
1
18-500 Design Review Report: 03/17/2021

Tartan’s Gambit
Design Review

Authors: Lillie Widmayer, Luis Ortega, Juan Cortes:
Electrical and Computer Engineering, Carnegie Mellon

University

Abstract—A system capable of creating a fully remote chess
playing experience. Users are able to interact with either the
custom board system, or the web app, and have game status
updates be received by a remote opponent. The board setup
automatically moves pieces to update the game status. Games can
be played from the start, or from custom scenarios for practice.
Provides a more covid-friendly and customizable chess playing
experience than previous solutions.

Index Terms—3D Printing, Arduino, Chess, CNC, Computer
Vision, Django, RaspberryPi, Remote Interaction

I. INTRODUCTION

Life during a pandemic can quickly become boring, and
although online renditions of popular board games, and even
novel versions of such games, have become ubiquitous and
instantly accessible, online game play just isn’t the same as
playing in real life. The Tartan’s Gambit is a physical and
digital chess application intended to provide the user with an
authentic physical chess playing experience without having to
be in physical proximity to their opponent. Additionally, the
Tartan’s Gambit can be utilized by professional chess players
to practice particular scenarios. The Tartan’s Gambit is
designed to help quell the quarantine boredom by immersing
the user in an authentic physical chess playing experience
without having to leave their home.

To ensure an enjoyable user experience, the Tartan’s
Gambit must have a response time of 10 seconds or less
between a player making a move on the virtual board and that
move being reflected on the physical board and vice versa.
The gantry system must not interfere with surrounding chess
pieces when it is moving a piece and must be able to pick up
and place any piece on any tile of the board.

II. DESIGN REQUIREMENTS

The application area of the Tartan’s Gambit is a game of
chess. Although competitive games of chess are timed,
individual moves are often meticulously thought out by each
player meaning that there is rarely a rapid succession of moves
in a short time period. Therefore, a maximum reaction time of
10 seconds for our system is appropriate. When a game of
chess is played, pieces are not knocked over unless a player is
surrendering his/her king, so naturally another requirement of
the gantry system is that it does not knock over any pieces
when making a move. The grabber on the gantry system must
also not drop the piece it is moving part way through the

move. Because the gantry system must receive and execute a
move within 10 seconds, the grabber must be able to firmly
hold a piece for 10 seconds. The range of the grabber must
cover the entire board and grab any piece. The components of
the system should also be neatly organized and overall
aesthetically pleasing to ensure positive user interaction.



2
18-500 Design Review Report: 03/17/2021

Fig. 1. Block diagram of the overall system

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

The Tartan’s Gambit system can be separated into 2 primary
components. The first is the physical gantry system that will
be interacting with the chess board and pieces. The second is
the web client interface that will allow a remote user to control
the gantry and play a remote game of chess with the opponent
who has the physical board.

The gantry system is where all hardware and mechanical
components come into play. The x and y motion of the grabber
is controlled by an Arduino fitted with a CNC shield and
A4988 drivers. The Raspberry Pi will receive a packet of
information from the web client and will send this data to the
Arduino in g-code format. The Arduino will have GRBL
installed which is a firmware that will allow the Arduino to
receive g-code commands. We are confident that the
movement of the grabber will be very accurate since the
movement mechanism is the same as a 3D printer which can
print objects in great detail.The mechanical design, without
the electrical components or timing belt pictured is shown in
Figure 2.

The web interface will be hosted using EC2 via
Amazon Web Services. The web application features an
intuitive user interface with meaningful visuals and feedback
messages to facilitate seamless gameplay. The player on the
web application side of the game will establish a wireless
connection to the Raspberry Pi on the gantry via Django

Channels, and after this connection is established, he/she will
be able to begin a game with the opponent on the physical
board side of the system. In order to ensure a connection is
properly established before gameplay begins, the web client
player will always make the first move.

Figure 2. Gantry System



3
18-500 Design Review Report: 03/17/2021

IV. DESIGN TRADE STUDIES

Piece Detection

RFID
There were many approaches that we considered for

detection. The first design used RFID tags on each piece with
readers on each square. This option was costly because we
needed RFID tags for sixty-four pieces. The RFID detection
could work with thin boards or if the board were modified,
however we wanted to avoid modifying the board since one of
our requirements is accessibility. We also considered this a
risky approach because of the field overlap due to the
proximity of squares and pieces.

Contact Plates
A simpler alternative that we considered was contact plates

on each square. This technology makes the detection aspect
straightforward as piece location becomes binary. However,
the downsides to this approach is needing to modify the board
and pieces. For contact plates to plates would be required on
the bottom of each piece and on top of each square. Similarly,
to RFID we wanted the ability to use any board. We also
considered aesthetics within our design because of the user
experience. We want the board and pieces to be familiar to the
user for the best experience.

Computer Vision
We decided to use computer vision to avoid modifying

boards and pieces. Computer vision is more complex than the
contact plate approach but because of existing platforms such
as OpenCV and BoofCV we do not need to implement
algorithms. We knew that we could use edge detection and
Hough polar algorithms to track lines and circles, squares, and
pieces respectively so we would not need object detection.
This is due to the user inputting the initial state of the game so
we can track piece location based on what square becomes
vacant and occupied.

For our computer vision library, we chose between OpenCV
and BoofCV. Both libraries are widely used and have different
approaches for algorithms. BoofCV’s implementation of
Hough Polar algorithms is faster than OpenCV’s, however
OpenCV has faster implementations of Gaussian blur and
edge detection [boofcv.org]. This led us to use OpenCV as our
main computer vision library.

Piece Movement
We primarily considered two options for our piece

movement, a robotic arm, and a gantry system.

Robotic arm
We considered using a three-degree of freedom robotic arm

because of range of motion and flexibility. We went away
from this approach because of the complexities fine control of
a robotic arm entails.

Gantry system
We decided to use a 3-axis gantry system to move our

pieces. We chose a gantry because it lends itself to be

controlled easier than the robotic arm. In addition, we wanted
to base our movement on systems that use CNC controls to
move gantries for fine control. We chose to use an X-Y gantry
system with stepper motors to move around the board and a
gripper for our Z movement of picking up and placing down
pieces.

We chose between below-board and above-board gantries.
The below-board gantry hides the piece movement which
improves aesthetics, but it does change how the pieces would
move. To use a below-board gantry we would need to move
the pieces through the board. Pieces would have to be moved
around other pieces rather than lifting them up as well. We
thought that this made the system unnecessarily difficult and
chose to go with an over-board gantry instead. The over-head
gantry allows us to meet our requirement of minimal
interference with other pieces when moving a piece. We also
thought that being able to see the gantry pick up, displace, and
drop the pieces added to the user experience.

Gripper Design
The gripper design started off as a servo claw attached to a

rack and pinion controlled by a continuous servo. This
approach did achieve our goals for picking up pieces and
moving them, but it added an extra degree of difficulty
because of the extra motor. The claw was also a tight fight
when grabbing pieces because of the small clearance between
pieces.

Figure 3. (Left)The first gripper design that was to be attached to a rack and
pinion. (Right) The current four-bar linkage gripper showing extension.

This led us to our current gripper mechanism. We are using a
four-bar linkage claw that is controlled by a servo motor. The
claw is designed such that it extends as the claw closes,
allowing us to maneuver within the limited space. The
complexity of this design comes from getting the four-bar
linkage dimensions right rather than having to control two
motors at the same time as with the previous design.
Additionally, each leg of the gripper will be fitted with a piece
of sturdy foam to allow the gripper to conform to whatever
chess piece it is grabbing and effectively lift it.

Web Client



4
18-500 Design Review Report: 03/17/2021

For our web client we are using HTML, CSS, and Django
as they are what we have worked with in other courses. Our
web server will be hosted using Amazon Web Services’ EC2
in order to allow the Raspberry Pi to establish a connection
and to facilitate remote testing. Through the use of Django, we
will be able to integrate the chessboard.js open source library
to render the interactive chess board in the web client and
chess.js to validate moves. The web client will also provide
the user with meaningful feedback during gameplay such as if
a move is invalid, indication that a connection with the board
is stable, and when a move on the physical board is being
processed. We will be using Django Channels to facilitate
communication between the Raspberry Pi and the web client.

Hardware

We chose an Arduino UNO to take advantage of CNC
shield controls for our gantry.
We also needed a main hardware element that could interface
with the Arduino and had enough computation for the
OpenCV and web server hosting.

We considered using the Jetson Nano because of its superior
GPU, however our computer vision does not require us to
analyze many frames continuously, so we would not be using
it to full capabilities. We decided instead to use a Raspberry Pi
with a Linux subsystem. The raspberry pi also has camera
modules that connect through MIPI serial interfacing that we
could take advantage of. We found the Raspberry Pi to
sufficiently fit our needs for the system.

Figure 5. Gantry system with Arduino placement shown

V. SYSTEM DESCRIPTION

Figure 4. Sketch of camera mount apparatus

A. Software
The bulk of our software is broken up into two categories,

the OpenCV, and the web client. While other components such
as the RaspberryPi and the Arduino will also have important
software running on them, these are best described as
components of the hardware subsystems.

OpenCV
Our OpenCV algorithm will be running on a RaspberryPi

with a RPi Camera Module V2 looking down on the board.
This setup will use CannyEdge detection, followed by a
HoughLines algorithm to give us the location of the edges. We
aim to use this to determine piece location, and square
boundaries on the board.

The CV detection will be running on a loop to show the
most up to date board status. When a piece is moved by the
player, and then remains unmoved for a determined amount of
time, it should send a signal to the web server, updating the
game state. Additionally, it should be listening for signals
from the server, to alert it of a remote move which should be
updated. In this case, the algorithm will take the board
coordinates of the movement, determine the coordinates for
movement, and send this information to the Arduino, where
the CNC controller should finish the move. Then, much like
when a player moves, the system will send the server a signal
to indicate that the move has been completed.

Web Client
When the client receives a signal from the server of a new

board state, the displayed board should be updated
accordingly. The client will also listen to determine which
player’s turn it is, and allow players to make moves via the
client.

The client will also be running a library called chess.js to
perform move validation, and send this signal to the server to
confirm the validity of a move. The client should be constantly
updating itself to both provide the most up to date information
to the server, as well as to ensure smooth movement



5
18-500 Design Review Report: 03/17/2021

animations for the user.
The front-end of the client will be made with chessboard.js,

a library providing all the tools needed to ensure the game
runs smoothly. This includes the ability to set up custom
boards using Forsyth-Edwards Notation (FEN) strings. The
library also fine tuned control over elements such as the
orientation for the players, the animation speed, and the style
of the displayed pieces.

B. Hardware

Arduino
The Arduino will be placed in an acrylic housing located

beside one of the tall gantry supports as shown in figure 5. The
grey box in the right half of the image represents the Arduino.
Also contained in this box and connected to the Arduino are
the CNC shield and stepper motor drivers. The stepper motors
will each be wired to their own stepper motor driver which are
connected to the CNC shield. The Raspberry Pi will send data
to the Arduino in g-code format. The Arduino will have
GRBL downloaded in order to receive the g-code data. This
data will then be used to drive the stepper motors to the
desired position. The micro servo will be attached to the
grabber and wired to the Arduino. Using the state changes
recognized through CV, 2 locations will be sent to the
Arduino, the piece location and piece destination. When the
grabber arrives at the first location, the piece location, the
micro servo will be triggered to activate the gripper motion to
retrieve the desired piece. Next, the grabber will move to the
destination location to place the piece. The data will be
received from the Raspberry Pi at a baud rate of 9600. The
stepper motors will receive power from the Arduino which
will be plugged into a wall outlet using a 12V 2A power
adapter.

Raspberry Pi
The Raspberry Pi will be in a housing located on top of the

stilt that holds the camera and LED array. It is running the
standard Raspbian OS, a Linux distribution made for
Raspberry Pi. The Raspberry Pi is powered using a 11.1 V
portable battery as the Pi itself draws only 5V at 450 mA. The
Pi transfers data to the Arduino through the Arduino’s USB
Serial connection at a baud rate of 9600. This should be
sufficient for us to transmit g-code commands to the Arduino
as g-code. The Raspberry PI will be connected to the LEDs
through the Pi GPIO pins.

The LEDs indicate which players turn it is, if a move is
valid, if a move has been detected, and if an error has
occurred. We are showing these states by lighting the LEDs in
different configurations. The system camera is a Raspberry Pi
Camera Module V2 that is connected directly to the Pi through
its ribbon cable. The camera and Pi communicate through a
MIPI serial interface protocol. The camera can be directly
accessed through Python libraries.

The Pi will be connected to the internet through Wi-Fi. It
will access the Web Server through Python HTTP requests.
We will be outputting the new game state to the web client
through POST requests.

Gantry
Mounted on the gantry will be the GT2 timing belt, 20 teeth

5mm bore timing pulleys, 500mm M8 linear rods, LM8UU
linear bearings, micro servo and grabbing mechanism, and
Nema 17 stepper motors. The timing belt and pulleys,
controlled by the CNC shield on the Arduino, will drive the
grabber to the appropriate locations. The linear rods and linear
bearings will allow for smooth x-y movement. We chose to
implement the grabber using a 4-bar linkage mechanism in an
effort to simplify picking pieces up. The 4-bar linkage
eliminates the need for an additional motor to drive the
grabber up and down to prevent it from knocking over other
pieces as it is moved by the gantry.

VI. PROJECT MANAGEMENT

A. Schedule
Figure 6 features our most up to date gantt chart. Our most

recent updates include changes to progress statuses, changes to
task owners, and changes to task end dates.

The chart in the image is broken into three sections, blue
representing planning and research, green representing the
design and implementation, and orange representing
finalization. The column of colorful cells represents our
progress with each task, and as the image shows, we are
essentially done with planning and research, and are in the
early stages of the design and implementation process.

The design and implementation section is where we aim to
begin piecing together subsystems, testing them, and
integrating them together. The next several weeks will be
primarily focused on this area. We have also included two
weeks of slack time, which essentially grant a safety net in the
event we run off schedule.

The last two weeks are reserved for the finalization area of
our project. Here we plan to work on final reports, flush out
the aesthetics of the design, and robustly test our design. This
region is where our final project will develop from the early
stages to a more well composed, unified piece.

B. Team Member Responsibilities
Our work was split into a few different categories, such as

the website, the hardware construction, the software
environment, and testing.

Our website setup is to be taken on by Lillie and Juan.
Having both taken a web apps development course, they are
the best suited for the task.

Hardware construction, such as gantry setup, is planned to
be done by all members of the team. We do anticipate that
Lillie may take on a little more of this, as she has been in
charge of organizing printing, and so is in possession of the
fabricated pieces.

The software environment will be mostly managed by Luis
and Juan. This includes the OpenCV setup, and the
RaspberryPi environment. Luis may take a stronger lead on
the RaspberryPi portion, as he has the camera and RaspberryPi
module.



6
18-500 Design Review Report: 03/17/2021

Lastly we have our testing portion, this will primarily be
taken on by everyone for general testing, or large system
testing. Smaller subsystems will be tested by those developing
them.

C. Budget
Figure 7 below, shows our current Bill of Materials.

Currently we have consumed slightly over ⅓ of our budget,
however we anticipate that this will grow, as we send more of
our components out for 3D printing. We don’t anticipate
having to buy many replacement components in the event of
component failure, as we did initially purchase extras.

The table includes many components which are not planned
to be used in the final design and were purchased as spares or
were simply extras that were owned previously and are being
used for testing. These include two of the RaspberryPis, and
one of the stepper motors. Kits such as the M4 screw kit
contain much more than we needed, and the linear bearing kit
was a 12-pack, whereas only 8 are planned for in our design.

D. Risk Management
There are a few risks we anticipate with regards to our

design. We need to ensure that our gripper can correctly
function in order to move the pieces, we have already changed
our design to one we feel will give more reliable performance,
however we need to be ready in the event that this is not the
case. Additionally, our OpenCV detection algorithm and CNC
controller need to be thoroughly tested, and constantly revised
to ensure that the product can perform reliably throughout an
entire game.

Our schedule has risk management built in, with slack time
incorporated into our plan. This will allow for any falling
behind, or unforeseen errors. Additionally our task break up is
rather fluid, in that we are able to change who is responsible
for what portions when needed.

Lastly we have our budget. As mentioned above, our spent
budget does include a few extra components of those we
believe may fail throughout our design process. Our main
concern is the cost of fabrication. Our initial plan of 3D
printing many components seems to be too costly with campus
resources available to us charging high rates per gram of
filament. We have done some looking into other methods,
including other on campus locations, external providers, and
other fabrication methods such as laser cutting.

Overall our risk management has been to account for
unforeseen circumstances to arise, and thus avoid being
delayed in our process later on. The high cost of fabrication
was unfortunately not taken into consideration, and as such we
are spending time searching for a solution. However, we have
not let this slow down our process, and instead have fabricated
components necessary for testing at our current stage.

VII. RELATED WORK

The best case of related work we were able to find are the
boards made by SquareOff. They offer a smart board, allowing
users to play against other players remotely using either the
board or an app, or play against AI. Our design should prove

to be simpler in that the SquareOff boards use magnets to
move the pieces around, which can lead to complicated
circuitry and mechanics. Additionally, since the SquareOff
boards have all the components embedded within, the game
must be set up very precisely, and the cost is relatively high
due to requiring the custom set. Our approach, given
reasonable production methods, should run at a lower cost, as
it can be used simply as an addition to one’s current set.
Additionally, the inclusion of computer vision in our design
allows for the game to be set up in various ways, granting
more freedom than the SquareOff board provides.

Another similar device would be one which was described
in the International Journal of Engineering Research &
Technology, Volume 6 Issue 9 from September 2017, titled
Design and Implementation of a Wireless Remote Chess
Playing Physical Platform. This takes a very similar approach
to the SquareOff board, however here we see how the design
was implemented. Using magnets on the pieces, and a hall
sensor to detect piece location, an under the board gantry
system controls an electromagnet in order to move pieces.
While this leads to a similarly simple design as ours, it suffers
some of the same downfalls as SquareOff, namely that the cost
must include a custom chess set. Additionally, hall sensors are
very sensitive, and the reliability of this system may not be the
best, especially with so many magnets close together on the
board. The complexity needed to accurately calculate piece
location proved to be an issue for the designers, as Arduinos
were too limited in memory, and RaspberryPis were too
limited in GPIO pins.

Overall while our approach leads to a design less sleek than
these two boards, we aim to offer more freedom, at lower cost,
and will likely not face issues with storage space.

VIII. SUMMARY

The design and plan of work for our project has undergone
many iterations. The components have been planned and
changed to best fit our design goals, as well as be feasible to
implement. Our plan has also changed as we have become
more aware of fabrication costs, we also had to modify our
schedule to be more realistic in terms of implementation time.

We seek to continue the project with this level of fluidity in
our process, as we find that being able to adapt to our situation
will lend itself best to our success.



7
18-500 Design Review Report: 03/17/2021

Fig 6. Gantt Chart

Item Quantity Price

Raspberry Pi 3 0

Arduino UNO 1 0

CNC shield 1 0

Nema 17
Stepper Motor 3 10.99

Linearing
Bearing Rod
M8 x 500 mm 2 19.89

624 Bearing 1 12.99

M4 Screw Kit 1 18.99

Timing belt and
pulleys 1 15.99

Continuous
Servo 1

M8 Nut Kit 1 14.99

Camera
module 1 25.49

LEDs 5 0

LCD Display 1 0

chess board 1 49.99

lm8uu linear
bearings 1 10.95

3D printed
parts 4.8

12V 2A power
adapter 1 17.99

Fig 7. Current Bill of Materials


