
18-500 Final Report - May 14, 2021 Page 1 of 11

Drivaid: A Smart Driving Monitor
Authors: Samraj Kalkat, Reid Yesson, Ryan Vimba: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—Drivaid is a system that is designed to
alert drivers of infractions and bad driving habits in
real time and log these on a user-friendly web appli-
cation on their phone. The hardware connects to the
user’s car’s internal computer and makes judgments
based on the driver’s real time habits. Drivaid can be
used to improve and monitor driving for personal and
professional levels.

Index Terms—Adafruit GPS, MQTT, Raspberry
Pi, PiCAN2, OBD-II, ELM327, JSON

1 INTRODUCTION

Drive monitoring has been a secret of the automotive
and insurance industries for years, with little room for con-
sumer use. Why not use that information to make us bet-
ter drivers? The way we have learned to drive has not
changed over the past 50 years - an instructor sits in the
opposite seat and controls the students’ gas and brakes.
Drivaid is looking to bring that diagnostic information di-
rectly to the user while driving. Our product will better
inform drivers of their mistakes and log their errors to learn
from them. Drivaid can also be used by corporations that
rely on ground transportation or use company cars; Drivaid
can provide driving scores to ensure company equipment is
used safely. Drivaid will be stored in a custom enclosure to
guarantee that equipment is not affected by car movement
and not impair the driver’s line of sight or overall comfort
while driving.

In terms of design, infraction messages will be commu-
nicated from our Raspberry Pi to the user’s smartphone in
a holder on the dashboard. Our Raspberry Pi 4 connects
to an ELM327 cable, which reads data from the Onboard
diagnostics (OBD-II) port every second and detects infrac-
tions in real-time. The ELM327 contains a programmed
microcontroller that presents a command protocol to inter-
face with and translate the messages from the OBD-II port.
Our program pings the car’s diagnostic information via the
OBD-II Parameter IDs (PIDs) every second to determine
infractions. Infractions include:

• Speeding up or slowing down too quickly.

• Revving the engine too high.

• Driving above the speed limit.

• Driving while diagnostic trouble codes (DTC’s) are
illuminated.

The analysis programs will then send data and infraction
messages via MQTT to the web application on a smart-
phone.

2 DESIGN REQUIREMENTS

To ensure that the Drivaid system correctly serves its
purpose as a helpful point of reference for bad driving
habits and driving infractions, we have outlined several
design requirements which will ensure that the system is
effective.

Our first set of requirements relates to infraction detec-
tion and exactly what needs to be detected from the data
to make the system effective. They are as follows:

• Detect if the user drives too fast in a given speed
limit, drives too slow in a given speed limit

• Determine if the user accelerates too fast at any given
point of time

• Measure and display fuel consumption

• Calculate driving efficiency based on acceleration and
RPM patterns

The next set of requirements relates to the functional-
ity of the system, such that it is a smooth, understandable,
and easy-to-use process for the user:

• Must be able to accurately return the requested PIDs
and return data without corruption to 99 percent ac-
curacy

• Data must be accurate and mirror real-world condi-
tion of the actual readings from the vehicle (Ex: RPM
reading of 1800 is actual RPM of the car)

• Alerts must display on the web app within 3 seconds
of real-time occurrence

• Collected data from a trip must be displayed in easy
to read / graphical form on the website that the user
can quickly understand

• Driver must be made aware of the infractions made
during their trip

• Compact and non-intrusive closure of electronic com-
ponents in the vehicle that will stay mounted to the
dashboard and not obstruct the vision or movement
of the driver

By following these requirements, we will ensure that
our system is accurate and achieves its goal of showing a
driver relevant data about their driving habits to under-
stand and improve their driving. To test data accuracy, we
will test each point of data that we plan to use from the
OB-II logger and track these values to ensure they are ac-
curate with what we are doing in the vehicle, which is the
essential requirement. Without knowing that the data we
are receiving is correct, our infraction checking and web vi-
sualization will appear nonsensical to the user. Since most
of these values also have a reasonable bound of how low or

18-500 Final Report - May 14, 2021 Page 2 of 11

high they might be, we can add run-time checks to make
sure we are not reading or producing any abnormal values.

3 ARCHITECTURE OVERVIEW

The purpose of our system is to collect data from a ve-
hicle while a user is driving, analyze this data, and provide
real time feedback to the driver as well as a log of the users
driving analysis. To provide these features, our system ar-
chitecture can be broken down into three main subsystems.
These subsystems and overall system architecture can be
seen in our block diagram in the Appendix.

The first subsystem is the hardware connection between
the RPi and the OBD-II port on the vehicle. We connect
the RPi to the OBD via an ELM327 cable. The ELM327
cable is a programmed microntroller which allows us to re-
quest and receive CAN data from the OBD port. This con-
nects to the RPi via USB. We can then run a Python script
on the RPI to send PID requests to the On-board computer
of the vehicle every second through the ELM cable and re-
ceive back an un-formatted 29-bit OBD response. Once we
receive this data, we store it into an SQLite database on
the Raspberry Pi for ease of use in calculating infractions
and sending the data to the website.

Another hardware component is the Adafruit GPS mod-
ule with antenna. This is also connected to the RPi via
USB and is what we use to collect the Latitude/Longitude
position of the vehicle every second. This information is
also stored into the database and is passed later on to an
API which we use to determine the speed limit.

We power all of the hardware through the 12V cigarette
lighter plug on the car. We use a UBEC DC/DC step-down
converter to convert this to 5V since this is a safe voltage
to power the RPi.

The next subsystem is our data analytics software pro-
gram. Once the data has been collected into the SQLite
database on the RaspberryPi, we have another Python
script to interpret this data and determine if any of our
specified driving infractions are committed. We check the
speed limit, fuel efficiency, RPM efficiency, motion effi-
ciency, and the diagnostic trouble codes of the vehicles. The
details and equations of these checks are specified later in
the system description. We use threading in our program
to read all the data and compute all of the different infrac-
tions simultaneously.

The final subsystem is the website and user interface.
Once the data has been collected into the Database and the
infractions have been calculated through our algorithms, we
send the data to an online database to display to the user.
We send the data using an MQTT protocol. Since our data
is mainly numerical, MQTT offers the most lightweight and
efficient solution to send the data. The data is sent via
MQTT to ThingSpeak which is an online tool we use to
temporarily store the data to display infractions.

If an infraction is detected and sent to our website,
we trigger a clearly labeled light indicator on the website
within 1 second, showing the user that they have violated

an infraction. At the same time, the raw data from their
drive is being stored on the website and formatted into
graphs for them to analyze once they are done driving. This
raw data is also stored onto an online PostreSQL database
so that it can be viewed and referenced later.

In terms of modifications from our original design, there
were a few changes we made to accommodate issues and un-
expected behavior we were experiencing. One major change
from our original design was our hardware interface with
the OBD-II port. Originally, we planned to use a PiCAN2
which is a CAN Bus attatchment for the Raspberry Pi to
interface with the OB-II, however we had difficulties with
compatibility with our test vehicles and were not able to
read data. This is why we switched to the ELM327, which
allows us to read the same data just as conveniently.

Another change we made was which infractions we
checked for in our algorithms. We had originally planned
to also check the turning angle and radius of the car as
well as the breaks, but we learned that this data was not
easily accessible with the standard OBD-II PIDs so we had
to remove it from the checks.

Other than these changes, the rest of the system is sim-
ilar to our original design plans and works as we had ex-
pected.

4 DESIGN TRADE STUDIES

4.1 Speed Limit Calculations

We had two potential API options to gather speed
limit data, the Roads API and the OpenStreetMaps API.
The main difference between the two is that Google main-
tains the Roads API, while OpenStreetMaps is community-
owned and run by the OpenStreetMaps Foundation. The
Roads API has a much larger abundance of data because
Google has put many resources into gathering data across
the country. Because they have some of the best data in
the mapping department, these APIs are not free to use.
I go into much greater detail in the Appendix about the
exact costs of these API calls and our strategies for mini-
mizing these costs. Still, in the end, we could not maintain
low prices for everyday driving while ensuring our other
crucial requirement of real-time speed limit infraction no-
tifications.

Additionally, even if we could find a good balance be-
tween latency and cost, we ran into licensing issues with
Google. When we tried using their speed limit API calls,
we realized that this specific API required explicit approval
only for large projects that plan to use the API in at least
500 vehicles. Because our project fell well short of that, we
decided to go with our second option, the OpenStreetMaps
API.

The OpenStreetMaps API had no license requirement
since it is community-driven, and it allowed us to eliminate
the day-to-day API costs of using our product. However,
using a free API came with its challenges. Firstly, the data
for Pittsburgh is incomplete. Sometimes we would make

18-500 Final Report - May 14, 2021 Page 3 of 11

an API call with our vehicle’s GPS coordinates and receive
a response with no speed limit because this street had no
speed limit data. To compensate for this, we decided to
limit our testing zone to areas such as Squirrel Hill, Oak-
land, and Shadyside. These areas only lack data on smaller
side streets, which we know have speed limits of 25 miles
per hour. So when we did not receive any speed limit for
an area while driving in these zones, we defaulted the speed
limit to 25.

Secondly, the OpenStreetMaps API response times had
a significant variance. Some of them would arrive in less
than two seconds, but others would take up to 20 seconds.
This variance was an issue because all our analysis func-
tions ran sequentially. If the speed limit function took 20
seconds to complete, the other functions would also be be-
hind by 20 seconds. This delay is a problem for main-
taining real-time notifications of all our analysis functions.
We moved the speed limit analysis function to a separate
thread to remove the cascading delays caused by the speed
limit API calls.

Additionally, because we collect data from the onboard
computer every second, we could not evaluate every ve-
hicle speed that our data collection process gathered. In-
stead, we consistently assessed the most recent speed in the
database. Even though we can’t assess all speeds gathered,
the ones we evaluate reflect the vehicle’s current speed.

4.2 ELM-327 Cable

There are many devices on the market that are OBD-
II to Bluetooth, and one of our original designs included a
Bluetooth connection directly to the phone instead of using
a Raspberry Pi. The phone would in turn use its own GPS
to measure speeding violations. This solution would have
been clean with no extra hardware or charging necessary,
and everything could have been done in the web app back-
end. However, we wanted to incorporate a hardware angle
to our project in the spirit of getting exposure to more areas
of Electrical and Computer Engineering. In addition, we
are able to do more data analytics on the Raspberry Pi end
with 64 empty GBs on the SD card and 8GB of RAM. The
split between computing on the Raspberry Pi end and user
experience on the web application makes working in tan-
dem much easier and eases the computing load to a more
capable device.

4.3 Mobile Hotspot

Another aspect of our design in which we considered
many trade offs was how the web application should con-
nect to the Internet and how the Raspberry Pi should send
messages via MQTT. We considered buying a mobile data
module for the Raspberry Pi, but thought satellite-based
connection would increase our latency and affect our real-
time alerts. We therefore settled on using the phone that
would be on the dash holder also act as a mobile hotspot,
which allows the Raspberry Pi to communicate with the

Web Application without external processes slowing the
system down.

5 SYSTEM DESCRIPTION

As seen in our architecture overview, our system con-
sists of three main subsystems that will come together to
produce our final product. The first is the OBD-II data
logging system, which will handle communicating with the
on-board computer of the vehicle, gathering data, and for-
matting/storing the data. The second is the data analysis.
This the bulk of our system where we will be developing
algorithms to calculate infractions and warnings based off
of the collected data. The outputs of these algorithms will
then be sent to an online database for storage. The final
subsystem is the web-interface where we will be taking all
the data that has been collected and analyzed, and display
it in a convenient and real-time interface for the user to
see.

5.1 OBD-II Data Logging

Figure 1: OBD-II Block diagram

This subsection has to do with the electronics and sys-
tems that are closest to the on-board computer on the car.
First, we have a ELM327 cable that goes from the car to
the PiCan connected to the Raspberry Pi. We can run
a program using the CAN library in Python to ping the
computer for data every second. The PiCan simplifies the
firmware between the Raspberry Pi and the on-board com-
puter and allows us to have TX and RX programs that
can run in parallel. Our TX program sends out a request
string to the CAN that requests certain fields. Afterwards
a message in CAN format will be received by our RX pro-
gram, and our program will be responsible for separating
them into specific known data fields (called PIDs). Stan-
dard PIDs such as velocity (mph), engine speed (RPM),
DTC (diagnostic trouble codes), and fuel level can be know-
ingly found from the message. Other PIDs such as steering
wheel angle and turn signals are non-standard and vary
from make to make and require analysis of the message

18-500 Final Report - May 14, 2021 Page 4 of 11

to be detected. Many PIDs are blocked from the OBD-II
port and are not dropped from the on-board computer onto
a readable data line, such as odometer data and steering
wheel info in our case. More discussion of standard and
non-standard PIDs can be found in the references [3]. Af-
ter indexing into the CAN message we receive the following
information to store in the SQLite database:

• Fuel level

• Velocity

• RPM

• Throttle position

• DTC: oil level

• DTC: tire pressure

After receiving the data, we store these six data points
in a SQLite database. For the DTC error codes, we are
using a binary classification: 0 if it is off, 1 if it is on. For
throttle position, we get a number between 13.3% and 80%
- this number is normalized later in our analysis phase to
get a better sense of motion efficiency. Velocity is also mul-
tiplied by the kph to mph factor, .6214. We also add a
seventh data point: acceleration. The acceleration in me-
ters per second can be calculated by:

1609.34 ∗ (vc − vc−1)/1s

where vc is the current velocity and vc−1 is the velocity
1 second beforehand. This difference is then multiplied by
the mile-to-meter conversion multiplier, 1609.34. Acceler-
ation is used to determine the motion efficiency of the car
- if the user brakes or accelerates too fast.

After the data is parsed, the data is fed into the SQLite
database, which is in-memory and stored on a 64GB SD
Card on the Raspberry Pi. This was one of our tradeoffs:
using an in-memory database which takes more space in-
stead of sending out data to the web once we got it and
storing it on the web server. We thought an in-memory
database made the most sense because our data size is
relatively small: a tuple made of seven data fields and a
timestamp. This tuple is also broken into analysis data
and user graph data to be sent to the website in separate
HTTP POST requests. We can then send straightforward
time-based queries to the SQLite database in real-time to
make logs to send to the web server. Here is an example
of a tuple from our database with units added (separated
across two lines):

Timestamp Fuel Level Throttle RPM

5/10/21 22:07:15 3gal 13.5 200rpm

DTC Oil DTC Tires Velocity Accel.

0 0 41mph .45m/s2

This data will then be correlated with the GPS data
using a foreign key, the timestamp.

The Raspberry Pi electronics are powered by the car’s
cigarette lighter plug, which outputs 12V and 15A of cur-
rent. In order to power the Raspberry Pi, we need 5V with
much less current draw to use the USB-C charging port.
Therefore we are using a UBEC Buck Converter to power
the device, which alleviates problems with dying batteries.
Any more than 5V on the Raspberry Pi end is potentially
harmful, so we conducted thorough tests with a multimeter
to measure output current voltage.

To retrieve the location of the driver, we use an Adafruit
GPS which is connected to the Raspbery Pi via USB. The
GPS has an antenna which is attatched to the top of the
car with a magnet. The GPS gets a fix of the car’s posis-
tion every second and this result is captured and stored int
eh SQLite database.

5.2 Data Analysis

To analyze a driver’s performance, the program uses
information from three sources.

1. Raspberry Pi local SQLite database

2. Adafruit GPS

3. OpenStreetMaps API

The analysis subsystem of Drivaid analyzes data from
the SQLite database and the OpenStreetMaps API re-
sponses. It comprises 5 analysis functions and runs on three
threads, one thread to control the GPS, another to run the
speed limit analysis function, and a third to run all the
other analysis functions.

For the entirety of a user’s drive, the two analysis
threads continuously check the SQLite database for new
entries in the data tables. If they find new data, the data is
passed along to the proper helper function to check whether
or not that data provides evidence of a driving infraction.
The function results are then placed into fields in a URL
and sent to the web application.

Figure 2: Analysis Overview

18-500 Final Report - May 14, 2021 Page 5 of 11

Speed Limit: To check for a speed limit violation, we
compare our speed with the speed limit of our location. If
our current speed is sc and our current speed limit is sl
and sc > sl, then the function output reflects a speed limit
violation.

However, because there is a wide variance in the time
the GPS needs to get a coordinate fix from a satellite, we
do not wait to be given a speed before we request a loca-
tion from the GPS. If we tried to get our location from the
GPS only after we have a vehicle speed, the location we
receive could be hundreds of feet from the place our speed
was measured. If the speed limit changes in this distance,
we could produce an incorrect infraction.

In order to ensure we get the closest GPS coordinates
to the location the velocity was measured, we continuously
receive GPS coordinates along our drive and log them in
a separate table with the timestamps they were measured.
This table is helpful because it allows us to access the lati-
tude and longitude received closest to the time the velocity
was received. We do not have to wait for another set of
coordinates to come in from the GPS. This quick lookup
time is why it is essential to run the GPS in a separate
thread.

Fuel Efficiency: To measure the fuel efficiency of a
user’s drive, we compare the distance the vehicle traveled
with the fuel level to measure how much fuel the vehicle
uses per unit distance. We were planning on using the
odometer data tracked by the on-board computer; how-
ever, that information is nonstandard, so we had to come
up with a way of measuring distance. We did this by using
the current speed, our previous speed, and their respective
timestamps. We estimate distance by multiplying the av-
erage of the two speeds with the time change in the time
between the two timestamps. This distance represents the
distance traveled between the previous and current mea-
surements. We add this to our previous total to get our
new total distance traveled, dtotal. To get the total fuel
used, we subtract the first fuel measurement f0 from the
current reading fn. We get fuel efficiency by f0−fn

dtotal
.

RPM efficiency: To measure RPM efficiency, we
check whether the engine is operating at maximum torque.
Most modern engines operate at an efficient torque within
a wide range of RPMs. Because maximum torque occurs
within a wide range, this function only outputs an infrac-
tion if the driver is driving at an extremely high RPM
(above 4500).

Motion Efficiency: Excellent acceleration and brak-
ing efficiency are difficult for a driver to achieve because the
most comfortable acceleration is 0. We decided to measure
whether a user accelerates at a rate that would be uncom-
fortable to a passenger. These are the rates that would
affect the customer experience and cause doubt about a
passenger’s safety. If the function measures acceleration
above 1.5 m/s2 or below −1.5 m/s2, the output reflects
this infraction.

Diagnostic Trouble Codes: The diagnostic trouble
codes (DTCs) all arrive in one response from the CANbus.

We check all the responses’ values, comparing them with
the codes associated with oil level and tire pressure. If we
receive codes that match either of these known values, we
return this information from our function.

Data Transmission: Once we have completed the
analyses as defined above, we need to send these outputs
to the web application using Thinkspeak. ThingSpeak is
an open-source Internet of Things application and API to
store and retrieve data from things using the HTTP and
MQTT protocol over the internet. We create a URL that
will go to our web application and place each of the analysis
function outputs in specific fields that the web application
knows how to interpret.

Our RaspberryPi connects to the internet via a mobile
hotspot. We assume the driver will have a smartphone ca-
pable of creating a hotspot network from their carrier data.
The RaspberryPi will be connected to this network to send
the data to the online database.

5.3 Web-Interface

This final subsection explains how we will be receiving
the analyzed and raw data from the logger and algorithm
output and displaying in a simple report and notification
interface for the driver to view online.

For our back-end system, we hosted our website on
GitHub Pages since this provides a free and fast solution for
us to host our page. We use MQTT via a Python script to
send our data from the RaspberryPi scripts to the ThingS-
peak API. ThingsSpeak is used to receive the MQTT data
which we then format and display on our website. This
data is then stored into a PostgreSQL database to be ref-
erenced later.

For the front-end of our website we use basic HTML
and Javascript to create the overall layout. The website
has two main pages, the infraction notification page and
the data summary page. The infraction notification page
can be seen below. It displays several lights indicating each
of our infractions and when an infraction is detected and
a notification is sent to our web server, the light turns on.
The lights change within 1 second of the infraction being
detected in our algorithm. This allows for the user to know
exactly when they commit an infraction. We also display
the current speed limit of the road that the user is driving
on which is found in the OpenStreetMaps API and sent
to the website in the MQTT data stream. We designed
the interface like this so it is easy for a driver to see while
they are driving without it being intrusive to their vision
or overly distracting.

18-500 Final Report - May 14, 2021 Page 6 of 11

Figure 3: Infraction Notification Web-Page

The data summary page displays all of the raw collected
data from the OBD-II readings in a graphical form, as seen
below. We display graphs of the fuel consumption, throt-
tle, speed, RPM, and acceleration over time for the user to
visualize their data throughout their drive. The graphs are
interactive and allow the user to zoom in on specific points
of data.

Figure 4: Data-Summary Web-Page

A simple visualization of the entire web system can be
seen in the figure below.

Figure 5: Website System

6 TEST & VALIDATION

In order to ensure that our requirements are met and
our overall system is functioning correctly, we implemented
several tests on each of our subsystems and compared them
to our desired metrics. These tests prove that our system is
functioning correctly and each of the system requirements
is being consistently fulfilled. Each of our testing metrics
and validation techniques are explained in detail in the fol-
lowing sections.

6.1 Results for API Request/Response
Time Testing

One of our requirements from the beginning of the
project is that we wanted to receive OBD-II data from the
car every second and have the website refresh every second
- this was our definition of ”real-time”. Any more than
that, the user would not have any clear idea of their mis-
takes and delays would be confusing and detract from the
system’s usefulness. After switching to the OpenStreetMap
API and using two API calls for better locational accuracy,
we realized during testing that the API calls were taking
too long and hanging the rest of our system. One test we
did during a drive over thirty seconds yielded 13 points
with high variance - some took 4.5 seconds. These results
are shown below:

18-500 Final Report - May 14, 2021 Page 7 of 11

Figure 6: Measured driving test of API times

Some other testing showed that we would only receive
an API response after 15 to 20 seconds at the max. Before
our solution, this would hold up our OBD-II logging, and
after the API call finished, it would read velocities, RPM,
throttle, etc. from 15 to 20 seconds ago. We could isolate
the problem to the API because we were testing in a pop-
ulated area and we were clearly receiving the GPS coordi-
nates. We could not improve the API response time, which
meant that we would need to separate this process from
the rest of the code. After seeing and measuring these re-
sults, we placed the API calls in their own thread alongside
the three other threads for GPS reads, OBD-II writes, and
OBD-II reads. We did not account for this delay in our
initial specification and though much of our delay would
come from requesting the data from the car.

6.2 Results for OBD-II Data Logger Test-
ing

In order to test the connection to the OBD-II port and
the data we receive from our PID requests, we implemented
several tests to validate each of the requirements of this sys-
tem.

The first requirement we tested is that we can request
and receive the desired data from OBD-II. To test the ac-
curacy of this data, we setup a live stream of our data in
a terminal and inspected the data as it came in through
our script. We then compared this data to the data that is
displayed on the dashboard of the vehicle to ensure that it
is correct and accurate. We also carried out different tests
by revving the engine, accelerating and decelerating, etc.
and observing if our system is updating accurately which
it did.

The next requirement we tested is that our data is well
typed and correlates with our SQLite database format. As
we receive data through our loggin script, we implement
checks in Python to make sure that the data being stored
in each row of the database is in the correct format and
is of the correct type. If it is not, we disregard that dat-
apoint and continue the script. This ensures that we do
not have any malformed data in our database or MQTT
request strings.

6.3 Infraction Detection Algorithm Test-
ing

To test our algorithms, we simulated driving data and
analyzed the results to ensure they catch the infractions
they are supposed to detect. For the Speed limit analysis
function, we tested locations with different speed limits in
Pittsburgh like Forbes Avenue, Fifth Avenue, and the high-
way, which have speed limits of 25 MPH, 35 MPH, and 55
MPH, respectively. We tested different speeds in each lo-
cation and verified that the different zones compared the
correct speed limits against the vehicle speeds from the ve-
hicle. Additionally, we did a couple of tests driving from
a 25 MPH zone to a 55 MPH zone and a couple of tests
driving from a 35 MPH zone to a 25 MPH zone. Within
10 seconds of switching roads, we received updated speed
limits.

For the fuel efficiency test, we did a 10-minute drive
and compared the fuel efficiency measured by our system
against the fuel efficiency displayed by the car. The result
was within 5 miles of the actual fuel efficiency.

Our test for the RPM detection and motion efficiency
was similar to the speed limit check - we tested data points
above and below the safe RPM and acceleration levels -
and the system detected all the unsafe data points. Specif-
ically, we tested 100 data points with RPM levels above the
level we allow, and our RPM infraction function detected
exactly 100 infractions. Similarly, we tested 50 intervals
with acceleration above 1.5m/s2 and 50 intervals that had
acceleration below −1.5m/s2. Exactly 100 points were de-
tected, validating our motion infraction function.

6.4 Web Application Testing

Our first test for the website was to ensure data sent
from the raspberry pi arrives at the web application within
5 seconds. We tested this by sending data and observing
the response time, verifying that the website consistently
updates about 5 seconds after the data is sent. Our sec-
ond test was for data accuracy. We created a test script
that sent various data displayed in each of our different
sections on the website. We found that the data sent was
consistently correct and displayed in the correct places.

6.5 Integration Testing

After we tested and corrected the individual subsystems
of our project, we tested our system integration by setting
up the whole system in the car and making sure data would
pass data through each of the systems correctly. Our first
test was to drive very inefficiently with lots of quick acceler-
ation and braking. Our system displayed very low efficiency
scores, which we see as a success. We also tested by revving
the engine extremely high, which resulted in the RPM in-
fraction light going off on the web application. We realized
we had to tweak a few of our analysis functions through
this testing because they were too sensitive to changes in

18-500 Final Report - May 14, 2021 Page 8 of 11

acceleration and throttle. We noticed that even if a per-
son is keeping their foot in the same position on the pedal,
the readings from the CANbus can vary slightly, which was
causing some unexpected infractions. To deal with this, we
incorporated some slack in the analysis functions.

7 PROJECT MANAGEMENT

7.1 Schedule

Our full schedule can be found in Appendix B at the
end of the report. We have separated the tasks into the
main subsystems of our project and broke each of those
systems down into pieces which work in conjunction with
the other tasks that are happening in parallel.

7.2 Team Member Responsibilities

Samraj Kalkat

• Designing web application to display real time infrac-
tion and driver logs

• Setting up MQTT data stream to send data from al-
gorithms and OBD data logger to the website

• Helping with OBD-II data request and interface
scripts

Ryan Vimba

• Design local SQLite database for vehicle and GPS
data

• Design algorithms to analyze the data and output in-
fractions

• Sending analysis outputs to web application

Reid Yesson

• Connecting hardware components to establish con-
nection with OBD-II port

• Writing scripts to request specific data from the
CANBUS

• Formatting data and storing in mySQL Database

• Helping with OpenStreetMap API setup and re-
sponse

7.3 Budget

In our design report, we did not account for the parts
that would be necessary to link the system to our laptop
for testing. These parts are the USB-C to Ethernet, the 5
foot Ethernet cable, and Micro HDMI to HDMI cable to
connect a monitor.

Every part was bought with our budget. The Rasp-
berry Pi, PiCan2, and VGA to OBD-II cable provide the
computing and data collection aspect of our project. The
Cigarette Lighter converter, UBEC Buck Converter, and
USB-C Breakout allow us to power the device from the
car.

Part Cost Status

PiCan2 $51.95 Received
Adafruit GPS $50.38 Received
ELM327 Cable $18.85 Received
Raspberry Pi $55 Received

UBEC Converter $9.95 Received
USB-C to Ethernet $16.60 Received

Ethernet cable $13.70 Received
Cigarette lighter breakout $9.74 Received

SD Card $12.99 Received
Micro HDMI to HDMI $5.98 Received

USB-C breakout $10.33 Received
Total $268.20

7.4 Risk Management

For this project, most of our risk stems from testing
our project. We can test the Drivaid with dummy data for
GPS, but we will need to do road tests to make sure our
project works in the real world. Dummy data is useful when
determining speeding, but hard braking, hard turning, and
fuel efficiency will all require some real-world counterpart
testing. Our driving will need to be safe even though we
will need to recreate unsafe infraction events, so we will
need a wide open area to test the Drivaid.

Another risk comes with charging the Raspberry Pi
from the car batteries via the cigarette lighter port. The
output from the batteries is 180W, 12V 15A. After this
voltage and current is passed through the buck converter,
there should be 5V and 3A, which should power the Pi.
Thorough testing must be done first on the UBEC before
charging the Pi to mitigate the risk of passing too much
voltage or current and frying the Pi and/or the PiCan, our
two most expensive elements.

There is also a possible issue of losing signal during a
drive under a bridge or a tunnel. In this case, it means
that the Raspberry Pi will not be able to send the data via
MQTT to the database and we will not have notifications
and in theory lose some the data that is being read. This
being considered, we implemented an exponential backoff
to slow down the rate of data transmission until a con-
nection is made. In the case that a connection is never
established, we could also implement a procedure to send
any unsent data on launch of the system. Doing this will
make sure that if we are starting a new ride, all the data
that was being held from the ride before is sent, so in theory
it won’t be lost to the user.

8 ETHICAL ISSUES

One possible failure is due to the use of geolocation lo-
cation with the GPS that Drivaid uses to plot routes. If
that information were to leak or end in the wrong hands,
information about drivers’ location can be at risk. The
location data is also timestamped, which means that the
exact location at any given time of a user could be found

18-500 Final Report - May 14, 2021 Page 9 of 11

given knowledge of their identity. On Drivaid’s end, this
information needs to be encrypted properly so that hack-
ers cannot find the location of drivers, especially student
drivers who are likely to be minors. We are not imple-
menting cyber security for this iteration of our design, but
it would need to be added to protect the physical security
of our user base.

Drivaid may also be susceptible to misapplication on
the company end because it is entirely up to the company
how they want to use the data in the case of bad driving.
Right now, there is a trust system that is set up between
drivers and their employers - if the vehicle was returned
without any damage at the end of a shift, the employer
can assume they drove safely. But with Drivaid, there is
now infraction data and driving scores that the employer
can track and use however they want. Employers can be
unnecessarily harsh if they see bad driving from Drivaid
after a shift, but that decision making is left entirely to
their discretion, and Drivaid exists only to let them make
informed decisions. The same could be said for any driving
school or DMV that is looking at Drivaid data.

Drivaid uses a great amount of data from the car’s OB-
DII port along with geolocational data from our Adafruit
GPS. The OBDII port has hundreds of data points that can
be collected that describe engine status along with other
pieces of information from the car’s internals. Along with
the GPS and time, Drivaid only uses the throttle, brake,
vehicle speed, RPM, steering wheel angle, turn signal, and
the fuel level. These seven data points are what we need
to determine a number of infraction scenarios, and other
information would not be useful to us and only serve as a
burden to store in our database. Our data is a small subset
of what we could be collecting from the car, but it also pro-
vides the most information about the driver, which is what
we were aiming for. Another piece of information Drivaid
does not collect is the identity of exactly who is driving the
car since our device does not require it - everything is local
to the car, not the user.

It was difficult to avoid these ethical issues during our
design of the system since we did not build any cyberse-
curity requirements into our Minimum Viable Product not
our final design. In future iterations, we would encrypt
all of the data sent to the web application because of the
sensitivity and the personal nature of our data.

9 RELATED WORK

One product that is similar to our device in terms of
our logging and corporate monitoring are insurance devices
that broadcast driving information. One of the more pop-
ular devices is Progressive’s Snapshot device, which plugs
into the OBD-II port and wirelessly transmits encrypted
data to a third party.

After starting our project, we found a similar device
made by Moto Safety that uses the OBD-II port to mon-
itor and map infractions from a teen drivers’ safety per-
spective. [2] The application is parent-only use and does

not have real-time alerts. Their visualizations are similar
to our proposed web application where the parent can view
their teen driver’s mistakes geographically and plots their
trip on a map.

Another similar report to Drivaid is a report written by
four undergraduate students at the University of Moturuwa
in Sri Lanka. [1] This report was done for a similar under-
graduate program with many of our requirements. Their
design also includes real-time alerts that the driver can see.
Unlike our design, this design is connected via Bluetooth
to the OBD-II port but uses a much more complex web
application with different user permissions that is designed
with insurance companies in mind. There is therefore more
cloud computing, which incurs higher AWS costs.

Our project is the first we could find that incorporates
both real time alerts and Raspberry Pi computing, which
we believe will result in faster alert times and less expen-
sive costs in the long run. Since our system is real time,
we wanted to cut down on the number of queries to remote
servers and therefore believe our project is unique in the
overall landscape.

10 SUMMARY

Our system met many of the design specifications, but
throughout the project, we realized that interfacing with
the car was much more difficult than we expected. For
starters, the non-standard PIDs were difficult to capture,
if not impossible due to the sensitivity of the data being
returned by the car. We really would have liked to get
steering wheel angle, and perhaps could have attached a
gyroscope to the steering wheel, but that solution was had
to commit to so late into the project and would not have
done any favors for user safety and experience.

Our API calls were also different than we expected.
We originally thought that we would be using the Google
Maps Speed Limit API, but after realizing that we did not
have the correct project credentials for Google approval,
we needed to switch to OpenStreetMaps. We were gen-
erally happy with OpenStreetMaps, but still believe that
Google Maps would have given more detailed information
from one latitude/longitude pair, and probably would have
been quicker with their response time.

10.1 Future Work

We are going to try to look more closely at the OBD-II
codes from the Honda Civic and see if there is any more
interesting information. We might not be able to do this
with our ELM327 cable and may need a brand new PiCan2
board to be able to use the CANSniffer command, but I
think it would be a neat solution. We were also looking at
designing a custom PCB that includes our charging needs,
data storage and MQTT protocol needs so we don’t need to
rely on the Raspberry Pi, which is large and takes up space
in the car. It would also be a good way to get exposure
to PCB design. We believe Drivaid could be an interesting

18-500 Final Report - May 14, 2021 Page 10 of 11

product if it were more compact and hooked into the car
directly from the port rather than with a wire. It will be
difficult because the PIDs are not standard across different
models and makes, but with a solution that encompasses
the most popular models, it could definitely become a mar-
ketable product to companies with large private car fleets.

10.2 Lessons Learned

I think we learned that working with a defined system
that is difficult to reverse engineer can be hard for a cap-
stone project like this. There is a great amount of dis-
agreeing data and outdated PIDs on the internet, which
car manufacturers and insurance companies probably pre-
fer. Car manufacturers are rightfully pretty stingy with the
data they drop down onto their CANBus line, especially
with recent car hacks and concerns about vehicle security
as the computer is one of the most vulnerable parts in the
car to attacks.

We also learned the difficulties of testing in a moving
vehicle and all of the variance that comes with testing in
real-time. It was much better to test with three people in
the car so that the driver did not have to act as another
researcher and could focus solely on commands from the
one testing. When we testing with all three team mem-
bers, tests went much smoother and we were able to isolate
our issues much more easily than when we had a driver and
one team member with a laptop in the passenger seat.

Glossary of Acronyms

Include an alphabetized list of acronyms if you have lots
of these included in your document. Otherwise define the
acronyms inline.

• MQTT – Message Queuing Telemetry Transport

• OBD – On-Board Diagnostics

• RPi – Raspberry Pi

• CAN - Controller Area Network

• PID - Process ID

• DTC - Diagnostic Trouble Codes

References

[1] De Zoysa Karunathilaka. “Driver Behavior Analysis
using Vehicular Data”. In: University of Moratuwa
(Feb. 2017), pp. 1 –57.

[2] Moto Safety. 2021. url: http : / / www .

gpsmotosafety.com/index.html.

[3] Wikipedia. OBD-II PIDs. 2021. url: https://en.
wikipedia.org/wiki/OBD-II_PIDs.

18-500 Final Report - May 14, 2021 Page 11 of 11

Appendix A

Our method to get the speed limit involves two API calls. The first API call is to nearestRoad(). nearestRoad() takes
as input up to 100 GPS coordinates and outputs a PlaceId associated with each pair of input coordinates. A PlaceId is
a unique id from Google that identifies a specific section of road. The second API call is to speedLimits() which takes
as input up to 100 PlaceId’s and returns the speed limits associated with each of these PlaceId’s. The nearestRoad()
API costs $0.01 per query, and the speedLimits() API costs $0.02 per element.

The trade-off is between the amount we are willing to spend and how accurate and responsive our speed limit analysis
is. To ensure correctness and provide the most accurate speed limit data, we would call nearestRoad() on every GPS
coordinate as soon as we get it and follow it with a call to nearestRoad() to get the associated speed limit. However,
if we make both these queries once per second on a 60-minute drive, it would cost (0.01 + 0.02) ∗ 60 ∗ 60 = $108, which
is quite expensive for only one hour of driving. However, if we take advantage of the fact that nearestRoad() is only
$0.01 per query, we can fit 100 pairs of GPS coordinates in each query, and can decrease our nearestRoad() calls by
100x. This price-cutting method comes at the cost of responsiveness for the speed limit function.

We want to query the nearestRoad() API as often as possible to make sure we compare our speed with the right
speed limit. However, we don’t want to query so often that we are wasting API calls if we have barely moved. We
tentatively decided to make this query once per minute, costing $3.60 per hour of driving.

Additionally, we can store a map between PlaceId’s and speed limits to cut down on calls to the speedLimits() API.
Because speedLimits() is $0.02 per element, it is a much more expensive call than nearestRoad(). If we cut down on
speedLimits() calls by storing the PlaceId - speed limit association in our database, we only have to pay when we get
a new PlaceId, not when we are on a road we have driven on before. Because people do the vast majority of driving in
places they have already been, this cost will be meager once most speed limits are stored.

18-500 Final Report - May 14, 2021 Page 12 of 11

F
ig

u
re

7
:

A
fu

ll
-p

a
g
e

ve
rs

io
n

o
f

th
e

sy
st

em
b

lo
ck

d
ia

g
ra

m
.

18-500 Final Report - May 14, 2021 Page 13 of 11

F
ig

u
re

8
:

G
a
n
tt

C
h

a
rt

