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Abstract—A web based application that provides novice
singers with intuitive lessons and feedback in hopes of
improving their pitch and rhythm control, as well as provide
them with a foundation in music theory. The feedback is
generated based on features derived from pitch detection and
clap detection algorithms. Additionally, Pitch Perfect will
provide ample resources and exercises needed to improve
users’ musical theory expertise, as well as access to resources
on more advanced topics in vocal performance.

Index Terms — Vocal Coach, Web application, Rhythm
Detection, Note Detection

INTRODUCTION

Music is ubiquitous and has been a central part of
what it means to be human for several millennia. In
fact, the Smithsonian [1] claims that making music is a
universal human trait that goes back at least 35,000
years. Since then, music has evolved and manifested
itself in many shapes and forms, but, despite this, the
most prevalent instrument continues to be the human
voice.

When learning how to perform a task, it is common
to seek instructors who can use their expertise to guide
your development. This is no different in learning how
to sing. However, as a novice singer, it can be
discouraging and difficult to seek the help of a
professional to develop your singing ability, especially
considering the steep cost of personal singing lessons
which tend to range between $50 - $100 per hour [2],
and the dependency of available instructors nearby.
These concerns are now exacerbated by the COVID-19
pandemic, which has almost certainly increased the
prices and decreased the availability of in-person vocal
instruction. In response, many instructors have started
hosting their lessons online, but it can be difficult to
justify paying full price for a singing lesson whose
effectiveness is affected by the degradation of voice
quality on platforms like Zoom.

To address this issue our group, The Ensemble
Methods, is creating Pitch Perfect: a web application
that helps users perfect aspects of their singing from the
comfort of their own home. Pitch Perfect is not an
automatic voice quality assessment tool, which is still
an open research problem, but instead a platform to
help novice singers perfect their pitch control and
identification, understand and develop rhythm, and
polish their music theory knowledge through tailored
lessons and exercises with feedback on how to improve.
To accomplish this, we will employ the use of pitch and

clap detection algorithms to measure pitch and rhythm,
respectively, as well as a note strain detector based on
pitch contour statistics over a note.

DESIGN REQUIREMENTS

Our requirements are broken into several parts,
highlighting the main areas of user interaction with our
product, namely: pitch to note accuracy, clap detection
accuracy, note strain analysis, user interface interaction,
feedback, and latency. Since much of our application’s
functionality depends on the effectiveness of our note
and clap detection algorithms, we must ensure they are
robust and accurate. The user interaction focuses
primarily on making our application intuitive and
enjoyable for the user. Finally the feedback is the means
by which our application will communicate to the user
how well they are performing, as a function of note
accuracy, timing, and intonation.

A. Pitch To Note Accuracy

Note detection is a critical component in Pitch
Perfect’s functionality, therefore our system must be
able to reliably detect notes. Notes are extracted from
the pitch detection algorithm, so our pitch detection
algorithm must accurately estimate pitch. We require
our note detection algorithm to achieve a test accuracy
of no less than 95%. We will thoroughly test the note
detection accuracy against pure tones with added white
Gaussian noise. After achieving this baseline accuracy,
we will test our algorithm against a labeled dataset of
sung tones [3].

B. Clap Detection Accuracy

Clap detection is an integral part of our rhythm
exercises, thus we require no less than 95% clap
detection accuracy on a preliminary collection of
self-annotated claps that simulate the behavior we
expect from our users. Ideally, we will like to test this
against an existing annotated clapping dataset to test the
generalizability of our algorithm.

C. Note Strain Analysis

Note or intonation strain will provide us with a
metric to potentially discriminate between good and
bad singing. We extract this feature by taking statistics
of pitch data over a note, particularly the per-note
interquartile range. We will collect samples of good and
bad singing and determine how well this parameter
correlates with the classification. We expect low
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interquartile ranges to highly correlate with good
singing quality, and vice versa.

D. User Interface Interaction

The main requirements for the web application’s
user interface are usability and desirability. We want the
users to be able to easily and intuitively navigate to
different pages and singing exercises. Since this web
application will be used for learning purposes, with the
majority of our target users most likely being children,
we want our web application to be engaging with
appealing visuals to grab their attention as well. To
ensure these requirements, we will be conducting focus
group studies. We will begin conducting these studies
remotely through zoom once our minimum viable
product is ready to be used. Before these sessions, we
will prepare a list of tasks that involve using the web
application. These tasks will fall into 4 main categories:

1. Navigation to an exercise

2. Performing an exercise

3. Interpretation of feedback

4. Navigation to past feedback

During our user study session, we will provide all
of the participants with the same list of tasks. While
they perform each task, they will be sharing their screen
so that we can monitor their performance on the tasks.
While we monitor their interaction and completion of
tasks, we will measure how long it takes them to
complete each task. After they complete all the tasks,
ask them to rate their experience on a scale ranging
from 1 to 5. These survey question responses will
provide us with qualitative feedback.
Overall, these focus group studies will provide us with
the quantitative and qualitative metrics that we can
utilize to improve the user interface.

E. Feedback
We will provide our users with useful and concise

feedback. As we provide our users with both visual and
textual feedback, we expect the visual feedback to be
comprehendible. In order to meet this requirement, we
will send audio recordings to be analyzed by our
feedback algorithms. Ensuring that all visual feedback
is readable and the textual feedback is not too verbose.
Based on this, we will be able to modify our feedback
algorithms and representation.

F Latency

Long response times and high latency can
adversely affect a user’s experience with a web
application, which can lead to low product use and a
poor perception of the product itself. Thus, we want to
provide the ideal response times for different types of
user inputs. According to an article, “Response Times -

The 3 Important Limits” [4] written by Jakob Nielsen, a
web usability expert and human computer interaction
researcher, there are three main response time limits for
a web application. First, for user inputs that don’t
require special feedback from the application, 0.1
seconds is the response time limit for the user to feel
that the web application is reacting instantaneously.
Second, for user inputs that do require special feedback,
1.0 seconds is the response time limit for the user’s
flow of thought to remain uninterrupted. Third, to keep
the user’s attention, the response time limit for the
special feedback is 10 seconds. Therefore, following
the response time limits of this article, we will be
limiting response times in a similar fashion based on
the types of user inputs and form of feedback. For
feedback on users’ pitch and rhythm exercises we
expect the response time of the feedback to be at most,
10 seconds. For feedback that doesn’t require special
processing such as navigation from one page to another,
the response time will be at most, 1 second. In order to
measure the response times reliably and accurately, we
will be using the django-debug-toolbar, a configurable
set of panels that display debug information and CPU
times about HTTP requests and responses. It allows us
to see what tasks the code is doing and the time is spent
for each of them. Based on the insights this toolbar
provides us, we can determine if we need to optimize
our code in the case of any long response times.

ARCHITECTURE AND/OR PRINCIPLE OF
OPERATION
A. WebApp Implementation Diagram

All users have to go through an authentication
process, as an existing user, a verification would be
required at the login. If not an existing user, they would
be navigated to a registration page where the user
would fill out the necessary personal information as
well as take a quiz on their vocal range. From this stage
as well as after verification of login, the user will be
redirected to the dashboard page where they have
access to all the lessons, their feedback as well as
external resources. The diagram below demonstrates
the flow of the web application.
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B. System Diagram

Figure 1: System Diagram below represents the
integration of the user inputs and outputs, our pitch and
clap detection algorithms, feedback generation, and
hardware.

C. Django Framework (models, views, forms,
templates)

The entire web application will run on the Django
Framework. We have decided to use Django as it is
based on Python, and already has MVC as its core
architecture. This framework allows us to have large
files, such as our audio files from the user as well as
their music theory lessons. In addition, the framework
is employed in several major projects, and is well
established with a vast community to guide us through
any errors we may run into. The Django Framework
will also allow us to hold many of the media files and
access them with low latency. All functionality of the
system will be handled in the views.

D. Mousic Theory

Our entire product is focused on music training.
For music theory, this aspect of the product is necessary
for the user to understand some of the more advanced
pitch and rhythm lessons. The music theory lessons are,
however, provided in parallel with these lessons and
can be run independently from the other lessons. We
have gathered lessons from websites such as
www.musictheory.net, as well as resources from classes
offered at CMU. These resources will guide the lessons
we provide to our users. Every lesson will have a
corresponding theory exercise that can test how well the
user understood the lessons. In addition there are also
lessons on note duration for the rhythm exercises and
listening to pitch to perfect their pitch detection for
pitch exercises. After taking the quiz the user will have
access to the correct answer, and all answers will be
stored in the database, allowing users the opportunity to
retake the lessons.

E. Pitch and Note Detection

The singing exercises will make use of this
module to extract pitch from raw audio recordings. This
extracted pitch will then be used in the note detector to
segment the recording into musical notes. The resulting
notes will then be compared against the expected notes
in cents.

F Clap Detection

Rhythm exercises consist of users clapping along
to a beat. This module will detect those claps and
annotate the original audio recording with their
locations. To determine whether a user is clapping on
beat, we will set a threshold on the allowed elapsed

time between expected and detected claps. This metric
will then be used to generate relevant feedback about
the users performance.

G. Note Strain Analysis

Upon registration, our application will identify
users’ vocal range. In doing so, we must quantify their
ability to sustain a note. We characterize the difficulty
of hitting a note as strain which is a function of change
in pitch over time. Throughout singing exercises we
will also collect data on note strain as a metric to gauge
user improvement. The output of this module will be
fed to the feedback generation module to provide the
user feedback on their performance.

H Feedback Generation

For the 2 main aspects of the system, pitch and
timing, we will be generating the feedback from the
detection algorithms. For pitch feedback, after the
user’s pitch has been recorded, several metrics will be
extracted from the user’s performance and it will be
evaluated relative to the exercise template. For timing
feedback, the clap detection algorithm will process the
user’s claps and return the timestamps at which the
claps are detected. Based on these timestamps, the
music notes representing the user’s rhythm will be
shown in the visual feedback. The timestamps of the
user’s claps will be compared against expected times of
the rendered rhythm that is in the exercise. The
expected times will be following a specific tempo of
120 beats per minute. Based on how the user’s
timestamps and expected timestamps align, we will be
showing the user if they clapped all the beats correctly,
if they missed clapping a beat, or if they clapped an
extra beat. For the visual feedback on timing, the user’s
claps will be rendered as music notes to represent their
rhythm. The expected rhythm will also be rendered this
way.

DESIGN TRADE STUDIES
A. Measure Intervals (Cents vs Hz)

One metric we will use to generate user feedback is
the difference between the exercise and detected tones.
To make this comparison, we will convert the measured
pitch values to cents. The distance between one tone to
the next is exponential in Hz. Converting to cents
allows us to linearize frequency measurements, which
is extremely useful when switching between octaves. In
cents, octaves are separated by a fixed 1200 cents,
whereas the difference in octaves in Hz differs by a
power of 2. A semitone is the smallest interval of
music within an octave and is equal to 100 cents. At
this point, the musical pitch is considered to be the most
dissonant when sounded harmonically. Although
converting to cents will add another step to the system,
its addition will greatly impact the ability of our system
to provide useful feedback.


http://www.musictheory.net
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B. Pitch Detection Algorithm Selection

Since we’re building a singing coach application,
pitch detection algorithm selection was a critical
decision in our design process. Pitch detection methods
leverage properties either in time, frequency, or both in
some cases, of periodic or quasi-periodic signals to
estimate the fundamental frequency, or pitch, of a
sound. The autocorrelation method is a common
time-based approach that correlates segments of a
signal in time with a shifted copy of itself over a small
range of values. It estimates the periodicity of a signal
by locating the shift that produces the largest peak.
Another approach analyzes a signal in the Cepstral
domain where periodicity is easier to analyze. Using a
method similar to the Short-Time Fourier Transform
(STFT), we can attain a time-cepstrum representation of
the original signal which can then be used to estimate
the pitch. While the cepstral method can reasonably
estimate the pitch, the autocorrelation method,
especially when augmented with post processing steps
like in the Yin fundamental frequency estimator [5],
outperforms in detecting monophonic pitch. In the end,
we chose the autocorrelation pitch detection algorithm
implemented by the linguistics tool Praat [11] because
of its superior performance over Yin as determined in
[12] and the ease of use of its python interface to
Parselmouth [13].

C. Visual Feedback

a. Pitch Exercise Feedback: Visual feedback will be
provided to users for each exercise to help them
understand their pitch accuracy and timing accuracy
from the scale and rhythm exercises. To represent their
pitch accuracy, we initially planned to use a pie-donut
chart from the Highcharts library to represent their
accuracy as a percentage. Since our target users are
beginners with little to no knowledge of the technical
details of pitch, such as cent margins, we thought
percentages would be the most intuitive way for them
to get a good understanding of how accurately they
sang a note. The alternative would be to show them the
exact frequency that they sang a note and show that
against the frequency of the note they were supposed to
imitate. However, due to varying acceptable and
unacceptable cent margins, this isn’t an accurate
representation of whether the user was singing the
correct pitch. Furthermore, we later discovered that no
user will have perfect pitch, so the cent margins are
very high, and many factors need to be taken into
account to represent a user’s pitch accuracy. Therefore,
a percentage representation based on the cent margin
isn't a very encouraging or comprehensive feedback
metric to show users, so this representation was ruled
out. We later discovered that the relative pitch of each

note in a scale, compared to the absolute pitch, was a
better representation of how flat (lower frequency than
expected) or sharp (higher frequency than expected)
each note the user sings is. The magnitude of how sharp
or flat each note that was sung is represented with bars
in a chart generated using Chart.js. Additionally, we
evaluated how well the user was able to hold each note
in the scale, which is represented by the height and
color of bars in a bar chart. These charts are better able
to provide comprehensive and intuitive feedback
representations that are encouraging for the user to
understand.

b. Rhythm Exercise Feedback: To represent a user’s
timing accuracy from the rhythm exercise, we chose to
represent the user’s rhythm with music notes, such as
whole notes, half notes, quarter notes, and eighth notes
in 4/4 time. This rendering of music notes will be done
through VexflowAPI [10]. We chose this form of visual
representation over representing their user’s rhythm
symbolically with durations indicated by bars instead of
notes because durations would be useful to represent
when providing real-time feedback to the user on their
claps. However, since we are representing their rhythm
post-processing, it will not be as intuitive to understand
how to clap for durations. Therefore, we will assume
the user understands the number of beats each music
note represents and render the rhythm for the timing
exercise and the user’s claps with music notes and
rather than durations for the feedback.

D. Django Framework vs Flask

Django Framework was compared to Flask, as
these are the two top web development frameworks in
the industry both boasting of having a vast community.
One of the first considerations was the database. As we
would be handling the storage of a lot of files, a
relational database is considered, and as Django has an
inbuilt ORM we can be able to manage testing on a
small scale before integrating our Amazon S3 database.
With Flask, although there is a flexibility to the
database, we considered issues of compatibility as well
as the possible learning curve in correlation with the
amount of time allotted to building the application.
There is an upside of Flask when it comes to routing
and views, as in this case unlike Django which requires
explicit statements of response handling it’s request
objects are always readily available. Finally, the big
decision for Django over Flask is the security. Django
comes with its in-built protection against common
attack vectors with injections like CSRF, however with
Flask so reliant on third party extensions, there is more
pressure to maintain security by monitoring these third
party extensions

E. Real-time vs. Post-processing
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Initially, we considered detecting and displaying
users’ pitch in real-time to gauge their performance at
any point in time. However, this task proved to be much
more difficult than we had expected. For our
application to truly be considered real-time, we would
need to display users’ pitch within no more than 100
ms, which severely constrains the amount of processing
we can perform. Under these constraints, pitch post
processing would have been minimal, thus increasing
the opportunity for pitch, and note detection error.
Furthermore, we reasoned that the inclusion of
real-time pitch feedback will distract the singer from
singing leading them to perform worse than usual.

F Singing Quality Feature Extraction

In our ideation process, we considered developing
a system that would extract rich features from a user's
performance based on objective metrics of good
singing. In our literature review, we found a paper [6],
that attempts to solve this problem. In their paper, they
identify 12 generally accepted criteria for good singing,
including appropriate vibrato, resonance/ring, intensity,
and dynamic range, some of which the authors tried to
quantify as features. In order to evaluate a user’s
performance, though, we would need to provide the
user with a song to perform and a reference by which to
compare it to. While we considered allowing users to
perform a song and compare it with a reference, like in
[6], we figured that the problem was too unconstrained
to solve over the course of a few weeks, so we
constrained the problem to one that was feasible to
solve within the allotted time. Instead of focusing on a
breadth of features, we decided to focus on two key
aspects of a singer’s performance: pitch and timing.
Instead of providing users feedback on their rendition
of a song, we will develop lessons and exercises aimed
to improve their pitch control and recall, rhythm, and
music theory foundation.

G. Hardware

To have users provide an audio input when
recording their voice and their claps, as well as allow
them to listen to their recordings, we will be utilizing a
noise isolating, wired headset, which includes
headphones and a microphone. More specifically, we
will be using the Shure BRH440M Broadcast Headset.
We chose to use an external microphone as opposed to
utilizing a standard laptop’s built-in microphone
because external microphones aid audio processing.
There are many factors of built-in microphones that can
obscure the audio input. Laptop fans can add noise to
your audio recordings, built-in microphones can pick up
background noise since it picks up noises as far as three
feet away and the microphone is more omni-directional.
Overall laptop built-in microphones are ideal for
facetime or virtual meetings rather than vocal

recording. Furthermore, a user’s mouth needs to be very
close to the microphone when recording their audio so
as to ensure that the audio quality of the recording is
optimized. The microphone in the SHURE headset is a
dynamic cardioid microphone with a boom microphone
mounting type, which is ideal for clear vocal
reproduction. We also chose to use external headphones
as opposed to a standard laptop’s built-in speakers
because a user will still be able to hear external noises
from whatever environment they are in. However, the
SHURE headphones, which are noise-isolating, block
out any surrounding and background noise.
Additionally, since it can be inconvenient to purchase
and use headphones and a microphone separately, we
thought it would be ideal to use a headset so as to
combine the two. Lastly, we chose the SHURE headset
over other headsets because this headset is ideal for
media production applications and is compatible with
many audio processing softwares.

H APIs

a. AudioSynth.js vs WebAudioAPI: In order to generate
sounds of notes for users to listen to in order to identify
and imitate pitches, we originally planned on using
WebAudioAPI, but ultimately ended up using a
JavaScript library called AudioSynth.js [8], developed
by Keith Whor. More specifically, we planned to use
WebAudioAPI to generate piano notes to represent
pitches and scales. WebAudioAPI is a very commonly
used API for any developers looking to record, add

effects to, or generate audio in different forms.
Furthermore,  many  examples of  different
implementations of the API exist online. However,

after trying to implement the piano note generation
using Web Audio API, we realized that it would take a
lot of code and time to figure out how to get the audio
output from the API to sound less robotic and more like
a realistic piano. That’s when we discovered the
AudioSynth.js library, which had already done all the
work to filter the audio to make notes sound like
real-life piano notes and required us to write only two
lines of code to generate a piano note. This library’s
main purpose was to generate realistic sounding piano
and guitar notes, and that’s the only scope we needed
for our project, whereas the Web Audio API had a
wider scope of applications which we did not need to
implement. Overall, AudioSynth.js was easier to use
and produced better sounds than Web Audio API.
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b. MediaStream Recording API: For the recording and
playback feature of our pitch and rhythm exercises, we
chose to use MediaStream Recording API. This API
makes it possible to capture audio data for analysis,
processing, and saving to disk. Its major interface is
MediaRecorder. Mediastream represents audio tracks,
and the MediaRecorder object takes the data from
MediaStream and delivers it to us. We could’ve used
WebAudioAPI to record the user’s audio as well,
however, there are more recording functions that
MediaStream Recording provides compared to
WebAudioAPI, such as pause() or resume() to pause
recording your audio and resume whenever in addition
to start and stop. Furthermore, it’s easier and more
straightforward to work with as the whole API’s focus
is on recording and playing back audio.

c. Charts: To provide visual feedback to the user on
their exercises, we plan on using pie-donut charts with
percentages representing the user’s pitch accuracy and
voice strain amount. Many APIs for rendering visual
charts from data exist, however we chose to use
Chart.js [9]. Chart.js has a wide variety of data
representation tools that we could use, and was very
simple and easy to incorporate into our code. It works
very well and is compatible with most web browsers, as
well as compatible with other services that we would be
incorporating into our project, such as Web services and
our MySQL database..

d. VexFlow API: To provide visual feedback on a user’s
rhythm exercise, we will be rendering the rhythm of the
user’s claps with music notes. We will match up the
music note duration with their clap duration. VexFlow
API is an open source online music rendering APIL
Since this is the only API we could find that has a
library to assist in rendering music notes based on input
data, there wasn’t much deliberation on choosing this
API amongst other libraries.

SYSTEM DESCRIPTION

Pitch - Scale Exercise

PITCH PERFECT

¢ major scale up

A. User Interface

The UI can be divided into four main categories. Each
of these categories will have main features that
distinguish them.

1. Pitch and Rhythm Exercises: Each exercise will have
a rendering of the exercise, a pop-up instructions panel,
a listen button, a record button, playback widget, and a
submit button. The instructions panel will pop up when
the user first enters the exercise, and the user can close
it and open it whenever they need to by clicking the
“Help” button until they’re done with the exercise. The
listen button, when clicked, allows the user to listen to
either the note, scale, or rhythm they are supposed to
imitate, as many times as they need to. When the user is
ready, they can click the record button to record their
audio input. The record button will be shaded red while
the user is recording and the label will change to stop,
so that the user can click it when they are done
recording. The playback widget allows the user to listen
to their recording. Clicking the submit button submits
the audio recording for processing and analysis.

2. Feedback: The feedback page will be provided to the
user after they submit their recording for each exercise.
The feedback can also be accessed at any time after the
exercises from the feedback dashboard in the main
dashboard drop down. The feedback dashboard will be
divided into the categories, pitch feedback, rhythm
feedback, and music theory feedback. For the pitch
feedback, the feedback is organized by exercise and
date. Opening the feedback for a specific exercise and
date will navigate to a separate page with the pitch
feedback charts and recording. For the rhythm and
music theory feedback, the feedback is organized in the
same way, however, opening the feedback will show a
dropdown with the feedback instead of navigating to a
separate page.
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3. Voice Range Evaluation: When a user is registering
for an account with Pitch Perfect, they will be required
to complete a voice range evaluation test. This voice
range evaluation will consist of an instructions panel,
and a record button. The user will record and submit the
highest note and lowest note they can sing. The Range
Detection algorithm will detect these notes and return
their range. This range will be used to categorize the
user as either Soprano, Mezzo-Soprano, Alto, Tenor,
Baritone, or Bass. Furthermore, the vocal range they’re
categorized into will be used to customize the pitch
exercises to play notes in that range, and the pitch
exercise feedback to evaluate users based on their
range. The vocal range test will be available for the user
to take whenever they want to be evaluated again in the
dashboard dropdown. The exercises and feedback will
be updated every time the voice range evaluation is
re-done. This vocal range evaluation feedback will be
available for the user to access at any time in their
dashboard dropdown as well.

4. Dashboards: Each exercise will be listed in the user
dashboard with its description and purpose. They will
be categorized and put into tabbed lists based on if it’s a
pitch, rhythm, or music theory exercise. The user can
access their feedback by clicking on their profile icon
which would take them to a page that allows them to
specify which feedback (pitch, theory or rhythm) they
would like to get more information on.

B. APIs

a. AudioSynth.js: The AudioSynth.js library will be
used for piano note generation. For the piano note
generation, we will create an instance of the Synth class
provided in the library, passing in the “piano”
parameter to specify that we need to generate piano
notes. With this instance, we can use its “play” method
to play a note, by passing in which note, which octave,
and the duration of the note we want to play.

b.  MediaStream  Recording API: MediaStream
Recording API will provide the widgets for a user to
record and playback their audio inputs. To record an
audio input, MediaStream and MediaRecorder objects
need to be initialized. The MediaStream will capture
the user’s microphone stream and the MediaRecorder
object will emit the recorded data as events while
recording. We can use start(), pause(), and stop()
commands on the MediaRecorder object. We
accumulate the events into an array until a stop
command is detected, and gather it all into a Blob form
of data. In order to display the playback widget, we will
render the Blob into an <audio> element.

c. Charts: Charts will allow us to display a user’s
theory feedback in the form of percentages doughnut
charts, as well as the pitch feedback as bar charts to
represent the users' strain analysis and horizontal bar
charts to depict the users’ pitch accuracy, indicating
whether they were sharp, flat or on pitch.. This code
would be attached to a <div> element in the HTML.
The calculated percentage would be provided to the
data field of the Javascript object. Other visual
customizations can be made to the object such as size,
color, and labels.

d. Vexflow API: VexFlow API, which is written entirely
in Javascript, will be used to render the music notes
representing a user’s rhythm. Each note is represented
as a VF.StaveNote object, for which we can specify the
clef, exact note, and duration. Since the clef will always
be Treble Clef and we aren’t concerned about the pitch
for all the rhythm exercises, we mostly care about
setting the duration for each instance of the object. For
a whole note, the duration will be set as “w”, for a half
note, as “h”, for a quarter note, as “q”, and for an
eighth note, as “8”. To render more notes, more
instances of VF.StaveNote can be added to a notes array
so that they can all be rendered at once.

C. Note Detection Algorithms

As aforementioned, we will be using the Praat
fundamental frequency estimator as our pitch detection
algorithm. This algorithm will be used to extract pitch
from a recording of a sung performance. To extract
notes from pitch, we will first convert the detected
frequency to cents, take the average cent difference
over an interval, and map the interval to the nearest
semitone. To convert pitch measurements from hertz to
cents, we use the following equation:

Cents = 1200 logg(fi)
ref

where f desired = 440Hz.

D. Clap Detection Algorithm

For the rhythm exercises of our application, we
must reliably detect claps to determine whether the user
is keeping the rhythm specified by the program. Claps
have a distinct envelope, resembling decaying
exponentials. The figures below serve examples of the
shape of a clap in time and in frequency as detected by
a 44.1 kHz microphone.
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Clap Detection Algorithm
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To detect the location of the claps, we take the
root-mean-square (RMS) of the original waveform in
125 ms frames, and calculate the ratio between adjacent
frames. For recordings with little added noise, quiet
sections are expected to have little change in RMS over
adjacent frames until there is a clap, which we exploit
to detect the presence of claps. We experimentally
determined that RMS ratios greater than 20 will be
classified as claps given a spacing of more than 125 ms,
and that our algorithm is robust for SNRs greater than
14 dB. This algorithm is susceptible to false positives as
a result of speech onsets, though so the only acceptable
background noise is that which can be approximated as
additive white gaussian noise.

E. Note Strain Detection Algorithm

To detect the difficulty users have maintaining a
note, we will analyze the statistics of their pitch over a
specified range. Vibrato, which is a slight regular
variation in tone, is to be expected, but large and
irregular tone variations indicate poor pitch control. To
capture this variability, we will compute the
interquartile range per note that a user sings. An
interquartile range less than or equal to 30 cents or less
per note is classified as professional-like, and the
greater this value, the worse the singer is able to hold
the note.

FE Feedback Generation

Feedback would be provided on four main metrics.
Namely, relative pitch accuracy, timing accuracy,
intonation and transition strain and the results of the
music theory quizzes. When representing the pitch
feedback, the relative error is calculated which is
dependent on the users’ relative pitch accuracy. As
most users’ especially beginners do not have perfect
pitch, their relative pitch is calculated and the deviation
from that relative scale is calculated with respect to the
number of half steps off they are from the desired note.
This is then represented in a bar chart that shows if they
are too sharp or too flat. Then we have the strain in
terms of intonation.The note strain detection is going to

be a function of the frequency and their ability to not
deviate from the desired pitch over a certain period of
time. Taking into consideration the user’s natural
vibrato, the cent deviation would be calculated over a
period of time, and then the user’s ability to stay within
a certain range without too much deviation would then
be collated and compared to our metric of strong, good
or weak strain. When generating the visual feedback to
represent this strain, the deviation would be divided by
2 and subtracted from 100. This calculated value will be
represented in a bar chart for each note. The value will
fall into either a “Good”, “Okay”, or “Need More
Practice” category to show the user how well they can
hold a note. Then, the timing accuracy. The claps of the
users are sent through our clap detector algorithm
which would return back the time stamps of all claps
produced by the user. The timing of these claps as well
as the number of claps would be compared with the
expected timing and frequency of the claps and these
comparisons would be reproduced as feedback for the
user in a form of notes (i.e quarter note, half note, etc).
These notes will be rendered on a staff for the user to
see. The expected rhythm will also be rendered with
music notes on the staff.

Finally, we have feedback on music theory. After the
user goes through the lessons on music theory they
would be provided quizzes which would test their
understanding of these lessons. Once completed the
user would then be provided a percentage based on how
well they could answer the questions, as well as the
solution, for some exercises, represented by VexFlow,
to what they had gotten wrong.

G. Visual Feedback

Pitch Feedback:

PITCH PERFECT

le_up Feedback
rling:

Your Relative Pitch Feedback

Do Re Mi Fa So La Ti Do2

Ability to Hold Note

Do Re Mi Fa So La Ti Do2

Timing Feedback:
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PITCH PERFECT

Welcome

PAST BASIC-RHYTHM EXERCISE: MAY 14, 2021, 5:28 PM.

YOUR ANSWER:

|§gJJJ J]

‘CORRECT ANSWER:

|<§gi JJ e

TEST AND VALIDATION

A. Results for Clap Detection Algorithm

In order to make sure that our test algorithm meets the
expectations of getting 95% of the claps produced by
the user, we tested our algorithm on a series of claps,
and the times that the algorithm detected the claps were
then compared to the times the claps actually occurred,
The occurrence of the claps were observed manually
using Audacity to document the exact time of the claps.
The table below shows the time of the claps observed
by the user and that obtained from the clap algorithm.

Clap # Expected Actual

1 1.01 1.00

2 1.87 1.86

3 2.73 2.72

4 3.57 3.56

5 4.37 4.36

6 5.19 518

7 6.01 6.00

8 6.43 6.42

9 6.85 6.84

10 9.07 9.06

" 9.51 9.50

12 9.94 9.92

13 10.39 10.38

14 10.82 10.80

15 11.26 11.24

16 11.69 11.68

17 12.12 12.10

18 12.57 12.56

Total 18 18

From the table you can deduce that the algorithm is
very close to accurate with a margin of error of about
0.01, which in turn does not affect the feedback
representation as we allow a slack of about 0.2s for the
user’s reaction time. In addition, the algorithm detects

the total number of claps produced by the user and as
such meets the design requirement we had set for the
algorithm at the start of the application creation.

B. Results for User Interface Interaction Survey
To test the usability and desirability of our web
application, we conducted user experience surveys with
5 people. Four of these surveys were conducted in
person while one of them was conducted remotely. We
originally planned on conducting these surveys after
our web application had been deployed and fully
integrated with the feedback detection, however, due to
time constraints, we had to conduct the survey with
only the exercises and quizzes and with the application
being run locally. So, we were only able to use tasks
from the first two categories we originally planned on
using:

1. Navigation to an exercise

2. Performing an exercise
Furthermore, since we didn’t get to deploy the
application before the surveys, we also couldn’t
measure the latency for these tasks either, since we
planned on using the EC2 instance monitoring logs to
track the response times. The user experience survey
results showed that the web application had the
desirability quality, but was lacking in usability. Many
of the users struggled to understand how to do all of the
exercises, and quizzes and wanted more navigation
features. Since the test users were able to provide very
specific and helpful suggestions on what we could
improve, we were able to easily improve the
experience, such as adding more instructions for the
exercises, adding “exit” and “back” buttons, and
creating a main home page that provides more guidance
on using the website. For quantitative feedback, we had
users rate navigating to different pages, the exercises,
and their overall experience with the application on a
scale from 1 to 5, with 1 being impossible and
confusing to use, and 5 being very easy and intuitive to
use. The table below summarizes the survey responses
with the percentage of users who gave each number
rating in the columns for the tasks and features shown.

Feature 1 2 3 4 5

Registration | 0% | 0% | 0% 0% 100%

Voice Range | 0% | 0% [ 0% [40% | 60%
Evaluation

Dashboard 0% 0% | 40% | 20% | 40%

Pitch 0% | 0% | 40% | 20% |20%
Exercise
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Navigation

Pitch 0% | 0% [20% |20% | 60%

Exercise
Experience

Music 0% 0% [ 0% |60% |40%
Theory Quiz

Navigation

Music 20% | 0% [ 0% |20% | 60%

Theory Quiz
Experience

Overall 0% |[0% [0% |100% [ 0%

Experience

If we had more time, we would also focus on
evaluating the user's experience with understanding and
interpreting the visual feedback from their exercises.

C. Latency Results

Action Latency (in seconds)

Navigating between dashboard
tabs(pitch, rhythm, theory) <1

Load Dashboard 3
Pitch: Load Exercise 9
Pitch: Feedback Generation 12
Rhythm: Load Exercise 10

Rhythm: Feedback Generation
Theory: Load Quiz
Theory: Feedback Generation

Calculating latency, we calculated the time it took for
our application to load the pages and display the pages
to the user, as well as process the feedback and return
the visual feedback to the user. Most of the time delays
were due to the time it takes to process the HTTP
requests in addition to loading the APIs used in the
static files. Based on the results we can say that our
page is relatively close to our ideal expectation of 1
second for navigation to 10s for processing data with 7
out of our 8 tests meeting the requirements we had set
for the application.
D. Note Segmentation Evaluation

Pitch Perfect’s pitch exercises depend critically on
our system’s ability to accurately detect pitch and map
segments to their corresponding musical tones. Note
segmentation proved to be more difficult than we had
initially imagined because of the non-trivialities of real
speech like pitch drifting, intonation, and non-syllabic
sounds. The first set of tests that we ran on the note
segmentation algorithm were on randomly generated
pure tones with added modulation and noise. The pitch
detection algorithm was able to accurately classify
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100% of the pure tones that we tested it on for SNRs
greater than or equal to 14 dB and for modulation
frequencies less than 25 Hz. For users using the app in a
quiet place, we expect SNRs much greater than 14 dB,
and modulation frequencies from the singer much less
than 25 Hz, so the pitch detector is robust enough.

Next, we tested our algorithm on [3], a labeled
dataset of tones sung by a professional singer in
different phonation modes. Below is a confusion matrix
of the classification of notes of the dataset, which
ranges from A3 to GS5.

Labeled Note
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]
8

D4 D4# E4
Calculated Note

Note Segmentation Confusion Matrix

Our note segmenter achieved note segmentation and
classification results of 95+% for all notes in the set
except B3, which resulted in an accuracy of 0% for the
46 B3 occurrences in the dataset, all of which were
classified as A3#. Since there is no functional
difference in how B3 was calculated with respect to the
other notes, we figured that there may have been a
labelling error in the dataset.
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B3/43# Tone Example

The pitch contour of one of the B3 samples which is
displayed above indicates that the singer is singing
approximately -1100 cents with respect to A4. This
implies that the singer is singing about 11 semitones
below A4, which is in fact A3#. Therefore, our
algorithm was able to classify 443 out of 444 singing
samples, resulting in a classification accuracy of 99.8%.
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E. Singer Quality Metric Evaluation

To provide feedback to users about their
performance, we calculated several metrics that were
indicative of good singing. In particular, we calculated
scale transposition, per note time difference, and per
note interquartile range (IQR) in cents. We chose Per
note IQR as a measure of how well singers can control
their pitch about the median pitch value. We
hypothesized that the better a singer is, the lower their
IQR generally is. To test this hypothesis, we calculated
this metric for the singing samples in [3] and for a
compilation of samples provided by novice and amateur
singers. As can be seen in the histograms below,
novice/amateur singers tended to have higher IQRs than
professional singers.

mmm Novice/Amateur Singers
Professional Singers
0.0304

0.025

0.020 1

Density

0.015

0.010

0.005 -

0 25 50 75 100 125 150 175
Interquartile Range Per Note in Cents

0.000 -

IQR Histograms (Professional vs. Amateur)

Thus, we decided a note with an IQR of 30 cents or less
was professional like, and the higher IQR the less
professional. It must be noted that there were many
more professional singing samples than amateur singing
samples, and the professional singing was produced by
one singer whereas the amateur singing was produced
by three different singers. Ideally, we would have tested
this hypothesis on a much larger dataset of several
professional and amateur singers, but given the
resources, the evidence seems to support our claim.

PROJECT MANAGEMENT

A. Phase System

Our schedule has been broken down into 3 phases:
Alpha Phase, where we would be handling most of the
functionality of our product. Then we have the Beta
Phase, the expectation is that this phase coincides with
our interim demo, so we hope to have a semi-working
application with a few bugs and some functionality that
may need to be improved on, and then finally our
deployment phase, our product would be deployed on
the cloud, free of bugs and ready for the final
presentation.
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B. Team Member s Responsibilities

We have divided our project work such that
Funmbi and Sai are developing the website’s many
pages and functions, as well as creating the thythm and
scales exercises, respectively. Carlos will be primarily
responsible for the processing of users’ clapping and
singing, analyzing these detected actions, and
interfacing with the website’s frontend.

C. Risk Management

There are three main risk factors that we’ve
considered in the design of our product. One of the
risks is the possibility of external noise affecting the
audio input recorded from the user. In order to mitigate
this risk, we have decided to use an external
noise-cancelling microphone instead of a built-in
microphone in a laptop. Another risk is using a
third-party implementation of the Yin Pitch Detection
Algorithm might be an unreliable detection algorithm
that might produce inaccurate results. Therefore, we
will be thoroughly testing this module with the pitch
accuracy tests aforementioned in the Design
Requirements and tune the parameters of the algorithm
accordingly. The last risk is variation in compatibility
of our web application with different browsers and
devices as our web application utilizes many different
APIs. Some of these APIs might have poor
compatibility with a few select browsers or devices.
Therefore, to mitigate this risk, we will be building a
user interface and Django code that is scalable to suit
any browser or device.

D. Bill of Materials
Item Cost
Shure BRH440M Broadcast Headset $229.00
AWS Credits ~$10.00
Total: $239.00
AWS CREDITS

For the AWS credits used for the project, we used a
total of $3.25, most of the the tools we ended up using
for this project were through the free tier (e.g our EC2
instance was the Free tier Ubuntu x86). The $3.25
spans across Data Transfer and Elastic Cloud
Computing. We had hoped to move our database
storage to AWS S3 to allow for a larger storage space
for all our media files. However due to time constraints
we were only able to have our database on MYSQL
instead. We are incredibly grateful to Amazon for
providing us with these credits.

ETHICAL ISSUES



18-500 Final Report: 5/14/2021

Thinking about our application, the efficiency
of the algorithms that we use can play a huge role in
affecting the morale of our users, especially younger
kids. If our product cannot accurately differentiate
between good and bad signers, and wrongly tells a user
that they are a bad singer than a good one, younger kids
may stop singing entirely and be left really depressed
and sad, especially if they had a strong passion for
singing. It is for this reason that we ran our algorithms
through robust checks with a small acceptable margin
of error, so as to prevent such cases, or the possibility of
users discontinuing the use of our application.

Additionally, our application must ensure that
it is secure and can prevent the possibilities of hacking.
Users’ audio recordings are saved on our application
and as such we need to ensure that our application is
not susceptible to hackers who could modify their data
and leave behind derogatory remarks, or links that
could leave our users’ susceptible to malware and other
viruses.

RELATED WORK

Below, we listed several products that capture some
of the

A. Live Singing Coach

First we have the live singing coach, an in person
tutor which according to lessons.com has a cost ranging
from $50 — $100 and in current pandemic situations
most of these classes have gone virtual, diminishing the
training quality. However, it does have the upside of
being trained by a professional, as well as getting better
personalized feedback and covering more singing
paradigms.

B. Yousician

Another related work is Yousician, costing $9.99
monthly or $119.99 yearly, which, while not as pricey
as an in-person vocal coach, is still relatively costly in
comparison to our free app. Also, according to some
vocal instructors on this site:
https://singwell.eu/singing-apps/ the scoring system
seems arbitrary and some of the lessons are a bit too
complicated for a novice singer. although it does
provide video feedback from vocal instructors to help
guide the user.

C. Voco Vocal Coach

Another application that can be found in the
AppStore is Voco Vocal Coach which provides the
users with lessons as well as feedback on their musical
performance, this app is rated a 4.1, however in the
reviews it is stated to have poor instructions that makes
it difficult for the user to easily navigate the app. In
addition, the app is known to be constantly crashing for
some of it’s users rendering it ineffective for its users.

D. Pitchy Ninja
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Pitchy Ninja is an application which allows the
users to perfect their pitch accuracy, grading users on
their ability to accurately reproduce a specific pitch as
well as their ability to hold this note over a duration of
time. However, pitchy ninja does not take into
consideration the user’s vocal range, producing lessons
that are well out of their vocal range. It also does not
produce useful and understandable feedback that can
help the user improve their pitch.

E. Singing Carrots

The singing carrots application allows users to train
their pitch accuracy as well as be made aware of their
vocal ranges so as to practice with songs within their
vocal range. However, this application also comes at a
cost, rangine from $1 a month to $24 a month to get the
full training experience. In addition, it doesn’t provide
great feedback on which pitch you couldn’t accurately
represent or the deviation of the user’s pitch from the
desired pitch.

SUMMARY
Overall, we were able to meet a majority of the
requirements that we had set out to accomplish in order
to create the application, Along the way, we changed a
few of the software packages that we had initially set
out to use, some of these changes were due to the
inability to properly process the data or visualize the
data to what we had hoped. Other reasons, like the
change from S3 to MySQL were due to time constraints
and hopes of deploying a working application. We had
to make changes to these tools and given more time
may still be able to revert some of the changes and
further increase the functionality of the project.

A. Lessons Learned

The journey in the development of this project has
taught us a lot about technical aspects of the application
as well as the theory behind how music and singing can
be evaluated and quantized.

a. API Compatibility: We used many different APIs
and javascript libraries in building the frontend of Pitch
Perfect. Different APIs and libraries have many
different versions as well as varying compatibility with
different browsers. We focused too much on finding an
API that will most easily fulfill the features we need,
but we should’ve been more attentive to whether they
were compatible with most browsers.

b. Functionality vs Aesthetics: To ensure the desirability
requirement for the web application, a lot of time did go
into thinking about the look of the web application.

However, too much time went into this planning as well


https://singwell.eu/singing-apps/
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as fixating on small visual details on the frontend at the
very beginning of the building process that we lost
some valuable time in ensuring that the functionality of
the web application was completely error-free. This
delayed the integration, since we discovered that the
audio file recording format had some issues very late.

¢. Pure Tones: While to some degree, pure tones can be
used to approximate human singing, they cannot
capture the nuances of a real speech or singing signal.

d. Singing Datasets: There is an abundance of singing
data readily available online, but it can be difficult to
find a dataset that is usable for our specific application.

e. Characteristization of Singing Quality:
Characterizing the quality of “good” singing is still an
open research question. Judging how well someone can
sing still remains a very subjective method. Therefore
quantifying the quality of singing and providing
actionable feedback on advanced singing features is
still a very difficult task.

f- Cloud Deployment: To avoid the integration issues we
ran into at the end of the project during deployment, we
should have started deploying parts of the code at a
time. This would have avoided the integration errors we
ran into with scipy and apache integration, as well as
provided enough time to have S3 as our main database
instead of MySQL.
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Figure 1: System Diagram
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Figure 2: Project Sched

A. Phase Alpha

ule

Tasks

Phase 1

3/8 - 3/14 3/15 - 3/21

Pitch Detection and Testing
Pitch to tone detection
Clap Detection

Strain Detection

Feedback Generation

Pitch Matching (single notes)

Scale lesson (includes flexibility) piano
Login and registration

Home page (user account)

Lessons Page - Category 1

Feedback Page - Ul

Recording Functionality

Piano Note Generation

Voice Range Evaluation

Clap Detection Exercise Record
User Interface Refinement

Database relationship

Music theory lesson

Interval Lesson

Metronome clap along rhythm generation
Resources Page (Information)
Resources Page (Ul)

Lessons Page - Theory & part of clap
Feedback Page - Information

Cloud Deployment

Design Report
Final System Integration(Feedback & survey)
Testing

'

B. Phase Beta

Phase 2

Tasks

3/29 - 413 4/4 -4/10 411 -4117

Pitch Detection and Testing
Pitch to tone detection
Clap Detection

Strain Detection

Feedback Generation

Pitch Matching (single notes)

Scale lesson (includes flexibility) piano
Login and registration

Home page (user account)

Lessons Page - Category 1

Feedback Page - Ul

Recording Functionality

Piano Note Generation

Voice Range Evaluation

Clap Detection Exercise Record
User Interface Refinement

Database relationship

Music theory lesson

Interval Lesson

Metronome clap along rhythm generation
Resources Page (Information)
Resources Page (Ul)

Lessons Page - Theory & part of clap
Feedback Page - Information

Cloud Deployment

Design Report
Final System Integration(Feedback & survey)
Testing

Funmbi

General
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C. Final Phase

Phase 3

Tasks 4/18 - 4/24 4125 - 5/1 5/2 - 5/8

Pitch Detection and Testing
Pitch to tone detection
Clap Detection

Strain Detection

Feedback Generation

Pitch Matching (single notes)

Scale lesson (includes flexibility) piano
Login and registration

Home page (user account)

Lessons Page - Category 1

Feedback Page - Ul

Recording Functionality

Piano Note Generation

Voice Range Evaluation

Clap Detection Exercise Record
User Interface Refinement

Database relationship

Music theory lesson

Interval Lesson

Metronome clap along rhythm generation
Resources Page (Information)
Resources Page (Ul)

Lessons Page - Theory & part of clap
Feedback Page - Information

Cloud Deployment

Design Report
Final System Integration(Feedback & survey)
Testing




