18-500 Final Report - May 14, 2021

Page 1 of 11

Tartan’s Gambit

Authors: Juan Cortes, Luis Ortega, Lillie Widmayer: Electrical and Computer Engineering, Carnegie Mellon
University

Abstract—A system capable of creating a fully
remote chess playing experience. Users are able to in-
teract with either the custom board system, or the web
app, and have game status updates be received by a re-
mote opponent. The board setup automatically moves
pieces to update the game status. Games can be played
from the start, or from custom scenarios for practice.
Provides a more covid-friendly and customizable chess
playing experience than previous solutions.

Index Terms—3D Printing, Ajax, Arduino, CAD,
Chess, CNC, Computer Vision, Django, Laser-cutting,
Sockets, Raspberry Pi, Remote Interaction

1 INTRODUCTION

Life during a pandemic can quickly become boring, and
although online renditions of popular board games, and
even novel versions of such games, have become ubiquitous
and instantly accessible, online game play just isnt the same
as playing in real life. The Tartan’s Gambit is a physical
and digital chess application intended to provide the user
with an authentic physical chess playing experience with-
out having to be in physical proximity to their opponent,
since chess requires players to be closer than 6 feet for an
in-person experience. Tartan’s Gambit consists of a web
server controlled robotic gantry system that moves pieces
on a physical board, and a computer vision system that
detects movements made by an in-person player. The Tar-
tan’s Gambit is designed to help quell the quarantine bore-
dom by immersing the user in an authentic physical chess
playing experience without having to leave their home.

To ensure an enjoyable user experience, the Tartan’s
Gambit must have a response time of 30 seconds or less
between a player making a move on the virtual board and
that move being reflected on the physical board and vice
versa. Once the computer detects a move it is sent through
web sockets to the web server allowing for quick state up-
dates. The gantry system must not interfere with surround-
ing chess pieces when it is moving a piece and must be able
to pick up and place any piece on any tile of the board.
The gantry raises pieces it is moving above other pieces
ensuring no interaction with unintended pieces. After each
move the gantry returns to a resting position that is out of
the way of the in-person user. The web server must track
whose turn it is and notate the game state ensuring that
the users only focus on playing the game. The computer
vision must be able to detect contrasting color pieces to
avoid any confusion for the in-person player. Lastly the
system should also be aesthetically pleasing and provide

an entertaining experience for the user. The system aims
to achieve this by having an above table gantry that does a
sequence of streamlines movements when it interacts with
pieces.

2 DESIGN REQUIREMENTS

The first requirement for Tartan’s Gambit is that vir-
tual moves are reflected on the physical board within 30
seconds. This requires the web server to update its board
state database, the Raspberry Pi to transmit the move to
the Arduino, and the Arduino to execute the commands on
the gantry within the time frame.

The second major requirement is that physical moves
are updated on the web server also within 30 seconds. This
requires the Raspberry Pi to detect the physical moves us-
ing computer vision, send the move to the webserver and
have the webserver update the user interface.

For the gantry we are aiming for 99% move accuracy on
any piece movement or capture; we aim for 99% because
it is possible that there are alignment errors on pieces, or
mechanical issues. The tests consist of the gantry moving
each kind of piece across the corners of the board and the
four center squares. Captures of pieces will be tested in the
same manner.

For computer vision we are aiming for 95% accuracy
as there are limitations to the processing speed and timing
with the Raspberry Pi. The computer vision tests consist
of moving each kind of pieces in their normal movements
across black squares and white squares to ensure that the
computer vision is resilient to piece color contrast and light-
ning changes.

For the web server testing involves communication be-
tween the server and the Raspberry Pi. We aim for 100%
accuracy in receiving and sending of moves between Pi and
server. This is tested through sending quick sequences of
moves and tracking how many were correctly transferred.

To test speed, we are playing moves from recorded
games of chess and timing how long moves take to accom-
plish for the gantry and detect for the computer vision. We
aim to have physical and virtual player turns take less than
30 seconds to complete and update within their respective
states.

18-500 Final Report - May 14, 2021

Page 2 of 11

3 ARCHITECTURE OVERVIEW

Arduino

A4988 Driver
12V Stepper

9g Servo

AA4988 Driver
12V Stepper

AA4988 Driver
5V Stepper

Raspberry Pi

Camera

USB Serial

5V Input Voltage + GND

|CO0Iant EN Pin

12V Input Voltage + GND

Figure 1: Hardware block diagram

Computer Vision
- FindChessboardCorners
- Image Subtraction
- Image dilation/erosion
- Adaptive Thresholding
- Image contour stitching
RPI Camera - Contour grid location

Arduino
Module V2 search
1 Physical Move
% Physical " VirtualMove

WebServer RaspberryPi

CNC

Controller Board Gantry Movement

Figure 2: Software flow diagram

The Tartan’s Gambit system can be separated into
3 primary components. The first is the physical gantry
system that will be interacting with the chess board and
pieces. The second is the web client interface that will al-
low a remote user to control the gantry and play a remote
game of chess with the opponent who has the physical
board. The third is the computer vision that monitors the
physical board state and updates the virtual board after
the physical player makes a move.

3.1 Gantry

As shown in Figure 1 the gantry is composed of 2 12V
stepper motors for X-Y movement, a 5V stepper motor for
Z movement and a 9g servo to move the claw, all connected
to the Arduino CNC shield. The stepper motors use A4988
motor drivers. The servo is connected to an empty pin on
the CNC shield because servo control is not native to the
shield. The placement of the motors in the system is shown
below.

Figure 3: Placement of motors

The gantry control uses Arduino libraries to create com-
mands that can be used to move the gantry in different
ways. The main commands are moveX, moveY, lower-
Claw, raiseClaw, openClaw, closeClaw. These commands
are written using the stepper control libraries and serve as
building blocks that create move sequences. The move se-
quences handle picking up a piece, dropping a piece on an-
other square, and capturing pieces. The moveX and moveY
commands control the 12V Nema stepper motors which in
turn move the timing belt which moves the gripper. Below
is a photo depicting how the timing belt, drawn in purple,
is connected to the gantry system.

Figure 4: Connection between timing belt and gantry

3.2 Web Client

The web interface is deployed locally via Django and is
simple and intuitive to facilitate seamless gameplay. The
remote player uses the website to make their moves, and
this website is also running on the Raspberry Pi. The Rasp-
berry Pi web page communicates with the virtual player’s
web page via AJAX to visually update the board state on

18-500 Final Report - May 14, 2021

Page 3 of 11

the virtual player’s side. The web player’s page communi-
cates with the Raspberry Pi via sockets to send moves to
the gantry which reflects the virtual move on the physical
board. Socket is a python library that establishes a wireless
connection between a host and a port. In our case the host
is the IP address of the device running the web server.

3.3 Computer Vision

As shown in Figure 1, the computer vision lies on the
Raspberry Pi and serves as a constant monitoring system
of the physical board, able to construct updates for the web
server. The computer vision uses the OpenCV library in
order to perform all computer vision operations.

The OpenCV monitors the physical board and calcu-
lates which squares are involved in any move made by the
physical player; the steps and algorithms taken to accom-
plish this are covered in detail later. The OpenCV also lies
at the center of the Raspberry Pi’s functionality, including
the interfaces to and from the web server and the Arduino.

The interfacing to the web server and Arduino requires
the use of three libraries, requests, serial, and sockets. The
requests library is used to send HTTP POST requests to
the web server with any new moves made by the physi-
cal player. The serial library then serves to communicate
with the Arduino by forwarding any moves received from
the web server, and then awaiting an “ACK” signal along
the same serial connection. Lastly, the sockets library is
used to receive moves from the web server, which are then
forwarded along to the Arduino via the serial library as
described above.

4 DESIGN TRADE STUDIES

4.1 Piece Detection

A large part of our design relied on being able to accu-
rately detect the moves made by a physical player. With
this came some important decisions on which design paths
would be chosen to best optimize user experience. Here we
describe one of the more significant decisions that had to
be made for each section of the OpenCV code.

4.1.1 Chess Square Boundary Detection

Being able to detect the squares involved in any move-
ment is extremely important to creating a system which
allows a seamless game between the physical and remote
player. Having this user requirement in place meant the
system needed to use the most accurate algorithm it could
to determine the boundaries of the squares, however this
brought up a tradeoff decision when considering the speed
of such algorithms.

Originally we had hoped to use a HoughLines algorithm,
which provided quick line detection. An initial round of
testing showed that this algorithm could only properly de-
tect up to around 65% of the boundaries present on the
board, and was highly sensitive to any changes in lighting.

Several weeks were spent trying to modify the usage of this
algorithm by tuning its hyperparameters, and preprocess-
ing the board image to create more clear boundaries. This
was not proving to help accuracy, and thus we chose to
move away from this algorithm and find a more suitable
one.

With a fair amount of trial and error on different al-
gorithms, and time spent searching the OpenCv docs, a
new algorithm, findChessboardCorners, was found. The
algorithm was able to return an ordered array with im-
age coordinates corresponding to the corners of the chess-
board squares. Some post processing on the returned ar-
ray was required in order to determine the outer edges of
the squares. After running the algorithm and calculating
the remaining coordinates, it was found to be significantly
slower than the HoughLines algorithm.

Since accuracy was not something which could be jus-
tifiably compromised on, the findChessboardCorners algo-
rithm had to be chosen. In order to reduce calculation
time, the board corners would be saved to an array at ini-
tialization time, and used for the remainder of the game.
We had initially wanted to run the HoughLines algorithm
at each loop iteration of the OpenCV program, as it was
quick enough that it did not impede on the user experience,
and allowed the game to continue with accurate detection
even if the board was moved. By the time the boundary
detection algorithm was switched, the board spacers had
already been implemented, which would keep the board in
place. This caused the one time calculation of the bound-
aries to be justifiable as an approach which would lead to
correct results.

4.2 Piece Movement

We primarily considered two options for our piece move-
ment, a robotic arm, and a gantry system.

4.2.1 Robotic arm

We considered using a three-degree of freedom robotic
arm because of range of motion and flexibility. We went
away from this approach because of the complexities fine
control of a robotic arm entails.

4.2.2 Gantry system

We decided to use a 3-axis gantry system to move our
pieces. We chose a gantry because it lends itself to be con-
trolled easier than the robotic arm, while still being aes-
thetically pleasing, and entertaining for a user to watch in
action. We determined that given proper stepper motor
control we could achieve the speed goals for the system..
In addition, we wanted to base our movement on systems
that use CNC controls to move gantries for fine control as
this translates well since moving pieces on a chessboard is
a grid based system.. We chose to use an X-Y gantry sys-
tem with stepper motors to move around the board and a
gripper for our Z movement of picking up and placing down

18-500 Final Report - May 14, 2021

Page 4 of 11

pieces. Many of the 3D printed components were adapted
from a drawing bot[1] and modified for the system needs.

We chose between below-board and above-board
gantries. The below-board gantry hides the piece move-
ment which improves aesthetics, but it does change how the
pieces would move. To use a below-board gantry we would
need to move the pieces through the board. Pieces would
have to be moved around other pieces rather than lifting
them up as well. We thought that this made the system
unnecessarily difficult and chose to go with an over-board
gantry instead. The over-head gantry allows us to meet
our requirement of minimal interference with other pieces
when moving a piece. We also thought that being able to
see the gantry pick up, displace, and drop the pieces added
to the user experience.

4.2.3 Gripper Design

We iterated through a few gripper designs before land-
ing on the final version. We were originally planning to
3D print custom chess pieces with a small uniform circular
base to make grabbing them easier. We planned to control
this gripper with a servo and attach it to a rack and pinion
mechanism for the z-axis motion. The circular base of the
gripper in the following photo was designed to fit around
the circular bases of the custom chess pieces pictured to
the right of the gripper. However, we ultimately decided to
use chess pieces from an off the shelf chess set to avoid the
time and financial cost of 3D printing an entire chess set.

1sfas i
2388 ¢

Figure 5: First gripper design (left) custom chess pieces
(right)

Our next approach for the gripper was also a claw mech-
anism, but instead of grabbing chess pieces from the bot-
tom, this gripper would grip the sides of the chess pieces.
As shown in the image below, one of the arms of the grip-
per had a micro servo attachment embedded in it which
would allow a servo to open and close the gripper once the
gripper was mounted on an acrylic plate. This design of
the gripper was close to our final iteration. The primary
issue was the gear shape of this gripper had too loose of a
fit, so the servo was unable to drive the arms together tight
enough to securely grab a chess piece.

Figure 6: Old gripper design

Finally, we arrived at our final iteration of the gripper.
For this design we chose chunkier, rounder gear teeth and
decided to have fewer teeth. This design choice allowed the
gripper arms to fit together very snuggly and enabled the
servo to close it tightly enough to firmly grab chess pieces.
Below is a CAD rendering of the gripper model that shows
the gripper arms mounted on the mounting plate and how
the servo attaches to the gripper.

Figure 7: CAD of final gripper design

Attached to the rectangular plates at the bottom of the
gripper arms were pieces of a crutch armpit pad. This rub-
bery material had just the right amount of friction to hold
a chess piece without any slipping. By this point in the
design and rapid prototyping process we determined that

18-500 Final Report - May 14, 2021

Page 5 of 11

the best way to facilitate the z-motion of the gripper was
through a pulley system. The following picture is the final
iteration of the gripper and shows it attached to the servo
and clear acrylic mounting plate. The grey portions at the
bottom of the gripper are the rubber pieces mentioned pre-
viously. Shown attached to the top of the mounting plate
is a piece of yarn which was wound around the attachment
for the small stepper motor.

Figure 8: Final gripper

The y-front piece of the gantry went through many it-
erations as shown below. The first iteration, in black, was
when we were going to try using a servo for the z-motion,
the second iteration, in the middle, features a place for
the small stepper motor but no place for guide rails. We
discovered that guide rails were necessary to stabilize the
z-motion of the gripper. The right most iteration shows
extrusions for guide rails to be inserted. We were initially
going to have the gripper go between 2 guide rails on each
side.

Past y-front iterations front view

Figure 9: Iterations of the y-front piece

We ultimately chose to instead have one guide rail on
each side which would be inserted through the mounting

plate of the gripper, shown in Figure 8. Below is a render-
ing of the CAD model for the final y-front with the guide
rails attached. The y-front is a 3D printed part and the
guide rails are laser cut acrylic.

Figure 10: The final y-front component

4.3 Web Client

For our web client we are using HTML, CSS, and
Django as they are what we have worked with in other
courses. We originally planned to host the web server using
Amazon Web Services’ EC2 in order to allow the Raspberry
Pi to establish a connection and to facilitate remote testing.
However, as we were developing we determined that a more
efficient method was using the database to store the current
move and send this information between the web server and
Raspberry Pi using AJAX and GET/POST requests. Us-
ing this approach made deploying the web server on AWS
unnecessary. The rendering of the chess board and pieces
was achieved through integration of chessboard.js[2] which
is an open source API we chose to use in an effort to avoid
wasting time reinventing the wheel. Additionally, we uti-
lized chess.js[3] to achieve move validation and game state
detection. We initially planned to use Django Channels to
facilitate communication between the Raspberry Pi and the
web client, but we quickly realized that this added unnec-
essary complexity to the web server development. We also
were considering adding various notifications to the user
interface such as if the connection to the Raspberry Pi on
the physical board was stable, if a move was invalid, etc.
Ultimately, we decided to keep the user interface simple in
an effort to maximize usability and allow more time to be
dedicated to the gantry controls and computer vision al-
gorithms. Below is a series of images of the user interface
that depicts each user making 2 moves.

18-500 Final Report - May 14, 2021

Page 6 of 11

Screenshots of the web clie:
move and that the web player is notified when it is their turn vs their opponent’s turn

Figure 11: Series of screen grabs from the web client

4.4 Hardware

We chose an Arduino UNO to take advantage of CNC
shield controls for our gantry.

We also needed a main hardware element that could in-
terface with the Arduino and had enough computation for
the OpenCV and web server hosting.

We considered using the Jetson Nano because of its su-
perior GPU, however our computer vision does not require
us to analyze many frames continuously, so we would not
be using it to full capabilities. We decided instead to use a
Raspberry Pi with a Linux subsystem. The Raspberry Pi
also has camera modules that connect through MIPI serial
interfacing that we could take advantage of. We found the
Raspberry Pi to sufficiently fit our needs for the system.

The control mechanism of the gantry changed from us-
ing GRBL and g code which are commonly used in CNC
machines and 3D printers to custom software. We decided
to make our own software because the GRBL system, while
useful for CNC machine control, has many elements that
over complicate simple movements. Instead we created our
own control platform. We ended up with two platforms,
a testing platform that allowed for manual control of the
gantry, and the deployment platform that took specific
commands to do movement sequences. Because we were
writing all the command sequencing and input parsing we
could design the system to fit our needs. Commands were
simple to interpret and movement sequence became modu-
lar. We did not sacrifice any precision for changing control
methodologies, instead we reduced the complexity of com-
mands and move sequencing.

5 SYSTEM DESCRIPTION

5.1 Software

The bulk of our software is broken up into two cate-
gories, the OpenCV, and the web client. While other com-
ponents such as the Raspberry Pi and the Arduino will also

have important software running on them, these are best

described as components of the hardware subsystems.

5.1.1 OpenCV

Web Move to
Server [\ Grid <[Center of | | Contour Image
Search Contour [*|Stitching[~|Contouring
Current f
Camera
Frame Image Image Image
Subtraction Dilation Threshold
Reference
Frame

Figure 12: Flowchart for the OpenCV move recognition

Our OpenCV algorithm will be running on a Raspberry
Pi 4 with a RPi Camera Module V2 looking down on the
board. This setup will be primarily focused on detecting
piece movements completed by the physical player, and cal-
culating which squares were involved in the move.

Upon initialization, the OpenCV creates a 9x9 array
of coordinates corresponding to the corners of the squares.
This is crafted first by running the findChessboardCorners
function of the OpenCV library, and then manually pro-
cessing beyond that. The manual processing begins taking
the average distance between coordinates in both the x and
y direction. These differences are then added or subtracted
to the outermost coordinates in order to get the coordinates
for the outer corners.

The CV detection will be running on a loop to show
the most up to date board status. When the OpenCV de-
tects no active movement in frame, it calculates an image
difference to determine if a move has been made. When
a move is made, a signal to the web server, updating the
game state, will be sent via an HTTP POST request. The
occurrence of a move is done by taking the image difference,
from the new and old frame, performing a morphological
opening on the resulting image. At this point, the image is
thresholded so that all areas involved in the move have high
contrast from the rest of the image. The thresholded areas
are then separated into contours, which are stitched to-
gether when found to be within 20 pixels from each other.
The center of contours is then calculated on these newly
stitched contours, and taken as the coordinates of move-
ment. These coordinates are then translated into square
coordinates based on the grid determined during initializa-
tion, and then these square coordinates form the move to
be sent to the web server.

Additionally, the OpenCV is listening for signals from
the server, on an open socket, to alert it of a remote move
which occurred and needs to be updated. In this case, the
algorithm will take the board coordinates received from the

18-500 Final Report - May 14, 2021

Page 7 of 11

server, and forward this information to the Arduino, where
the CNC controller will finish the move.

When interfacing with the Arduino, the OpenCV halts
all calculations. This is done by awaiting an “ACK” to
return from the Arduino once the move has been com-
pleted. Upon receiving the “ACK” the image used as a
baseline or reference in move detection image subtraction
is updated, such that it includes the new move. At this
point the OpenCV algorithm restarts the operation of its
loop, and then continues processing.

5.1.2 Web Client

The web client is the piece that brings the whole project
together as this is what initiates gantry movement. The
web client is deployed from a laptop. Two instances of
the webpage are run, one on the Raspberry Pi and the
other on a laptop. The laptop instance is what the vir-
tual player interacts with while the Raspberry Pi instance
is how commands are sent to the Arduino for gantry move-
ment. Communication between the laptop and Raspberry
Pi is facilitated by POST requests and a socket connec-
tion. The socket connection is how the laptop instance
sends moves made by the virtual player to the Raspberry
Pi; this connection is established in the CV code because
the CV algorithms need to know a physical move is being
executed so they can halt operation. The Raspberry Pi
instance uses POST requests to update the move stored
in the database, and the web page polls the database for
changes every 5 seconds to ensure that the physical board
state and virtual board state are synchronized. Below is a
flowchart depicting the communication between the Pi and
laptop instances. The Pi instance is denoted as the physi-
cal player and the laptop instance is denoted as the virtual
player.

Virtual Player Physical Player

Makes move on update physical Makes move on
(virtual board board > physical board
A
send virtual Computer vision
move to gantry detects move
via socket
connection
send POST request of
detected move
web client
updates virtual
board
Figure 13: Flowchart for the web server

5.2 Hardware

5.2.1 Arduino

The Arduino will be placed in an acrylic housing located
beside one of the tall gantry supports as shown in figure 5.
The grey box in the right half of the image represents the
Arduino. Also contained in this box and connected to the
Arduino are the CNC shield and stepper motor drivers.
The stepper motors will each be wired to their own stepper
motor driver which are connected to the CNC shield. The
Raspberry Pi will send data to the Arduino in an encoding
string. This data will then be used to drive the stepper
motors to the desired position. The micro servo will be
attached to the grabber and wired to the Arduino. Using
the state changes recognized through CV, 2 locations will
be sent to the Arduino, the piece location and piece desti-
nation. When the grabber arrives at the first location, the
piece location, the micro servo will be triggered to activate
the gripper motion to retrieve the desired piece. Next, the
grabber will move to the destination location to place the
piece. The data will be received from the Raspberry Pi at
a baud rate of 9600. The stepper motors will receive power
from the Arduino which will be plugged into a wall outlet
using a 12V 2A power adapter.

The libraries used for the gantry control are AccelStep-
per which is a library used to interface with stepper motors,
and MultiStepper which is a library that allows simultane-
ous running of multiple stepper motors, which is necessary
to achieve movement in just the X and Y directions in the
gantry. To move in +X both motors must run the same
number of steps in the same direction. To move in +Y
both motors must move the same number of steps in oppo-
site directions.

Moves are received by the Arduino from the Raspberry
Pi through serial at the 9600 baud rate. The command
that is transferred is in the form of “< A1 — B1 >” where
the first letter and number refers to the location a piece is
coming from and the second letter number pair corresponds
to the square the piece is going to. The move is parsed into
these two square locations. Then the letters are subtracted
from one another, likewise for the numbers. This gives the
relative changes in X and Y positioning on the board. The
first move is also subtracted from the home location of H8
giving the X and Y position relative to home.

18-500 Final Report - May 14, 2021

Page 8 of 11

Sequence 1

Move on Y-axis
to Square A

Move on X-axis
to Square A

Sequence 1

start —| Close Claw

(| Open Claw

Move down on
Z-axis

Close Claw
(grab piece)

Move up on

Sequence 2 start €———— Z-axis

Sequence 2

Move on X-axis Move on Y-axis Is a piece being | F | Move down on
tosquareB [™| tosquareB > captured? Z-axis
IR
. Move up on Open Claw
sequence <+—— Close Claw |«— Z-axis S (drop piece)
start
Home Sequence
Move on Y-axis Move on X-axis Send ACK to
to home square | to home square > RPI

Figure 14: Gantry control flow diagram for piece move-
ments

The relative home position and positions between
squares are used as inputs to the gantries movement se-
quences. On startup the gantry will move from its rest-
ing position of 0,0 to the home location of H8. Once a
command has been parsed and the relative differences are
determined the gantry goes through two major sequences.
The first sequence closes the claw, moves the gantry on x
and then y, lowers the claw, grabs a piece, and raises the
piece. The second sequence moves on x and y to the second
square location, lowers the claw, drops the piece, raises the
claw, and then goes back to home.

In the case of a capture the command is split into two
moves. The first move is the square that is captured to
the dispose square I8. The second move is the piece that
is captured moving to the captured square. For example if
a piece on B3 is capturing C4 then the input command is
“<(C4—-—XX—-B3-C4>".

Once a move is completed the arduino sends an “ACK”
signal to the Raspberry Pi to signal that a move is complete
and begins listening for another command.

5.2.2 Raspberry Pi

The Raspberry Pi is placed in a housing located on top
of the stilt that holds the camera and gantry. It is running
the standard Raspbian OS, a Linux distribution made for
Raspberry Pi. The Raspberry Pi is powered via a usb-c
connection and can be powered from a laptop or directly
to a 12V outlet. The Pi transfers data to the Arduino

through the Arduino’s USB Serial connection at a baud
rate of 9600. This is sufficient enough for us to transfer the
move commands to the Arduino in the following format
“< src — dst >”. This communication requires the import
of one library, the “serial” library.

The system camera is a Raspberry Pi Camera Module
V2 that is connected directly to the Pi through its ribbon
cable. The camera and Pi communicate through a MIPI
serial interface protocol. The camera is accessed directly
through the OpenCV library. This camera provides an 8mp
resolution, with a pixel size of 1.12umx1.12um. This res-
olution provides us with more than sufficient accuracy for
detecting moves and square boundaries.

The Pi will be connected to the internet through Wi-Fi.
It will output new moves to the web server via HTTP POST
requests, in the format “< squarel —square2 >”. Informa-
tion received comes from the web server through an open
socket. This means that communication with the server
requires two imported libraries, “requests” and “sockets”.

5.2.3 Gantry

Mounted on the gantry will be the GT2 timing belt,
20 teeth 5mm bore timing pulleys, 500mm MS linear rods,
LMS8UU linear bearings, micro servo and grabbing mecha-
nism, and Nema 17 stepper motors. The timing belt and
pulleys, controlled by the CNC shield on the Arduino, will
drive the grabber to the appropriate locations. The linear
rods and linear bearings will allow for smooth x-y move-
ment. An acrylic mounting stand for the Raspberry Pi
and Pi camera module is placed in the orange/black acrylic
stands. The following diagram shows 3 CAD models, the
upper left is the assembled gantry all together without the
gripper, the lower left is an isolation of the 3D printed com-
ponents, and the upper right is an isolation of the laser cut
components. The gripper, which is entirely made from laser
cut acrylic, is shown in Figure 3.

s

Isolation of laser cut
acrylic components

Model of gantry without
gripper attached

Isolation of 3D printed components

Figure 15: Isolation of different parts within the CAD

18-500 Final Report - May 14, 2021

Page 9 of 11

The black/orange acrylic stands were necessary to
achieve the height above the board needed for the Pi cam-
era module to maintain a full view of the board and to
achieve a large enough z-axis range to allow the gripper
to pick pieces up and move them over the board without
interfering with other pieces. The following photo is our
gantry system setup in the real world.

Close up of gripper mounted on gantry

View of assembled gantry

Figure 16: Photos of the final gantry

The purple acrylic box placed on top of the camera
mount houses the Arduino fitted with the CNC shield and
includes holes in its side for cable management. The blue
cable in the picture is the serial USB connection between
the Arduino and Raspberry Pi.

6 TEST & VALIDATION

6.1 Gantry

Gantry movement was tested on pawns, knights, bish-
ops, rooks, queens, and kings. Each piece was moved to
and from opposing corners, and to the four center squares
of the board. Each movement was tested three times to
ensure that the gantry was consistently achieving moves.
The tests were conducted continuously to ensure that the
moves could be complicated in games that went for 40 plus
moves. In our tests we found that out of 216 movements,
there were only 3 errors that occurred, giving us a 98.6%
success rate. In two cases the knights were rotated at 45
degrees which caused issues for the claw. The other er-
ror case occurred when a rook was grabbed too low which
caused the piece to slip when the gantry began to do far
movements.

Capturing pieces was tested in the same manner as de-
scribed above. The difference being that before the piece
moved from square A to square B, there was a piece to
move from square B to the disposal location. In these tests
we found 12 errors out of 432 moves, giving us a 97% suc-
cess rate. We saw more errors when testing captures due
to the human player placing pieces off center or in off angle

orientations. There were 6 knight movement/capturing, 4
with pawn movement/capturing, and 2 with rook move-
ment /capturing.

Movements were timed during these trials. The aver-
age time to move a piece to another square was around 33
seconds. The average time to capture a piece was around
68 seconds. Capturing a piece takes much longer due to
having to move two pieces to different squares. The sin-
gle move time was close to our goal, however the capturing
sequence is much higher than we wanted. Since captures
are less frequent than normal moves we determined that
having moves and captures take this long was sufficient for
our needs.

6.2 Web Client

The web client was first tested by playing a full game
solely on the web page to ensure that the user could move
pieces properly and the game state was detected appropri-
ately. The next step of testing was sending POST requests
via a terminal command from a separate laptop to ensure
that the board state could properly update on the web page
when a POST request from a separate device was received.
We then tested the socket connection by setting up one de-
vice to receive information packets and the other device,
the laptop the virtual player was making moves on, to send
information packets. To test this we would make moves on
the web application and print the data received to the ter-
minal to ensure the correct move was being received. After
both methods of communication were thoroughly tested we
integrated them with the computer vision code and website
code. To test functionality after integrating we would make
a move on the web client and see if the gantry performed
the correct move. After a virtual move was made, we would
make a move on the virtual board and see if the website
updated with the correct move.

6.3 OpenCV

The testing of the OpenCV involved validation of the
square coordinates, and the move calculations.

Beginning with validating the coordinates at the corners
of the squares, we sought accuracy across many runs. By
overlaying the coordinates on a live feed of the board, we
were able to determine if the coordinates were accurately
calculated. An earlier version of the code led to accurate
calculations only about 80% of the time. It was determined
this was due to the fact that the orientation of the board
returned by findChessboardCorners was not always consis-
tent across runs, this was a simple fix by checking the orien-
tation before continuing calculations on the grid. This led
to consistent and accurate results across runs. The other
main point of validation was the move calculation. Early
iterations of the code were exhibiting low accuracy with ap-
proximately 50% accuracy, as moves were further from the
center of the board, the chances of them being miscalcu-
lated rose significantly. Additionally, shadows cast on the
board would cause the contour centers to be calculated in

18-500 Final Report - May 14, 2021

Page 10 of 11

adjacent squares, as the shadows would be included in the
contour. Fixing this involved adjusting hyper parameters
used in all the image processing functions, as well as pro-
cessing the board images prior to taking their differences.
This was as simple as dilating the board, performing a me-
dian blur, and then taking the absolute difference between
the board image, and the one that was dilated then blurred.

7 PROJECT MANAGEMENT

7.1 Schedule

Figure 17 features our most up to date Gantt chart. Our
most recent updates include changes to progress statuses,
and many task date changes, with many being pushed back
to beyond the time for their proposed stage.

The chart in the image is broken into three sections,
blue representing planning and research, green represent-
ing the design and implementation, and orange represent-
ing finalization. The column of green cells represents our
progress with each task, and as the green indicates, we have
finished all portions of our project.

The main tasks that required delays were the building
of the web server, along with the integration of subsystems.
Determining the interfaces for the individual subsystems,
and then building and polishing them simply took more
time than we had anticipated.

The final stage was mostly reserved for full system inte-
gration, robustness testing, and documentation. This has
mostly remained the case, however extra time had to be
spent those last weeks to account for the extra tasks car-
ried over from the second stage.

7.2 Team Member Responsibilities

Our work was split into a few different categories, the
webserver, the gantry controls, the OpenCV, and the de-
sign of the gantry.

The web server was headed by Lillie. This involved
creating the server and frontend, managing the database,
and working with the interfaces to the Raspberry Pi. Juan
helped with creation of the web server, as well as research
into different implementation strategies. Luis assisted with
testing of the frontend, and the interfaces to the Raspberry
Pi.

Gantry controls were led by Juan. The main roles here
involved configuring the Arduino to control the gantry, cal-
ibrating the gantry movement to the squares, calibrating
movement for grabbing pieces, and reading instructions
from the Raspberry Pi. Luis’ contributions to this sub-
system involved assisting in code reviews when debugging,
as well as aiding in the calibration of the z-axis and grabber
mechanism.

The software environment was managed by Luis. This
involved calibrating the OpenCV environment to detect
board boundaries, and centers of piece movement, out-
putting the squares involved in a move, and interfacing

with the web server and the Arduino. Juan assisted in
research into different image processing methods.

The design of the full gantry system was done by Lil-
lie. This involved creating models for 3D printing and laser
cutting, as well as modifying designs to account for issues
which arose during the implementation of the design. Juan
and Luis contributed by assisting in the construction with
the pieces made by Lillie.

7.3 Budget

Figure 18 below, shows our Bill of Materials. We are
well under budget because many of the electrical compo-
nents we already had and most of the acrylic we used for
the laser cut parts was from the scrap pile in TechSpark.
In the budget table, a quantity of 0 indicates that either
we used found scrap material or already had the item.

7.4 Risk Management

One of the largest risk points we found was the mate-
rial on the gripper design. With our initial design utiliz-
ing foam pads on the arms of the grippers, we noted poor
grip strength along with a wide radius which could inter-
fere with other pieces. This involved a search for other
materials which could solve these issues, this is where we
landed on the high friction rubber. This is an example
of our openness to new materials and concepts throughout
the implementation in order to address issues which could
arise.

Our schedule also had risk management built in, with
slack time incorporated into our plan. This will allow for
any falling behind, or unforeseen errors. Additionally our
task break up is rather fluid, in that individual tasks could
be switched to a team member that was currently taking
on less work.

Lastly we have our budget. Our spent budget does in-
clude a few extra components of those we believe may fail
throughout our design process. Our main concern was with
the cost of fabrication. Our initial plan of 3D printing many
components seemed to be too costly with campus resources
available to us charging high rates per gram of filament. We
had researched other sources to save costs, but in the end
we were able to still print using campus resources and stay
well within budget.

Overall our risk management has been to account for
unforeseen circumstances to arise, and thus avoid being
delayed in our process later on.

8 ETHICAL ISSUES

The largest ethical issue that can arise with this project
is security related. As with any internet connected device,
there lies an inherent risk of the device being accessed by
a malicious agent. Pairing this risk with the inclusion of
the camera, there becomes a risk of remote and malicious
camera access. The steps which can be taken to reduce this

18-500 Final Report - May 14, 2021

Page 11 of 11

risk include disabling ssh access to the Raspberry Pi, and
authenticating the communication between the web server
and the Raspberry Pi, ensuring that external communica-
tion comes from a trusted source.

9 RELATED WORK

The best case of related work we were able to find are
the boards made by SquareOff. They offer a smart board,
allowing users to play against other players remotely using
either the board or an app, or play against AI. Our design
should prove to be simpler in that the SquareOff boards
use magnets to move the pieces around, which can lead to
complicated circuitry and mechanics. Additionally, since
the SquareOff boards have all the components embedded
within, the game must be set up very precisely, and the cost
is relatively high due to requiring the custom set. Our ap-
proach, given reasonable production methods, should run
at a lower cost, as it can be used simply as an addition to
one’s current set. Additionally, the inclusion of computer
vision in our design allows for the game to be set up in
various ways, granting more freedom than the SquareOff
board provides.[4]

Another similar device would be one which was de-
scribed in the International Journal of Engineering Re-
search & Technology, Volume 6 Issue 9 from September
2017, titled Design and Implementation of a Wireless Re-
mote Chess Playing Physical Platform. This takes a very
similar approach to the SquareOff board, however here we
see how the design was implemented. Using magnets on
the pieces, and a hall sensor to detect piece location, an
under the board gantry system controls an electromagnet
in order to move pieces. While this leads to a similarly
simple design as ours, it suffers some of the same downfalls
as SquareOff, namely that the cost must include a custom
chess set. Additionally, hall sensors are very sensitive, and
the reliability of this system may not be the best, espe-
cially with so many magnets close together on the board.
The complexity needed to accurately calculate piece loca-
tion proved to be an issue for the designers, as Arduinos
were too limited in memory, and Raspberry Pis were too
limited in GPIO pins.

Overall while our approach leads to a design less sleek
than these two boards, we aim to offer more freedom, at
lower cost, and will likely not face issues with memory stor-
age.

10 SUMMARY

In the end we were able to successfully meet our design
requirements, except for the speed of a move being carried
out by the gantry. Fixing this would require a more ap-
propriate motor to control the z-axis motion. Our current
motor faced strong limitations on the speed, as it would
quickly overheat beyond a safe operating point.

Given more time and resources there are a few things

which could have improved performance. First there is
the upgrade of the z-axis motor as described above. We
also noted that the Raspberry Pi faced large limitations
in its processing capabilities. The opportunity to host the
OpenCV algorithm on a stronger processing unit would
lead to faster processing times which would have allowed
the algorithm to be flushed out to a point where the move-
ments could be detected with higher accuracy and speed.

Another point of improvement would be improving the
interface between the Raspberry Pi and the web server.
While communication across this interface was stable, there
would occasionally be latency issues from the Raspberry Pi.
Some moves would take longer to send to the server, and
some moves would be received but not processed for longer
times than others. This was likely due to the Raspberry
Pi completing its current operations before acknowledging
the interface. A solution could be as simple as having
the Raspberry Pi operating with interrupts to immediately
read /write to the interface.

10.1 Lessons Learned

Important takeaways from this project would be to plan
for the unexpected. When issues arose, we often had to de-
lay our goals in order to address them. Had we not had
slack time built into our schedule, this would have led to a
backup of tasks that may not have been addressable.

Additionally, found materials can be both a blessing and
a curse. The new rubber material for the gripper came from
spare material and was exactly what was needed. However,
the z-axis motor which led to a low cap on z-axis motion
was also a found material. Having openness in your de-
sign for unplanned materials and concepts is a great way
to address implementation issues which may arise.

11 REFERENCES

1 Henry Arnold and Jonathan K Drawing Bot Guide,
www.thingiverse.com/thing:2349232

2 chessboard.js, www.chessboardjs.com
3 chess.js, github.com/jhlywa/chess.js

4 Square Off, Inc. www.squareoffnow.com

Page 12 of 11

18-500 Final Report - May 14, 2021

VIR HueD) [euL LT 9mSi]

- 12021080 ~ 120ZBLNO - 17 Bunsa) feuld

~ 1202080 ~ 1Z0ZBLVO - 17 sonayisay

~ 1202050 ~ 1Z0ZBLVO - 17 Bunse) sssujsnaoy

~ 120T/10/50 ~ 120TBLKO 04 uopesBaju|
uonezijeud

\20ZILLP0 ~ LZOZIOERO ~ [17 SwiL oeis
< 12021080+ 120ZNTHO - 17 Janas gaMm
o} sejels AQUBdO pusS
sebueyd alels N4
uoipaiep 90 sidN
sejess ul sabueyd
6u1219p U0 YoM

~ LZOZHTEO ~ LZOTILLEOD A
- L20T/9LE0 - L20Z/BORO -
~ 1Z0T/0TEO - LTOT/OLED -

| < L20ZM0K0 - VZOZUZRO SN 1d o) 0} EIBWRD 198WI0D

- 12021080 ~ 1202ITHO ~ ™ weio

GBM UM SIUBWENOW 158l

12021080 ~ 120ZTIAO ~ v Wwei12 gom pue 1d

Ussiyaq suoRIBLL? jS3L

12071080 - I0ZHORO - SlF/VENT JsuSsgen suping

12071080 - Z0ZIOKO - OIIF/UNT pUSIIOY 8}1SGBM PING

 V20ZUZRO - I20TOZEO ~ weny: Joupebo)

AKnueb + 1eqqesb 1531

~ I20Z0ZEO - 120THEOD - Jeaqeib eieialed

20RO~ IZOTRIED - wsiue 38w 18G5 PPY

- 120Z20K0 - 20RO ~ SpuBWLOD U

swswstow e jsa

 I20ZIER0 - 120TBEO - v sernbs

o) SWsWSNOW S1RIIED

- 20RO ~ 120TBEO - wenr Juswtow Jojow weibosd

- 12029180 ~ 120ZIORO - v weisks Anues ping
uswidojanea

S V20TLIE0 - 20RO ~ IV voday mayey WBiseq

- 20ZUORO ~ 120TRO - IV sspus maney wissg

~ 120ZROEO - IE0TIKRO - sm Jewuoius

Id Auegsey dn jes

+ V20TUZRO ~ 20TNTRO ~ IV swsuodwos sseyaing

TR0 ~ 12TNTRO ~ IV i usuodwos szeuld

. 20ZEOE0 - Z0TNTZO - smvent dmes enul AOusdo

~ V20ZKRO - 1WTNZRO - e Buisnoy asempey

pue 1sqgei6 [epou OE

< VTRE - TT - | wodsy ssaifoid

< VOTOET - VT0TGIT - sepIlS wopeiuBsaid

Goieesey pue BujuUE|d

Jeumo xseL oRIL yERL

uopezyjeuld :081y) eseyd juawdojaneq :omL eseyd yoJeesey pue Bujuueld :0uo eseud

=l el oy Do =L L] =l o =i o el e_gai — 7 —_—

18-500 Final Report - May 14, 2021

Page 13 of 11

Item =~ Price
Raspberry Pi
Arduino UNO

Arduino CNC
shield

Nema 17 Stepper
Motor

Linearing Bearing
Rod M8 x 500 mm

624 Bearing

M4 Screw Kt
Timing belt and
pulleys

M8 Nut Kit

Pi Camera module
chess board
lm8uu linear
bearings

3D printed parts

12V 2A power
adapter

1/4 inch acrylic
1/8 inch acrylic

24by)48 stepper

motor
2mm acrylic
Gorilla Super Glue

Acrylic Glue

Armpit cushion
from crutches

yam

Total Cost:

Figure 18:

= Quantity

10.99

19.89
12.99
18.99

15.99
14.99
25.49
49.99

10.95
150.58

20

0.99
10.99

0
0
402.71

Bill of Materials

= e s

e e e b

