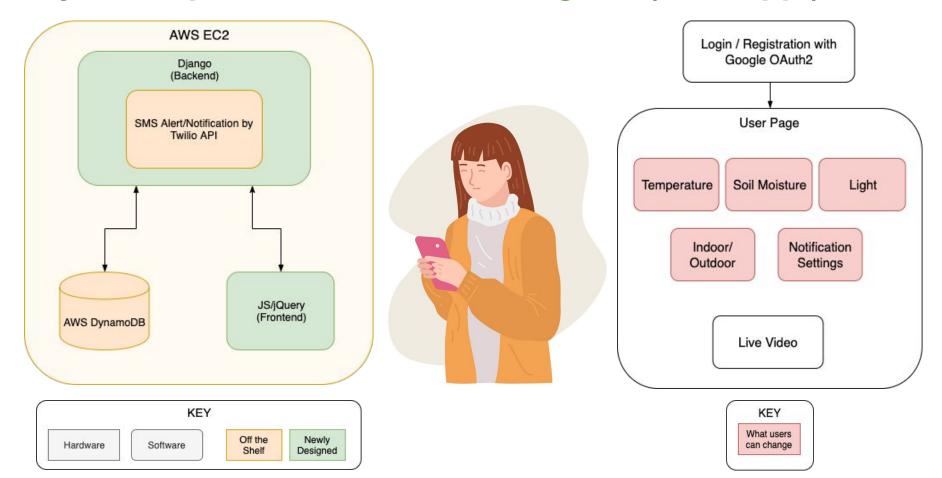


Team E3 | Graduating Gardeners


Hiroko Abe, Sarah Jang, Kanon Kihara

Application Area

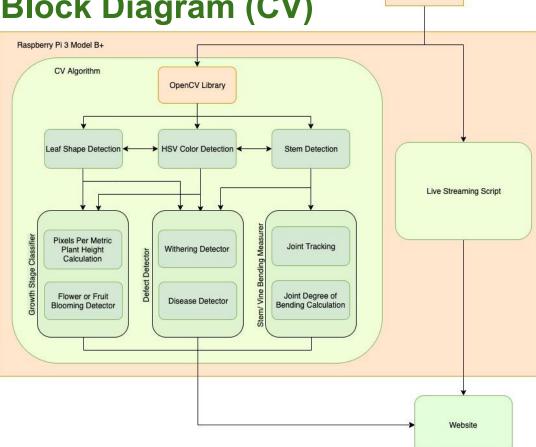
- Create a gardening environment at home
- Automate conditions
 - Lighting, heating, soil moisture
 - Specific to plant species
 - Option for manual control
- Detects growth status and defects
- Monitor plants live


System Specification / Block Diagram (Hardware)

Solution Approach (Hardware)

System Components	Purpose	Why
Temperature sensor (18B20) Mini heater, 5V relay	Heating	18B20 library, waterproof Simple on/off control w/ relay
Soil moisture sensor (SEN0193) Water pump, 5V relay	Watering	Capacitive sensor Simple on/off control w/ relay Low flow rate
Light intensity sensor (BH1750) LED plant grow light, 5V relay	Lighting	Dallas 1-wire protocol library Simple on/off control w/ relay Better than fluorescent
ESP32	Data Transmission	MQTT protocol to send sensor data/receive commands to/from AWS IoT


System Specification / Block Diagram (Web App.)


Solution Approach (Web App)

Component	Purpose	Why
AWS EC2	Cloud solution	Compatible with AWS IoT and DynamoDB
AWS DynamoDB	Database	Compatible with ESP32, using AWS IoT Core
Django	Backend Development for Web Application	High-level Python webframe
Twilio	Alert / Notify users by sending SMS messages	Compatible with Python

System Specification / Block Diagram (CV)

Hardware Software Off the Shelf Newly Designed

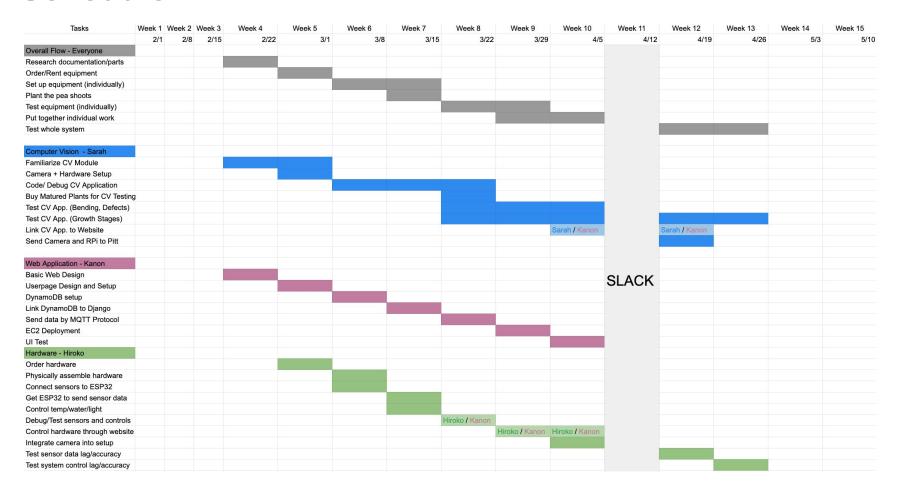
Raspberry Pi IR-Cut Camera

Solution Approach (CV)

Component	Purpose	Why
Raspberry Pi 3 Model B+	Connect camera and embed CV application code for real-time analysis in greenhouse	Powerful for 24/7 live streaming Supports camera version Sends data/ stream via wifi
Raspberry Pi IR-Cut Camera	Provide input for computer vision analysis and monitoring	Day and night vision for constant monitoring 1080p for high quality imaging
OpenCV	Computer Vision Analysis	Includes HSV color detection, edge detection, shape/ size detection functions Works well with Python

Testing, Verification and Metrics (Hardware)

Functionality	Testing Strategy	Metrics
Heating	Place in <45°F and set the target temperature to 60°F	Reach 60°F within 1 hour (∓5°F) and maintain temperature
Watering	Test sensor with dry/saturated soil	Waters dry soil within 1 hour, does not water saturated soil
Lighting	Place in dark/sunlight	Lights turns on in dark, stays off in sunlight
Data Transmission	Modify greenhouse conditions physically/through web app. Record time to send/receive	Web app. notified < 1 minute Hardware notified < 1 minute


Testing, Verification and Metrics (Software)

Functionality	Testing Strategy	Metrics
Defect Detection	Wither by coloring leaves/neglect Simulate diseases w/ discoloring	False positive <10%, False negatives <5% 20 tests each for withering/disease
Vine Bending	Bend vines Buy tall/ mature pea shoots	Vines bending >45° from stem >= 90% Accuracy with 20 tests
Growth Stage Detection	Capture growth of pea shoots	Classifying growth stages >= 90% accuracy Germination (End of Week 1), Flowering (Week 2 - 3), Harvest (Week 3 - 4)
Video Streaming	Software tools that measure video and network latency	Latency <= 10 seconds, Ideally <= 5 seconds
Web UI	Get random users to navigate through the web app.	Testers flawlessly and intuitively navigate through website. 8/10 people should find the navigation easy.

Risk Factors

- Getting wrong data from database
 - Try to regain data before outputting the value on the website
 - o If the value changes drastically (i.e. 68°F to 86°F), notify the user
- Night vision does not perform well as expected
 - Turn on the white LED light at night to capture the video / perform CV
- Outdoor greenery blends in with plant on camera
 - Put colored background behind plant for image contrast
- Issues with hardware (sensor breaks/falls out, water runs out of tank, etc.)
 - Notify user to check greenhouse via SMS/email

Schedule

