
18-500 Design Report - March 17, 2021 Page 1 of 10

conFFTi: An FPGA Music Synthesizer
Authors: Hongrun Zhou, Jiuling Zhou, Michelle Chang

Electrical and Computer Engineering, Carnegie Mellon University

Abstract—The system is a digital music synthesizer
that accepts real-time input from a MIDI keyboard,
processes the signals via an FPGA, and generates out-
put through the audio CODEC. User input is given
through controls on the MIDI keyboard, and the ef-
fects of the modulations are able to be produced with
a very short latency that is undetectable to the human
ear. The system is capable of generating sounds from
basic waveforms, modulating its ADSR envelope, pro-
ducing an arpeggiation, and applying a unison.

Index Terms—Audio, FPGA, MIDI, Music synthe-
sizer

1 INTRODUCTION

conFFTi is a FPGA-based digital hardware synthesizer
that is capable of providing the user with an intuitive mu-
sical composition experience. We chose to use FPGA for
its low latency, configurability, and portability—all three
of which are vital characteristics for realistic and profes-
sional uses of synthesizers. Our approach is advantageous
compared to other musical synthesizers on the market for
its ability to produce results at a low latency of less than
10 milliseconds, its reasonable price point, as well as its
portability. The output produced by our product is com-
pliant with the industry standard for audio signal process-
ing, with a frequency of 44.1kHz and formatted as a 24-bit,
single channel signal.

Additionally, conFFTi is designed with an emphasis
on assisting with the musical composition process, with
the implementation of the arpeggiator and the unison ef-
fect. With the arpeggiator, the user can input a set of
notes to generate a melody with custom tempo, pattern
and rhythm. When not operating under the arpeggiator
mode, the system supports a 4-note polyphony, giving the
user freedom in their choice of input. The unison effect is
a simple yet powerful way for the audio output to sound
more saturated. Other capabilities of our synthesizer in-
clude modulations of the ADSR envelope and waveform
oscillators of 4 types: sine, square, sawtooth, and triangle;
a set of these effects will be implemented in each of our 4
audio processing pipelines. With the aforementioned fea-
tures, conFFTi is an effective and intuitive, yet affordable
and portable, musical synthesizer.

2 DESIGN REQUIREMENTS

2.1 Output quality: 44.1kHz, 24-bit, sin-
gle channel output

We will be providing a high fidelity audio output. The
industrial standard CD quality audio has a sample fre-
quency of 44.1kHz and a bit depth of 16 bits. The 44.1kHz
sample frequency is just over the Nyquist frequency for the
uppermost limit of human hearing at 22kHz, which means
the 44.1kHz sample frequency is able to capture the full
range of frequencies that human can hear without aliasing.
As for the bit depth, we decided to provide a higher resolu-
tion of 24 bits to give a higher quality sound with a lower
quantization error.

2.2 Latency: less than 10ms from MIDI
input to audio output

One of our goals is to bring low latency to a configurable
and expandable design. Modern hardware synthesizers typ-
ically have latency around 3ms while software synthesizers
have around 12 - 24ms [8]. We are setting the audio latency
to 10ms which is the same as what similar past capstone
projects have [5, 6].

However, with our preliminary calculation, the latency
of UART for each MIDI message is 3bytes/msg × (8 +
2)bits/byte / 31250baud = 0.96ms. All the other digital
modules will have either combinational or single-cycle de-
sign. Therefore, the theoretical latency of out system will
be around 1ms.

Human ear is about to distinct sounds that are 30ms
apart. [1] Our audio latency requirements way below this
physical limit. However, as a music production tool, lower
latency is always better.

To measure the latency of our system, we will use a os-
cilloscope to capture the MIDI input signal and the audio
line out signal and compare the time difference of the signal
starts for a note press event.

2.3 Frequency distortion: less than 5%

We will measure the frequency distortion by applying
FFT to output waveform by FPGA and calculate the per-
centage of distortion of each frequency, as well as the total
distortion. This ensures that we are producing the desired
amount of harmonics for each oscillator generated wave-
form and evaluates the quality of our waveform synthesis
technique.

18-500 Design Report - March 17, 2021 Page 2 of 10

2.4 Pitch deviation: less than 1%

As a music production instrument, it is important to
produce accurate sounds. We would like our user to per-
ceive the minimum level of pitch deviation on their end. To
measure this quantitatively, we will use a commercial tuner
to detect the pitch of the generated sound of each note and
achieve a less than 1% deviation.

2.5 Choice of waveform: sine, square, saw-
tooth and triangle

Each of the audio processing pipelines will be able to
generate sine, square, sawtooth and triangle waveforms.
These four waveforms are fundamental to digital synthe-
sis. The user is able to choose the waveform with the pads
on the keyboard.

2.6 Audio effects: unison detune and
ADSR envelope

To support generation of more interesting sounds, we
support unison detune to each note. The unison detune ef-
fect augments the signal playing with multiple slightly out
of phase and detuned version of the signal to produce a
fuller sound, like the violin section in an orchestra.

The ADSR envelope specifies the amplitude profile over
time of each note. The user is able to configure the attack
time, decay time, sustain level and release time to achieve
a wide range of sounds.

2.7 Polyphony: 4 notes

We think it is crucial for us to support harmony or
chords as they are essential to a practical music produc-
tion environment. As we are developing a proof-of-concept
product, we decided that a 4-note polyphony support is
sufficient for demonstration purposes. A 4-note polyphony
support already requires a development of a polyphony con-
trol unit that can be easily expanded to support more notes
if desired. Since the number of audio processing pipelines
would need to match the number of notes played simul-
taneously, we decide to cap this number at 4 so that we
will have enough logical elements and RAM on FPGA to
support all the functionalities.

In practice, 4-note polyphony is able to support most
chords as well.

2.8 Arpeggiator effects

The arpeggiator cycles through a series of notes that
the user plays to some tempo, pattern and rhythm.

The user will be able to configure the arpeggiator
tempo, mode, rate and rhythm. Tempo specifies the pace
the notes will be playing, ranging from 40bpm to 240 bpm.

The mode specifies the order in which the notes are re-
played, including Up (rising in pitch), Down (descending

in pitch), Up/Down (rising in pitch followed by descending
in pitch), Played, Random, and Chord (up to 4 notes).

The rate specifies the speed of the arpeggiated notes
using common musical note values: quarter (1/4), eighth
(1/8), sixteenth (1/16) and thirty-second (1/32) notes. Ad-
ditionally, user can turn the arpeggio notes into quarter,
eighth, sixteenth and thirty-second note triplets by using
the Triplet function.

Lastly, the custom rhythm feature adds musical rests
to the arpeggio’s pattern, allowing for greater variations in
the arpeggios. We support three rhythmic patterns (note
only, note - rest - note, note - rest - rest - note) and a ran-
dom pattern where each step has a 50% chance of being
either a note or a rest.

3 ARCHITECTURE OVERVIEW

conFFTi consists of just two pieces of hardware: a MIDI
keyboard and an FPGA board. To connect the two com-
ponents, a MIDI breakout board is used to interface the
keyboard to the FPGA board.

Figure 1: Hardware connections

The MIDI keyboard is in charge of taking in musical
note inputs from the users and providing a parameter con-
trol user interface. The keyboard of our choice, Launchkey
MINI Mk3 MIDI keyboard, provides a piano roll of two oc-
taves with 25 notes in total, which gives the user moderate
freedom in creating musical melodies. In addition to the
piano roll, it also provides 16 drum pads, 10 buttons and 8
rotary knobs, which could be programmed to control var-
ious parameters of the music synthesizer and arpeggiator,
e.g. ADSR envelopes and detune.

The DE2-115 Cyclone IV FPGA acts as a hardware
platform for digital signals processing. The FPGA is pro-
grammed by SystemVerilog scripts which generates syn-
thetic musical sounds based on the music notes played by
the user on the MIDI keyboard. In order to perform this
synthesis, the workflow on the FPGA is broken down into
four stages, as explained in brief in the below paragraphs
as well as in detail in section V:

18-500 Design Report - March 17, 2021 Page 3 of 10

Figure 2: MIDI keyboard user interface design

The first stage is a MIDI decoder. This stage takes in
MIDI control signals inputs from the GPIO pin via UART,
parse and aggregate that information into a MIDI event
object that the subsequent system components are able to
interpret. These events could be a changing value of a turn-
ing knob, a hit on a particular drum pad, or a key-press on
the piano roll. If the MIDI event is a musical note, it will be
passed down to the following stages. Otherwise, the MIDI
event indicates a change in the state of the system, e.g. a
mode change, a parameter adjustment, in which case the
global state of this system will be updated in this stage. A
datapath and an FSM are designed for this stage to handle
all the different possible MIDI events accordingly.

The second stage is the dispatcher stage, where MIDI
events are routed to four polyphony pipelines. As illus-
trated in Figure 3, our polyphony system operates in ei-
ther polyphony control mode or the arpeggiator mode. The
polyphony allows the user to simultaneously play four notes
on the piano roll and hear the synthesized sounds of their
inputs up to four notes at a time. Whereas in the arpeg-
giator mode, the system loops over a set of notes given and
recorded by the user. In both modes, the musical note in-
puts are organized in a queue data structure of size 4, which
dispatches the stored notes on a first come first serve basis.
The dispatcher stage also keeps track of when the notes
are released to clear the queue structure in real time. In
the case where all 4 pipelines are occupied, a fifth input
will not be accepted into the program. In this way, the dis-
patcher stages handles simultaneous inputs in an organized
and predictable manner.

The third stage is the audio processing stage that hap-
pens within each of the pipelines. This stage begins with
a waveform oscillator, that takes in the frequency and ve-
locity parameters of each musical note input, generates a
square, sine, triangular or sawtooth waveform as requested

by the user. Next, a feedback loop is setup for supporting
the unison feature, which takes in the original waveform,
detunes and phase shifts the waveform several times to pro-
duce a richer and fatter sound. Then the aggregated wave-
form gets passed into the ADSR envelope that tweaks how
the volume of the sound should unfold in the attack, decay,
sustain and release stages respectively throughout the du-
ration of the note. According to how the user sets up the
values on the attack, decay, sustain and release buttons on
the keyboard, the amplitude of the waveform will be scaled
differently. The ADSR envelope will give a more nuanced
tone to the sound of the output.

The fourth and final stage is the mixer and the audio
CODEC. The mixer takes in all the outputs of the four
pipelines, normalizes the final waveform and passes the re-
sult to the Audio CODEC of the FPGA board. To hear
the result, the user can simply plug a wired headphone or
a speaker to the Line Out of the FPGA board.

4 DESIGN TRADE STUDIES

4.1 FPGA Choice

From the experience of similar past capstone projects [5,
6], we learned that to support 4 note-polyphony, the system
requires a large number of logical elements. Also, to sup-
port arpeggiator and unison detune, the system needs to
store multiple notes for an extended period of time, which
means the FPGA needs to provide a considerable amount
of storage space.

Due to the COVID-19 pandemic, each of the three
members is located in different parts of the United States.
Therefore, in order for us to develop the system in par-
allel, each of us require an FPGA. From ECE inventory,

18-500 Design Report - March 17, 2021 Page 4 of 10

Figure 3: Block diagram

the FPGA models that potentially have enough logical el-
ements and memory, and with large number of units avail-
able are limited to DE2-115 (used by 18-240) and DE0-CV
(used by 18-341). The DE2-115 board is a larger board
with 114,480 logic elements, 3,888kbits embedded memory,
and 128MB SDRAM [3]. On the other hand, the DE0-
CV has only 40,000 logical elements, 3,080kbits embedded
memory, and 64MB SDRAM [4]. To avoid switching board
mid-development which will cause a huge delay and ship-
ping hassle, we decided to go with the large DE2-115 board.

Also, since all three members have only taken 18-240,
we are most familiar with the DE2-115 board. Having a
familiar board saves us some ramp up time and give us the
opportunity to reuse the configurations for the board (like
pin assignments).

4.2 MIDI Controller Selection

There are many mini MIDI controllers on the market.
There are two kinds of interfaces that these controllers offer,
the USB MIDI interface or the MIDI 5-pin DIN interface.
Most controllers in a low price range comes with the USB
output, but by choosing such a controller, we need to either
implement a USB controller or buy an external USB device
controller to parse the MIDI signals, which is complex and
expensive. In avoidance of this extra work, we decided to
work with a keyboard that offers the legacy DIN output
and buy a MIDI breakout board to interface with the key-

board in the easiest possible fashion.Another requirement
for the MIDI controller is that it needs to come with a
good number of knobs and faders. This is so that we can
use these existing real estates to provide an easy and intu-
itive user interface for manipulating various parameters on
the synthesizer. We did our research and found that the
cheapest controller that fits both two requirements is the
Launchkey MINI Mk3 MIDI keyboard. Even though this
controller comes at a higher price of $109.99, we think the
choice is reasonable because it reduces the complexity of
development and is affordable within our $600.0 budget.

4.3 Audio output

For audio output, we have two choices – use the 24-bit
audio CODEC on the DE2-115 board or build a DAC cir-
cuit that will output a 16-bit audio together with an audio
op amp. We initially wanted to go with a DAC circuit, but
on second thought, we decided using the audio CODEC
might be a better choice. Even though the audio CODEC
can be more complicated to interface to with SystemVer-
ilog code, it reduces the number of external peripherals of
the entire system to the minimum. This can be a great
plus for the user experience, as it is a lot easier to just plug
in a set of headphones to the FPGA board than having to
hook up amplifiers to the external DAC circuit.

18-500 Design Report - March 17, 2021 Page 5 of 10

4.4 Wavetable synthesis

We initially considered designing conFFTi as a
wavetable synthesizer. We decided not to proceed with this
design since there were previous groups that designed musi-
cal synthesizers of similar synthesizing techniques. Instead,
we will invest our time into more unique features such as
the arpeggiator and the unison. In order to show a proof
of concept, we are focusing on the actual functionality of
the synthesizer.

5 SYSTEM DESCRIPTION

5.1 Subsystem A – MIDI Interface And
Decoder

Figure 4: Deserializer FSM

The MIDI signal is received from one of the GPIO pins
on the FPGA board at a baud rate of 31,250 on a 50MHz
clock. A clock counter based mechanism is in place to
synchronize with the lower baud rate and sample the bit-
stream. At this sample rate, the serial MIDI The deseri-
alizer module takes in the serial signal via rx and collects
MIDI bytes according to the UART protocol. It uses an
FSM (Fig. 4) to keep track of the position in a MIDI byte
and its surrounding start and stop bits so as to aggregate
the serial data into 8-bit chunks that will be consumed by
the subsequent decoder module.

Figure 5: Example MIDI event consisting of three MIDI
bytes

A MIDI event is described by three MIDI bytes in a row
from the deserializer as shown in Fig. 5. The first byte is
a status byte that tells whether the event is a NOTE ON,
NOTE OFF or a PARAMETER CHANGE. The second
byte contains information on the value of MIDI note be-
ing played or which knob or fader is being modified. The
third and final byte tells the new velocity or the new value
of the knob or fader being modified. The decoder module
implements a FSM (Fig. 6) to collect all three data bytes
and aggregate this information into a MIDI event packet
to send to the dispatcher module. In addition, the decoder
also converts MIDI note number to its corresponding fre-
quency from a lookup table. This frequency lookup result
will also be included in the MIDI event packet that gets
sent to the dispatcher.

Figure 6: MIDI decoder FSM

18-500 Design Report - March 17, 2021 Page 6 of 10

5.2 Subsystem B – Dispatcher

This subsystem takes the MIDI events decoded by the
Decoder, and dispatches notes to each audio processing
pipelines with the correct timing according to the mode
of operation.

The dispatcher selects between the polyphony mode and
the arpeggiator mode based to the event of arpeggiator but-
ton press. If the system is in polyphony mode, the NOTE
ON/OFF events are passed in to the polyphony control
module. If the system is in arpeggiator mode, in addition
to the NOTE ON/OFF events, the arpeggiator parameters
are passed in to the arpeggiator control module. For audio
effects parameters, the dispatcher passes on the parameter
values to the audio processing pipeline.

5.2.1 Polyphony

*state is a 4 bit value. The i-th bit of state encodes the
occupancy status of the i-th pipeline.

Figure 7: Polyphony control ASM

The polyphony control module is described by the al-
gorithmic state machine (ASM) in Fig. 7. It implements
a first note priority policy for notes that are not released,
where the the newly pressed notes are ignored once the
maximum polyphony is reached. For notes that are al-
ready in released stage (i.e. the key has been release but
the volume is slowly fading), a new note would take pri-
ority. In other words, once 4 notes has been pressed, any
additional notes pressed are ignored until any of the first 4
are released.

On NOTE ON event, the pitch and the velocity of
the notes is stored in pitches and velocity, respectively.
Then the polyphony control signals the respective Audio
Processing Pipeline to start producing the note.

On NOTE OFF event, the release signal of that note
is sent to its Audio Processing Pipeline and the note infor-
mation is removed.

5.2.2 Arpeggiator

The arpeggiator generates start signal and release signal
for the Audio Processing Pipeline on the specified param-
eters.

For example, if notes C, E, G (do, mi, so) are playing,
the tempo is set to 60bpm, the mode is set to Up, the rates
are set to 1/4 and the rhythm is set to note - rest - note,
then the arpeggiator generates the following signal pattern
(empty slots are for rests) in Fig. 8.

Figure 8: Arpeggiator pattern generation

To account for the release time, the release signal is sent
to the Audio Processing Pipeline before the next note start
is sent. In other words, if t0 and t1 are the time when two
consecutive notes start and release time is trelease(� t1−t0),
then the release signal of the first note is sent at t1−trelease.

5.3 Subsystem C – Audio Processing
Pipelines

The system will be consisting of four Audio Process-
ing Pipelines. Each pipeline is comprised of a waveform
oscillator and a module controlling the ADSR envelope.

The waveform oscillator is in charge of generating four
types of waveforms: sine, sawtooth, square, and triangle.
The generation of these waveforms will be accomplished
with either combinational (square, sawtooth, and triangle)
or with a lookup table (sine). The operation of the module
will be based on incrementing an 8-bit value that repre-
sents the phase, so it is able to represent angles at 1.4
degree precision. Based on the accumulated phase value,
the module will generate amplitude values of the chosen
wave type at the specified location. Because of the nature
of sine waves, generation of sine waves can be accomplished
with look-up tables designed for quarter-wave look-ups[9]:
instead of storing amplitude values for every point along
the wave, only store values for a fourth of the waveform.
This way, sine wave generations are efficiently implemented
with some additional logic for index computations.

In order to implement the unison effect, the waveform
oscillators will be implemented with a feed-back loop and
a phase offsetting module. With these additions, when the
user enables unison, the waveform oscillators will output a
compounded waveform resulting from adding several copies

18-500 Design Report - March 17, 2021 Page 7 of 10

of a single waveform, each slightly detuned and applied with
a phase offset.

The ADSR module (Fig. 9)will be implemented by scal-
ing the amplitude of the incoming waveform, depending on
the Attack, Delay, Sustain, and Release values set by the
user. This module will be keeping an incrementing counter
to keep track of the current time index into the ADSR pro-
cess. Thus, the computation of this module is consisted of
numerical comparisons and multiplications, and so it would
not introduce additional latency to the system.

Figure 9: ADSR FSM

5.4 Subsystem D – Audio Mixing and Out-
put

The mixer simply takes in the outputs from the four au-
dio processing pipelines and adds them, normalizes them
into a final waveform, which will be passed to the Au-
dio CODEC component on the DE2-115 via SystemVerilog
Module. A 24-bit, 44.1kHz sound output will be heard via
a wired headphone or a speaker.

6 PROJECT MANAGEMENT

6.1 Schedule

The Gantt chart (Fig. 10) is inserted in appendix B of
the report. We have divided our project into 4 main check-
points. By checkpoint 1, we aim to achieve a minimal viable
product that is capable of receiving a single user input, gen-
erating a single type of waveform, and producing an audible
output. By checkpoint 2, we aim to achieve waveform gen-
eration of all 4 types of waves, 4-note polyphony, as well
as the final mixer that will combine the signals into the
output waveform. By checkpoint 3, we aim to achieve the
normal mode effects including the ADSR modulations and
the unison, and we will also start with some basic imple-
mentation of the arpeggiator. During checkpoint 4, we will

collectively focus on implementing the complex features of
the arpeggiator. After each checkpoint, we have planned
2 days of integration and verification time. We have also
planned 2 weeks of slack time after the checkpoint 4 inte-
gration deadline.

6.2 Team Member Responsibilities

Hongrun will be working on the MIDI keyboard in-
terface and the audio CODEC, implementing the ADSR
envelope, and verifying the output waveforms by compar-
ing them with our reference MATLAB script results. Jiul-
ing will be working on polyphony control, implementing a
random number generator, and setting up the basic func-
tions of the arpeggiation mode. Michelle will be working
on setting up the note-to-frequency mappings, the value
look-up tables for computing the sine wave, and the unison
effect. Collectively, we will work on the advanced arpeg-
giator modulations, which are the rhythm and the mode
of the arpeggiation result. A detailed breakdown of each
of our responsibilities over the course of the development
process is color-coded in our Gantt chart (Fig. 10).

6.3 Budget

The budget chart is included in the Appendix section of
the report (Table 1). Since we are working on our project
remotely, we had to each purchase a set of the necessary
equipment. The respective quantities for each item are in-
cluded in the chart. We are borrowing FPGA boards from
the lab, so the cost for the FPGA boards are not included
in the budget calculation.

6.4 Risk Management

Our current risk mitigation strategy is to have two days
dedicated for integration and verification after each check-
point. Ideally we would be able to make sure everyone is
caught up on the latest version of each other’s progress,
and that we would be able to conduct verification of the
code that we would have written. We have also planned
two weeks of slack time at the end, before the final presen-
tation date, so that we have time to catch up in case there
were any trouble in the implementation process. If we were
able to finish our project abiding to the timeline, we also
have a few stretch goals that we could work on during the
slack time (i.e. frequency modulation and more arpeggiator
effects).

7 RELATED WORK

FPGA-based music synthesizer is indeed a popular Cap-
stone project idea, and in order to create something unique
from the previous projects, we have studied reports from
those projects from previous semesters. In particular, we
studied FMPGA[6] from the Fall 2020 semester and Sound-
cloud[5] from the Spring 2019 semester. These projects

18-500 Design Report - March 17, 2021 Page 8 of 10

gave us valuable insights on the expected risks, a good esti-
mation of workload, and also some tradeoffs that we should
consider. Other s that we have studied is the an FPGA
Digital Music Synthesizer project by students of other uni-
versities [2, 7]. These papers include extensive details on
the implementation methods of the synthesizer effects such
as frequency modulation and waveform generation.

8 SUMMARY

For our project, we are aiming to implement a FPGA-
based music synthesizer with emphasis on effects that can
aid musical composition. As conFFTi combines benefits
from hardware and software synthesizers, users can enjoy
an professional and intuitive experience.

References

[1] BINAURAL HEARING. url: https: //www. sfu.

ca / sonic - studio - webdav / handbook / Binaural _

Hearing.html.

[2] Evan Briggs and Sidney Veilleux. FPGA Digital Music
Synthesizer. Tech. rep. Apr. 2015.

[3] DE0-CV Board Specification. url: https : / / www .

terasic . com . tw / cgi - bin / page / archive . pl ?

Language = English & CategoryNo = 139 & No = 502 &

PartNo=2.

[4] DE0-CV Board Specification. url: https : / / www .

terasic . com . tw / cgi - bin / page / archive . pl ?

Language = English & CategoryNo = 167 & No = 921 &

PartNo=2.

[5] Jens Ertman, Charles Li, and Hailang Liou. “Check
Out Our Soundcloud: An FPGA Wavetable Synthe-
sizer”. May 2019.

[6] Joseph Finn, Eric Schneider, and Manav Trivedi.
“FMPGA: The Frequency Modulating Programmable
Gate Array”. Dec. 2020.

[7] Implementing a Sampling Synthesizing Keyboard on an
FPGA. 2007. url: http://web.mit.edu/6.111/www/
f2005/projects/mmt_Project_Final_Report.pdf.

[8] Martin Walker. The Truth About Latency: Part 1.
Sept. 2002. url: https://www.soundonsound.com/
techniques/truth-about-latency-part-1.

[9] ZipCPU. Building a quarter sine-wave lookup table.
Aug. 2017. url: https://zipcpu.com/dsp/2017/
08/26/quarterwave.html.

https://www.sfu.ca/sonic-studio-webdav/handbook/Binaural_Hearing.html
https://www.sfu.ca/sonic-studio-webdav/handbook/Binaural_Hearing.html
https://www.sfu.ca/sonic-studio-webdav/handbook/Binaural_Hearing.html
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=139&No=502&PartNo=2
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=139&No=502&PartNo=2
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=139&No=502&PartNo=2
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=139&No=502&PartNo=2
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=921&PartNo=2
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=921&PartNo=2
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=921&PartNo=2
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=921&PartNo=2
http://web.mit.edu/6.111/www/f2005/projects/mmt_Project_Final_Report.pdf
http://web.mit.edu/6.111/www/f2005/projects/mmt_Project_Final_Report.pdf
https://www.soundonsound.com/techniques/truth-about-latency-part-1
https://www.soundonsound.com/techniques/truth-about-latency-part-1
https://zipcpu.com/dsp/2017/08/26/quarterwave.html
https://zipcpu.com/dsp/2017/08/26/quarterwave.html

18-500 Design Report - March 17, 2021 Page 9 of 10

A Budget and Material

Item Name Quantity Price

DE2-115 Cyclone IV FPGA 3 N/A
Launchkey MINI Mk3 MIDI keyboard 3 $109.99
MIDI Breakout Board 3 $10.39
SinLoon 5 Pin Din MIDI Plug to 3.5mm TRS Stereo Male Jack Stereo Audio Cable 3 $6.32
Resistor kit (unused) 2 $6.99
DaFuRui Breadboard Jumper Kit 2 $13.99
MAX541 DAC (unused) 3 $19.74

$481.28

Table 1: Budget chart

Item Name Quantity Price

DE2-115 Cyclone IV FPGA 1 N/A
Launchkey MINI Mk3 MIDI keyboard 1 $109.99
MIDI Breakout Board 1 $10.39
SinLoon 5 Pin Din MIDI Plug to 3.5mm TRS Stereo Male Jack Stereo Audio Cable 1 $6.32
Jumper cable 3 N/A

$127.70

Table 2: Bill of Materials (for one system)

18-500 Design Report - March 17, 2021 Page 10 of 10

B Gantt Chart

Figure 10: Gantt Chart

	INTRODUCTION
	DESIGN REQUIREMENTS
	Output quality: 44.1kHz, 24-bit, single channel output
	Latency: less than 10ms from MIDI input to audio output
	Frequency distortion: less than 5%
	Pitch deviation: less than 1%
	Choice of waveform: sine, square, sawtooth and triangle
	Audio effects: unison detune and ADSR envelope
	Polyphony: 4 notes
	Arpeggiator effects

	ARCHITECTURE OVERVIEW
	DESIGN TRADE STUDIES
	FPGA Choice
	MIDI Controller Selection
	Audio output
	Wavetable synthesis

	SYSTEM DESCRIPTION
	Subsystem A – MIDI Interface And Decoder
	Subsystem B – Dispatcher
	Polyphony
	Arpeggiator

	Subsystem C – Audio Processing Pipelines
	Subsystem D – Audio Mixing and Output

	PROJECT MANAGEMENT
	Schedule
	Team Member Responsibilities
	Budget
	Risk Management

	RELATED WORK
	SUMMARY
	Budget and Material
	Gantt Chart

