
Lillie Widmayer, Luis Ortega, Juan Cortes



Use Case

● physical chess playing experience without the need for physical 

contact

● Allow professional chess players to practice specific scenarios



Requirements - mechanical hardware

● Pieces moved by gantry system should land completely within intended square bounds

● Pieces should be moved within 10 seconds of Web command

● Others pieces should not be interfered with unless they are involved in the move (i.e 

Castling, Capturing)

● Pieces captured will be placed by the gantry in a separate receptacle

● Gantry system will be able to reach farmost limits of the board and the separate 

receptacle

● Gantry should only move on its turn to not affect user



Requirements - electrical hardware

● Moves are detected with 99% accuracy as long as player moves the piece within the 
proper bounds

● User should be notified if piece is within multiple squares
● Piece movement should be detected and received by the web interface within 10 

seconds of player dropping the moved piece
● User should be notified of turn with an LED
● User should be notified if movement was detected with an LED
● User should be notified if they are performing an illegal move

 



Requirements - software
● CV should be able to recognize individual pieces at each board state with 99% accuracy
● If the physical player picks up a piece and drops it in the same square the system should 

recognize they have not completed their turn
● System should track when pieces have been move and captured and update the interface 

accordingly
● Pieces should snap into place when dragging and dropping moving pieces
● User should not be allowed to capture their own side’s pieces
● Web client should 

○ send the command within 5 second of movement
○ continuously indicate user of connection to the board
○ communicate with board through WIFI
○ only allow valid moves



Technical Challenges
● Response time

○ Mechanical
○ Electrical
○ Software

● Integration
○ Communication between web client and board
○ Communication between boards (eventually)

● Accuracy
○ Detecting correct piece movement
○ Moving pieces on board/taking pieces off board

● Using CV
● Calibrating timing belts for accurate movement



Solution Approach
● Raspberry Pi

○ OpenCV for piece tracking and movement
○ Django for web server interface
○ Chess.js for move validation

● Board
○ Plastic hollow chess pieces, standard size
○ Wooden chess board, standard size

● Gantry System
○ 12V Nema Stepper Motors

■ Timing belts to cover length and width of board
○ Servo motor for the z axis movement and gripper

■ Gripper is 3D printed with a grip lining
○ HD Camera in bird’s eye view attached to top of gantry
○ LED Indicators for user clarity



Testing, Verification, Metrics
● Mechanical

○ Measure how long pieces take to move
○ Asses whether piece lands completely within intended square
○ Ensure that moving piece doesn’t interfere with other pieces
○ Test that the gantry can reach and move all pieces
○ Check if piece can be lifted and held during movement

● Electrical
○ Visual confirmation that pieces are being detected and moved properly
○ Test that LEDs turn on at appropriate times

● Software
○ Ensure that command being sent is the same as received
○ Test that the interface is functional

■ Move validation is being done
■ User is able to move pieces properly
■ Check that the web client is updating after each move

Final test - can you play a game of chess remotely?



Tasks and Division of Labor
● Lillie

○ Model 3D printed parts
○ Website development
○ Raspberry Pi web client setup

● Juan
○ Raspberry Pi web client setup
○ Website development
○ Programming timing belts

● Luis
○ Raspberry Pi setup (logic)
○ Model 3D printed parts

● All
○ Gantry system assembly and testing
○ openCV
○ Documentation



Schedule



Conclusion
● Phase 1:

○ Control chess pieces on a board via web application

○ Chess piece movement detection through CV

● Phase 2:

○ Wireless interaction between 2 separate chess boards


