
18-500 Design Report: 3/17/2021 1

Pitch Perfect

Authors: Oluwafunmbi Jaiyeola, Sai Chandana Korivi, Carlos Taveras
Carnegie Mellon University Department of Electrical and Computer Engineering

Abstract—A web based application that provides novice

singers with intuitive lessons and actionable feedback to
improve their pitch, timing, and foundation in music theory.
Feedback is generated by features derived from pitch
detection and clap detection algorithms. Additionally, Pitch
Perfect will provide ample resources and exercises needed to
improve users’ musical theory expertise, as well as access to
resources on more advanced topics in vocal performance.

Index Terms — Yin Fundamental Frequency

Estimation, Clap Detection, Note Strain Analysis, Vocal
Coach, Rhythm, Note Detection, Cents

INTRODUCTION

Music is ubiquitous and has been a central part of
what it means to be human for several millennia. In
fact, the Smithsonian [1] claims that making music is a
universal human trait that goes back at least 35,000
years. Since then, music has evolved and manifested
itself in many shapes and forms, but, despite this, the
most prevalent instrument continues to be the human
voice.

When learning how to perform a task, it is common
to seek instructors who can use their expertise to guide
your development. This is no different in learning how
to sing. However, as a novice singer, it can be
discouraging and difficult to seek the help of a
professional to develop your singing ability, especially
considering the steep cost of personal singing lessons
which tend to range between $50-$100 per hour [2],
and the dependency of available instructors nearby.
These concerns are now exacerbated by the COVID-19
pandemic, which has almost certainly increased the
prices and decreased the availability of in-person vocal
instruction. In response, many instructors have started
hosting their lessons online, but it can be difficult to
justify paying full price for a singing lesson whose
effectiveness is affected by the degradation of voice
quality on platforms like Zoom.

To address this issue, our group, The Ensemble
Methods, is creating Pitch Perfect: a web application
that helps users perfect aspects of their singing from the
comfort of their own home. Pitch Perfect is not an
automatic voice quality assessment tool, which is still
an open research problem, but instead a platform to
help novice singers perfect their pitch control and
identification, understand and develop rhythm, and
polish their music theory knowledge through tailored
lessons and exercises with feedback on how to improve.
To accomplish this, we will employ the use of pitch and

clap detection algorithms to measure pitch and rhythm,
respectively, as well as, a note strain detector based on
pitch contour statistics over a note.

DESIGN REQUIREMENTS
Our requirements are broken up into several parts,

highlighting the main areas of user interaction with our
product, namely: pitch to note accuracy, clap detection
accuracy, note strain analysis, user interface interaction,
feedback, and latency. Since much of our application’s
functionality depends on the effectiveness of our note
and clap detection algorithms, we must ensure they are
robust and accurate. The user interaction focuses
primarily on making our application intuitive and
enjoyable for the user. Finally the feedback is the
means by which our application will communicate to
the user how well they are performing, as a function of
note accuracy, timing, and intonation.

A. Pitch To Note Accuracy

Note detection is a critical component in Pitch
Perfect’s functionality, therefore our system must be
able to reliably detect notes. Notes are extracted from
the pitch detection algorithm, so our pitch detection
algorithm must accurately estimate pitch. We require
our note detection algorithm to achieve a test accuracy
of no less than 95%. We will thoroughly test the note
detection accuracy against pure tones with added white
Gaussian noise. After achieving this baseline accuracy,
we will test our algorithm against a labeled dataset of
sung tones [3].

B. Clap Detection Accuracy

Clap detection is an integral part of our rhythm
exercises, thus we require no less than 95% clap
detection accuracy on a preliminary collection of
self-annotated claps that simulate the behavior we
expect from our users. Ideally, we will like to test this
against an existing annotated clapping dataset to test the
generalizability of our algorithm.

C. Note Strain Analysis

Note or intonation strain will provide us with a
metric to potentially discriminate between good and
bad singing. We extract this feature by taking statistics
of pitch data over a note, particularly the pitch variance.
We will collect samples of good and bad singing
intonation and determine how well this parameter
correlates with the classification. We expect low pitch

18-500 Design Report: 3/17/2021 2

variance to be highly correlated with good singing
quality, and vice versa.

D. User Interface Interaction

The main requirements for the web application’s
user interface are usability, and desirability. We want
the users to be able to easily and intuitively navigate to
different pages and singing exercises. Furthermore, it is
important that users clearly and easily understand how
the exercises will be performed and the purpose of each
of them. Ease of use is essential in users wanting to
come back and use the exercises we provide to keep on
learning and improving their singing and music theory
understanding. Since this web application will be used
for learning purposes, with the majority of our target
users most likely being children, we want our web
application to be engaging with appealing visuals to
grab their attention as well. In order to test the usability
and desirability of our web application, we will be
conducting focus group studies. We will begin
conducting these studies remotely through zoom once
our minimum viable product is ready to be used. Before
these sessions, we will prepare a list of tasks that
involve using the web application. These tasks will fall
into 4 main categories:

1. Navigation to an exercise
2. Performing an exercise
3. Interpretation of feedback
4. Navigation to past feedback
During our user study session, we will provide all

the participants with the same list of tasks. While they
perform each task, they will be sharing their screen so
that we can monitor their performance on the tasks.
While we monitor their interaction and completion of
tasks, we will measure how long it takes them to
complete each task. After they complete all the tasks,
we will provide them with a survey to rate their
experience with the interface of the web application
with a scale ranging from 1 to 5. These survey question
responses will provide us with qualitative feedback.
Overall, these focus group studies will provide us with
quantitative and qualitative metrics to measure the
usability and desirability of the web application, which
we will utilize to improve the user interface.

E. Feedback

We require that we provide our users with useful
and concise feedback. As we provide our users with
both visual and textual feedback, we expect the visual
feedback to be comprehendible. In order to meet this
requirement, we will send in audio recordings to be
analyzed by our feedback algorithms. Ensuring that all
visual feedback is readable and the textual feedback is
not too verbose. Based on this, we will be able to
modify our feedback algorithms and representation.

F. Latency

Long response times and high latency can
adversely affect a user’s experience with a web
application, which can lead to low product use and a
poor perception of the product itself. Thus, we want to
provide the ideal response times for different types of
user inputs. According to an article, “Response Times -
The 3 Important Limits” written by Jakob Nielsen, a
web usability expert and human computer interaction
researcher, there are three main response time limits for
a web application [4] . First, for user inputs that don’t
require special feedback from the application and just a
display of results, 0.1 seconds is the response time limit
for the user to feel that the web application is reacting
instantaneously. Second, for user inputs that do require
special feedback, 1.0 seconds is the response time limit
for the user’s flow of thought to remain uninterrupted.
Third, to keep the user’s attention without then wanting
to perform other tasks outside of the application, the
response time limit for the special feedback is 10
seconds. In the case that the special feedback does take
longer than 10 seconds, some form of time indication of
when the feedback will be displayed should be provided
to the user. Therefore, following the response time
limits of this article, we will be limiting response times
in a similar fashion based on the types of user inputs
and form of feedback. For feedback on users’ pitch and
rhythm exercises we expect the response time of the
feedback to be at most, 10 seconds. Since audio
processing and analysis times can be variable due to
many factors, in the case that the pitch or rhythm
response time is over 10 seconds, we will be providing
the user with a graphic percent done progress indicator
that represents the progress of the audio processing and
analysis as Nielsen recommends so that the user is
assured of how long they need to wait. For feedback
that doesn’t require special processing such as
navigation from one page to another, scrolling through
a page, and filling in text inputs, the response time will
be at most, 0.1 seconds. In order to measure the
response times reliably and accurately, we will be using
the django-debug-toolbar, a configurable set of panels
that display debug information and CPU times about
HTTP requests and responses. It allows us to see what
tasks the code is doing to handle a request and give
back a response as well as the time is spent for each of
those tasks. Based on the insights and times this toolbar
provides us, we can determine if we need to optimize
our code in the case of any long response times.

18-500 Design Report: 3/17/2021 3

ARCHITECTURE AND/OR PRINCIPLE OF
OPERATION

A. WebApp Implementation Diagram

All users have to go through an authentication
process, as an existing user, a verification would be
required at the login. If not an existing user, they would
be navigated to a registration page where the user
would fill out the necessary personal information as
well as take a quiz on their vocal range. From this stage
as well as after verification of login, the user will be
redirected to the dashboard page where they have
access to all the lessons, their feedback as well as
external resources. Appendix-Diagram1 below
demonstrates the flow of the web application.

B. System Diagram
Appendix-Diagram 2 below represents the integration
of the user inputs and outputs, our pitch and clap
detection algorithms, feedback generation, and
hardware.

C. Django Framework (models, views, forms,
templates)

The entire web application will run on the Django
Framework. We have decided to use Django as it is
based on Python, and already has MVC as its core
architecture. This framework allows us to have large
files, such as our audio files from the user as well as
their music theory lessons. In addition, the framework
is employed in several major projects, and is well
established with a vast community to guide us through
any errors we may run into. The Django Framework
will also allow us to hold many of the media files and
access them with low latency. All functionality of the
system will be handled in the views.

D. Music Theory

Our entire product is focused on music training.
For music theory, this aspect of the product is necessary
for the user to understand some of the more advanced
pitch and rhythm lessons. The music theory lessons are,
however, provided in parallel with these lessons and
can be run independently from the other lessons. We
have gathered lessons from websites such as
www.musictheory.net, as well as resources from classes
offered at CMU. These resources will guide the lessons
we provide to our users. Every lesson will be followed
by a quiz to reinforce the relevant concepts. After
taking the quiz the user will have access to the correct
answer, and all answers will be stored in the database,
allowing users the opportunity to retake the lessons.

E. Pitch and Note Detection
The singing exercises will make use of this

module to extract pitch from raw audio recordings. This
extracted pitch will then be used in the note detector to
segment the recording into musical notes. The resulting
notes will then be compared against the expected notes
in cents.

F. Clap Detection

Rhythm exercises consist of users clapping along
to a beat. This module will detect those claps and
annotate the original audio recording with their
locations. To determine whether a user is clapping on
beat, we will set a threshold on the allowed elapsed
time between expected and detected claps. This metric
will then be used to generate relevant feedback about
the users performance.

G. Note Strain Analysis

Upon registration, our application will identify
users’ vocal range. In doing so, we must quantify their
ability to sustain a note. We characterize the difficulty
of hitting a note as strain which is a function of change
in pitch over time. Throughout singing exercises we
will also collect data on note strain as a metric to gauge
user improvement. The output of this module will be
fed to the feedback generation module to provide the
user feedback on their performance.

H. Feedback Generation

For the 2 main aspects of the system, pitch and
timing, we will be generating the feedback from the
detection algorithms. For pitch feedback, after the
user’s pitch has been recorded and converted to notes,
the desired note and the user’s note are passed through
the feedback algorithm, created to return the level of
accuracy the user was able to achieve to reproduce the
desired pitch, taking into consideration a margin of
error of 50 cents. For timing feedback, the clap
detection algorithm will process the user’s claps and
return the timestamps at which the claps are detected.
Based on these timestamps, the music notes
representing the user’s rhythm will be shown in the
visual feedback. The timestamps of the user’s claps will
be compared against expected times of the rendered
rhythm that is in the exercise. The expected times will
be following a set specific tempo or speed such as
moderato or andante, which are moderate or walking
pace speeds. Based on how the user’s timestamps and
expected timestamps align, we will be showing the user
if they clapped all the beats correctly, if they missed
clapping a beat, or if they clapped an extra beat. For the
visual feedback on timing, the user’s claps will be
rendered as music notes to represent their rhythm. The
expected rhythm will also be rendered with music
music notes and be annotated with colors based on

http://www.musictheory.net/

18-500 Design Report: 3/17/2021 4

which beats were missed, hit, or added. This rendering
of music notes will be done through VexflowAPI.

DESIGN TRADE STUDIES

A. Measure Intervals (Cents vs Hz)
One metric we will use to generate user feedback is

the difference between expected and detected tone. To
make this comparison will convert the measured pitch
values to cents. The distance between one tone to the
next (i.e from one note to another, e.g C - D) is
exponential in Hz. Converting to cents allows us to
linearize frequency measurements, which is extremely
useful when switching between octaves. In cents,
octaves are separated by a fixed 1200 cents, whereas
the difference in octaves in Hz differs by a power of 2.
A semitone is the smallest interval of music within an
octave and is equal to 100 cents. At this point, the
musical pitch is considered to be the most dissonant
when sounded harmonically. Although converting to
cents will add another step to the system, its addition
will greatly impact the ability of our system to provide
useful feedback.

B. Pitch Detection Algorithm Selection

Since we’re building a singing coach application,
pitch detection algorithm selection was a critical
decision in our design process. Pitch detection methods
leverage properties either in time, frequency, or both in
some cases, of periodic or quasi-periodic signals to
estimate the fundamental frequency, or pitch, of a
sound. The autocorrelation method is a common
time-based approach that correlates segments of a
signal in time with a shifted copy of itself over a small
range of values. It estimates the periodicity of a signal
by locating the shift that produces the largest peak.
Another approach analyzes a signal in the Cepstral
domain where periodicity is easier to analyze. Using a
method similar to the Short-Time Fourier Transform
(STFT), we can attain a time-cepstrum representation of
the original signal which can then be used to estimate
the pitch. While the cepstral method can reasonably
estimate the pitch, the autocorrelation method,
especially when augmented with post processing steps
like in the Yin fundamental frequency estimator [5],
outperforms in detecting monophonic pitch. Of all
autocorrelation based pitch detection algorithms, we
chose the Yin estimator because of the impact of the
post processing steps on detection accuracy. In the
paper, the Yin algorithm was compared to several other
leading pitch detection methods on 5 databases of
speech and achieved the lowest gross error percentage
of all the algorithms on each database. These results
encouraged us to go with the tried and tested Yin
algorithm.

C. Visual Feedback
Visual feedback will be provided to users for

each exercise to help them understand their pitch
frequency accuracy and timing accuracy from the note,
scale, and rhythm exercises. To represent their pitch
frequency accuracy, we chose to use a pie-donut chart
from the Highcharts library to represent their accuracy
as a percentage. Since our target users are beginners
with little to no knowledge of the technical details of
pitch, such as cent margins, we thought percentages
would be the most intuitive way for them to get a good
understanding of how accurately they sang a note. The
alternative would be to show them the exact frequency
that they sang a note in and show that against the
frequency of the note they were supposed to imitate.
However, due to varying acceptable and unacceptable
cent margins, this isn’t an accurate representation of
whether the user was singing the correct pitch. A
percentage is also more encouraging of their progress
and motivation to keep continuing the exercises since
the pie-donut charts represent a relative accuracy
percentage based on many other contributing factors
other than the user’s frequency. A pie-donut is also a
very simple and compact representation of summary of
large data. To represent a user’s timing accuracy from
the rhythm exercise, we chose to represent the user’s
rhythm with music notes, such as whole notes, half
notes, quarter notes, and eighth notes in 4/4 time. We
also color code notes in the expected rhythm’s music
notes based on which beats were missed, hit, or added.
This rendering of music notes will be done through
VexflowAPI. We chose this form of visual
representation over representing their user’s rhythm
symbolically with durations indicated by bars instead of
notes because durations would be useful to represent
when providing real-time feedback to the user on their
claps. However, since we are representing their rhythm
post-processing, it will be not as intuitive to understand
how to clap for durations. Therefore, we will assume
the user understands the number of beats each music
note represents and render the rhythm for the timing
exercise and the user’s claps with music notes and
rather than durations for the feedback.

D. Django Framework vs Flask

Django Framework was compared to Flask, as
these are the two top web development frameworks in
the industry both boasting of having a vast community.
One of the first considerations was the database. As we
would be handling the storage of a lot of files, a
relational database is considered, and as Django has an
inbuilt ORM we can be able to manage testing on a
small scale before integrating our Amazon S3 database.
With Flask, although there is a flexibility to the
database, we considered issues of compatibility as well
as the possible learning curve in correlation with the

18-500 Design Report: 3/17/2021 5

amount of time allotted to building the application.
There is an upside of Flask when it comes to routing
and views, as in this case unlike Django which requires
explicit statements of response handling it’s request
objects are always readily available. Finally, the big
decision for Django over Flask is the security. Django
comes with its in-built protection against common
attack vectors with injections like CSRF, however with
Flask so reliant on third party extensions, there is more
pressure to maintain security by monitoring these third
party extensions

E. Real-time vs. Post-processing

Initially, we considered detecting and displaying
users’ pitch in real-time to gauge their performance at
any point in time. However, this task proved to be much
more difficult than we had expected. For our
application to truly be considered real-time, we would
need to display users’ pitch within no more than 100
ms, which severely constrains the amount of processing
we can perform. Under these constraints, pitch post
processing would have been minimal, thus increasing
the opportunity for pitch, and note detection error.
Furthermore, we reasoned that the inclusion of
real-time pitch feedback will distract the singer from
singing leading them to perform worse than usual.

F. Singing Quality Feature Extraction

In our ideation process, we considered developing
a system that would extract rich features from a user's
performance based on objective metrics of good
singing. In our literature review, we found a paper [6],
that attempts to solve this problem. In their paper, they
identify 12 generally accepted criteria for good singing,
including appropriate vibrato, resonance/ring, intensity,
and dynamic range, some of which the authors tried to
quantify as features. In order to evaluate a user’s
performance, though, we would need to provide the
user with a song to perform and a reference by which to
compare it to. While we considered allowing users to
perform a song and compare it with a reference, much
like this paper does, we figured that the problem was
too unconstrained to solve over the course of a few
weeks, so we constrained the problem to one that was
feasible to solve within the allotted time. Instead of
focusing on a breadth of features, we decided to focus
on two key aspects of a singer’s performance: pitch and
timing. Instead of providing users feedback on their
rendition of a song, we will develop lessons and
exercises aimed to improve their pitch control and
recall, rhythm, and music theory foundation.

G. Posture Detection

In the initial design there was the introduction of a
posture detection component, that would allow users
the opportunity to be corrected about their singing

posture, using the OpenPose library. However, due to a
few considerations this was left out of the final design.
Firstly, there would need to be an existing sample pose
library that would allow for us to correlate the user’s
posture to the sample posture. There currently doesn’t
exist a sample pose library of singing poses and
building a sample library for a subsystem would be too
time consuming. For this reason and additionally the
expected time to complete a subsystem of our project
which based on research could be classified as the
entirety of a system, we have decided to leave this
feature out of our application,

H. Hardware

To have users provide an audio input when
recording their voice and their claps, as well as allow
them to listen to their recordings, we will be utilizing a
noise isolating, wired headset, which includes
headphones and a microphone. More specifically, we
will be using the Shure BRH440M Broadcast Headset.
We chose to use an external microphone as opposed to
utilizing a standard laptop’s built-in microphone
because external microphones aid audio processing.
There are many factors of built-in microphones that can
obscure the audio input. Laptop fans can add noise to
your audio recordings, built-in microphones can pick up
background noise since it picks up noises as far as three
feet away and the microphone is more omni-directional.
Overall laptop built-in microphones are ideal for
facetime or virtual meetings rather than vocal
recording. Furthermore, a user’s mouth needs to be very
close to the microphone when recording their audio so
as to ensure that the audio quality of the recording is
optimized. The microphone in the SHURE headset is a
dynamic cardioid microphone with a boom microphone
mounting type, which is ideal for clear vocal
reproduction. We also chose to use external headphones
as opposed to a standard laptop’s built-in speakers
because a user will still be able to hear external noises
from whatever environment they are in. However, the
SHURE headphones, which are noise-isolating, block
out any surrounding and background noise.
Additionally, since it can be inconvenient to purchase
and use headphones and a microphone separately, we
thought it would be ideal to use a headset so as to
combine the two. Lastly, we chose the SHURE headset
over other headsets because this headset is ideal for
media production applications and is compatible with
many audio processing softwares.

I. APIs
WebAudioAPI: In order to generate sounds of notes for
users to listen to in order to identify and imitate pitches,
we chose to use WebAudioAPI. More specifically,
WebAudioAPI will generate piano notes to represent

18-500 Design Report: 3/17/2021 6

pitches and scales. WebAudioAPI is a very commonly
used API for any developers looking to record, add
effects to, or generate audio in different forms.
Furthermore, many examples of different
implementations of the API exist online. WebAudioAPI
also allows us to create visualizations to represent our
audio input. More specifically, it allows us to easily
generate a piano visualization, which we plan on
implementing to display to users when they’re being
evaluated for their voice range. This voice range can be
represented on the piano visualization on which they
are able to listen to the range of notes as well.

b. MediaStream Recording API: For the recording and
playback feature of our pitch and rhythm exercises, we
chose to use MediaStream Recording API. This API
makes it possible to capture audio data for analysis,
processing, and saving to disk. Its major interface is
MediaRecorder. Mediastream represents audio tracks,
and the MediaRecorder object takes the data from
MediaStream and delivers it to us. We could’ve used
WebAudioAPI to record the user’s audio as well,
however, there are more recording functions that
MediaStream Recording provides compared to
WebAudioAPI, such as pause() or resume() to pause
recording your audio and resume whenever in addition
to start and stop. Furthermore, it’s easier and more
straightforward to work with as the whole API’s focus
is on recording and playing back audio.

c. Highcharts: To provide visual feedback to the user
on their exercises, we plan on using pie-donut charts
with percentages representing the user’s pitch accuracy
and voice strain amount. Many APIs for rendering
visual charts from data exist, however we chose to use
Highcharts.js. Highcharts.js has an unlimited number of
different chart representations compared to other APIs.
Furthermore, the Highcharts.js charting library works
with any back-end database or server-stack, therefore, it
will work with the Django framework, Amazon Web
Services, and the Amazon S3 database. We have the
freedom to provide data in any form to Highcharts.js for
it to render it in a visual chart. Data could be in CSV,
JSON, Python, or R forms. More importantly, it
mitigates one of our risks, compatibility of our web
application with certain browsers or devices. The
Highcharts library is compatible with any browser and
device.

d. Vexflow API: To provide visual feedback on a user’s
rhythm exercise, we will be rendering the rhythm of the
user’s claps with music notes. We will match up the
music note duration with their clap duration. Vexflow
API is an open source online music rendering API.
Since this is the only API we could find that has a
library to assist in rendering music notes based on input
data, there wasn’t much deliberation on choosing this
API amongst other libraries.

SYSTEM DESCRIPTION

Mockup Wireframe: Pitch - Scale Exercise

A. User Interface
The UI can be divided into four main categories. Each
of these categories will have main features that
distinguish them.

1. Pitch and Rhythm Exercises: Each exercise will have
a rendering of the exercise, an instructions panel, a
listen button, a record button, playback widget, and a
submit button. The instructions panel will always be
visible on the left side of each exercise until the user
submits their recording. The listen button, when
clicked, allows the user to listen to either the note,
scale, or rhythm they are supposed to imitate, as many
times as they need to. When the user is ready, they can
click the record button to record their audio input. The
record button will be shaded red while the user is
recording and the label will change to stop, so that the
user can click it when they are done recording. The
playback widget allows the user to listen to their
recording. Clicking the submit button submits the audio
recording for processing and analysis.

2. Feedback: The feedback page will be provided to the
user after they submit their recording for each exercise.
This feedback page will either show their pitch

18-500 Design Report: 3/17/2021 7

frequency accuracy percentage or their rhythm
representation and accuracy.

3. Voice Range Evaluation: When the user is
registering for an account with Pitch Perfect, they will
be required to complete a voice range evaluation test.
This voice range evaluation will consist of an
instructions panel, a note scroller, a listen button, and a
record button. The note scroller will allow the user to
pick the note to imitate and record their vocal imitation
of that note with the record button. Until the user has
recorded every note in the note scroller, they will not be
able to submit their test, with an “End Test” button. The
vocal range test will be available for the user to take
whenever they want to be evaluated again in their
profile dashboard. When the user is finished taking this
test, their vocal range will be displayed on a piano
widget with a verbal description. This vocal range
evaluation feedback will be available for the user to
access at any time in their profile dashboard as well.

4. Dashboards: Each exercise will be listed in the user
dashboard with its description and purpose. They will
be categorized and put into tabbed lists based on if it’s a
pitch, rhythm, or music theory exercise. The is will be
the same layout for accessing past feedback.

B. APIs

a. WebAudio API: WebAudioAPI will be used for
piano note generation and piano visualization. For the
piano note generation, we will create an AudioNode
and AudioContext interface. AudioNode will allow us
to perform audio operations, and we will run them
within the AudioContext. Inside the AudioContext, we
can assign an OscillatorNode as the audio source. The
OscillatorNode is a periodic waveform that acts as an
audio source for which we can select the frequency,
type of waveform, time, and length of tone. We can
generate notes and scales by using these interfaces. For
the piano visualization, we would have to make use of
the AudioContext and OscillatorNode interfaces, as
well as PeriodicWave and integrate these with HTML
elements.

b. MediaStream Recording API: MediaStream
Recording API will provide the widgets for a user to
record and playback their audio inputs. To record an
audio input, MediaStream and MediaRecorder objects
need to be initialized. The MediaStream will capture
the user’s microphone stream and the MediaRecorder
object will emit the recorded data as events while
recording. We can use start(), pause(), and stop()
commands on the MediaRecorder object. We
accumulate the events into an array until a stop
command is detected, and gather it all into a Blob form

of data. In order to display the playback widget, we will
render the Blob into an <audio> element.

c. Highcharts: Highcharts will allow us to display a
user’s pitch frequency accuracy percentage with a
pie-donut chart. To display our calculated percentage
on this chart, we would need to initialize the
pie-doughnut chart by adding the library code for it in
the Javascript file of our web application. This code
would be attached to a <div> element in the HTML.
The calculated percentage would be provided to the
data field of the Javascript object. Other visual
customizations can be made to the object such as size,
color, and labels.

d. Vexflow API: Vexflow API, which is written entirely
in Javascript, will be used to render the music notes
representing a user’s rhythm and color code the
expected rhythm music notes for the rhythm exercise.
Each note is represented as a VF.StaveNote object, for
which we can specify the clef, exact note, and duration.
Since the clef will always be Treble Clef and we aren’t
concerned about the pitch for all the rhythm exercises,
we mostly care about setting the duration for each
instance of the object. For a whole note, the duration
will be set as “w”, for a half note, as “h”, for a quarter
note, as “q”, and for an eighth note, as “8”.

For example: Rendering of a quarter note

var note = new VF.StaveNote({duration: “q”})

To render more notes, more instances of VF.StaveNote
can be added to a notes array so that they can all be
rendered at once. To color code our music notes based
on the comparison of the user’s rhythm to the expected
rhythm, we will utilize the .setStyle method that’s
available for a StaveNote object.

For example: Coloring the notehead red
note.setStyle({fillSyle : “red”})

Overall, our visual feedback on rhythm is utilizing the
StaveNote object’s duration property and setStyle
method in order to render the user’s rhythm and
represent how it compares to the expected rhythm.

C. Pitch and Note Detection Algorithms

As aforementioned, we will be using the Yin
fundamental frequency estimator as our pitch detection
algorithm. We found a publicly available third-party
implementation [7] of the Yin algorithm that uses
modern scientific computing libraries in Python to
decrease processing latency. This algorithm will be
used to extract pitch from a recording of a sung
performance. To extract notes from pitch, we will first

18-500 Design Report: 3/17/2021 8

convert the detected frequency to cents, take the
average cent difference over an interval, and map the
interval to the nearest tone within a 50 cent margin. To
convert pitch measurements in hertz into cents, for a
given desired frequency, we use the following equation:

.

D. Clap Detection Algorithm
For the rhythm exercises of our application, we

must reliably detect claps to determine whether the user
is keeping the rhythm specified by the program. Claps
have a distinct envelope, resembling decaying
exponentials. The figures below serve examples of the
shape of a clap in time and in frequency as detected by
a 44.1 kHz microphone.

Plot of Two Claps

Spectrogram of Two Claps

We can exploit these structures in various ways to

extract timestamps of claps using a few different
approaches. Some approaches to consider are
convolving the claps with a matched filter, computing
the root mean square and sorting on frames with the

largest energy, or simply cleverly picking peaks. We
will test each of these approaches, but are currently
leaning towards the peak picking algorithm because of
ease of implementation and testing.

E. Note Strain Detection Algorithm

To detect the difficulty users have maintaining a
note, we will analyze the statistics of their pitch over a
specified range. Vibrato which is a slight regular
variation in tone, is to be expected, but large and
irregular tone variations indicate poor pitch control. To
capture this variability, we will collect the histogram of
pitch values around a certain note and allow for a
threshold in variability, which is captured in the
variance of the distribution of pitch. With this metric
we will be able to characterize good and poor pitch
control and intonation.

F. Feedback Generation

Feedback would be provided on four main metrics.
The Pitch Accuracy, Timing Accuracy, Strain (both
intonation and flexibility of transition) and the Music
Theory Quizzes. Firstly, the pitch accuracy is measured
by taking the cent difference between the user’s pitch
and the desired pitch. The cent difference is then used
to calculate the expected percentage of pitch accuracy
with a margin of 50 cents difference to be allowed.
Secondly the timing accuracy. The claps of the users
are sent through our clap detector algorithm which
would return back the time stamps of all claps produced
by the user. The timing of these claps as well as the
number of claps would be compared with the expected
timing and frequency of the claps and these
comparisons would be reproduced as feedback for the
user in a form of notes (i.e quarter note, half note, etc).
The clap times would be translated to notes with the
following high-level algorithm assuming that the clap
times are accumulated into an array called clapTimes:

These notes will be rendered on a staff for the user to
see. The expected rhythm will also be rendered with
music notes on the staff. Additionally, based on the
comparison of the expected timestamps of the claps

18-500 Design Report: 3/17/2021 9

from the rhythm exercise to the timestamps of the
user’s claps, we will color the notes in the rendering of
the expected rhythm. For example, if there is a note in
the expected rhythm that the user claps at the correct
time, it will be colored green. If the user doesn’t clap at
that time for that note, the note will not be colored.
Furthermore, if the user claps at a time which isn’t
expected, that time will be marked as a red note on the
expected rhythm music note rendering. Here is a high
level algorithm that represents this generation,
assuming that expectedTimes is an array that contains
the timestamps at which a clap should be detected, and
clapTimes is an array that contains the timestamps at
which claps were detected from the user:

Then we have the strain both in terms of intonation
and flexibility of transition.The note strain detection is
going to be a function of the frequency and their ability
to not deviate from the desired pitch over a certain
period of time. Taking into consideration the user’s
natural vibrato, the cent deviation would be calculated
over a period of time, and then the user’s ability to stay
within a certain range without too much deviation
would then be collated and compared to our metric of
strong, good or weak strain. For their flexibility to
transition, the user is provided feedback on their ability
to move from one note to the next, studying the cent
difference of the user’s pitch to the desired pitch as they
move up the scale, and in similar fashion to the pitch
accuracy they are given a percentage value on their
ability to transition. Finally we have feedback on the
music theory. After the user goes through the lessons on
music theory they would be provided quizzes which
would test their understanding of these lessons. Once
completed the user would then be provided a grade
based on how well they could answer the questions, as
well as the solution to what they had gotten wrong.

G. Visual Feedback

Pitch Feedback:

Timing Feedback:

PROJECT MANAGEMENT

A. Phase System

Our schedule has been broken down into 3 phases:
Alpha Phase, where we would be handling most of the
functionality of our product. Then we have the Beta
Phase, the expectation is that this phase coincides with
our interim demo, so we hope to have a semi-working
application with a few bugs and some functionality that
may need to be improved on, and then finally our
deployment phase, our product would be deployed on
the cloud, free of bugs and ready for the final
presentation.

B. Team Member’s Responsibilities

We have divided our project work such that
Funmbi and Sai are developing the website’s many
pages and functions, as well as creating the rhythm and
scales exercises, respectively. Carlos will be primarily
responsible for the processing of users’ clapping and
singing, analyzing these detected actions, and
interfacing with the website’s frontend.

C. Risk Management

There are three main risk factors that we’ve
considered in the design of our product. One of the
risks is the possibility of external noise affecting the
audio input recorded from the user. In order to mitigate
this risk, we have decided to use an external
noise-cancelling microphone instead of a built-in

18-500 Design Report: 3/17/2021 10

microphone in a laptop. Another risk is using a
third-party implementation of the Yin Pitch Detection
Algorithm might be an unreliable detection algorithm
that might produce inaccurate results. Therefore, we
will be thoroughly testing this module with the pitch
accuracy tests aforementioned in the Design
Requirements and tune the parameters of the algorithm
accordingly. The last risk is variation in compatibility
of our web application with different browsers and
devices as our web application utilizes many different
APIs. Some of these APIs might have poor
compatibility with a few select browsers or devices.
Therefore, to mitigate this risk, we will be building user
interface and Django code that is scalable to suit any
browser or device.

D. Bill of Materials

RELATED WORK
Based on our research, there exists some products

with some existing drawbacks which are of similar
functionality to our application.

A. Live Singing Coach
First we have the live singing coach, an in person

tutor which according to lessons.com has a cost ranging
from $50- $100 and in current pandemic situations most
of these classes have gone virtual, diminishing the
training quality. However, it does have the upside of
being trained by a professional, as well as getting better
personalized feedback and covering more singing
paradigms.

B. Yousician
Another related work is Yousician, which costs

$9.99 monthly and $119.99, which although is not as
pricey as an in-person vocal coach, is still relatively
costly in comparison to our free app. Also, according to
some vocal instructors on this site:
https://singwell.eu/singing-apps/ the scoring system
seems arbitrary and some of the lessons are a bit too
complicated for a novice singer. although it does
provide video feedback from vocal instructors to help
guide the user.
 C. Voco Vocal Coach

Another application that can be found in the
AppStore is Voco Vocal Coach which provides the
users with lessons as well as feedback on their musical
performance, this app is rated a 4.1, however in the
reviews it is stated to have poor instructions that makes
it difficult for the user to easily navigate the app. In

addition, the app is known to be constantly crashing for
some of it’s users rendering it ineffective for its users.
 D. Pitchy Ninja

Pitchy Ninja is an application which allows the
users to perfect their pitch accuracy, grading users on
their ability to accurately reproduce a specific pitch as
well as their ability to hold this note over a duration of
time. However, pitchy ninja does not take into
consideration the user’s vocal range, producing lessons
that are well out of their vocal range. It also does not
produce useful and understandable feedback that can
help the user improve their pitch.

E. Singing Carrots

The singing carrots application allows users to train
their pitch accuracy as well as be made aware of their
vocal ranges so as to practice with songs within their
vocal range. However, this application also comes at a
cost, rangine from $1 a month to $24 a month to get the
full training experience. In addition, it doesn’t provide
great feedback on which pitch you couldn’t accurately
represent or the deviation of the user’s pitch from the
desired pitch.

REFERENCES

[1] “What does it mean to be human?” 2020.
Smithsonian National Museum of Natural History.
https://humanorigins.si.edu/evidence/behavior/art-musi
c/musical-instruments.
[2] “2021 Singing Lesson Cost.” 2021. Lessons.com.
https://lessons.com/costs/singing-lessons-cost#:~:text=
The%20average%20cost%20for%20singing,and%20ev
en%20by%20zip%20code.
[3] Proutskova, Polina. 2017. “Phonation Modes
Dataset.” OSF. https://osf.io/pa3ha/wiki/home/.
[4] World Leaders in Research-Based User Experience.
(n.d.). Response time Limits: Article by Jakob Nielsen.
https://www.nngroup.com/articles/response-times-3-im
portant-limits/
[5] Cheveigne, Alain d. 2002. “YIN, a fundamental
frequency estimator for speech and music.” The Journal
of the Acoustical Society of America 111 (4).
[6] Gupta, Chitralekha & Li, Haizhou & Wang, Ye.
(2017). Perceptual Evaluation of Singing Quality.
10.1109/APSIPA.2017.8282110.
[7] Guyot, Patrice. 2018. “Yin.” GitHub.
https://github.com/patriceguyot/Yin.

https://singwell.eu/singing-apps/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/

18-500 Design Report: 3/17/2021 11

APPENDIX - Diagram1

18-500 Design Report: 3/17/2021 12

APPENDIX - Diagram2

18-500 Design Report: 3/17/2021 13

