
WebAudio API:
● Application in Web App:
● Basic audio operations performed with audio nodes (interface)
● Audio operations run within audio contexts (interface)
● First we need to create an audio context
● Inside the audio context, we can create audio sources
● Then we choose the final destination of the audio - system speakers
● OscillatorNode

○ A periodic waveform acts as audio source based on the frequency we set for it (a
constant tone)

○ Has one output - no input
○ Can de-tune (in cents units)
○ Can specify type of waveform to play (sine, square, sawtooth, triangle, custom,

etc)
○ Can specify the time and length of how long to play tone

● Can easily create piano visualization: https://codepen.io/kbrammer/pen/Wdjday
● Source:

○ https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API

MediaStream Recording API:
● Application in Web App:
● Makes it possible to capture data for analysis, processing, or saving to disk
● Very easy to work with
● Major interface: MediaRecorder
● MediaStream represents stream of media content - audio tracks
● MediaRecorder object takes data from MediaStream and delivers to us
● MediaRecorder has start()/stop()/pause()/resume() methods for recording of audio
● When media is done being recorded, delivered in readable blob format
● The recorder gives events, which contain chunks of the recording - we need to push

these chunks into an array
● Gather all chunks when recording stops to Blob to play with <audio> element
● Sources:

○ https://developer.mozilla.org/en-US/docs/Web/API/MediaStream_Recording_API

https://codepen.io/kbrammer/pen/Wdjday
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://developer.mozilla.org/en-US/docs/Web/API/MediaStream_Recording_API

Django Highcharts:
● Charting Library (Javascript)
● Charting library works with any back-end database or server-stack
● Data can be provided to it to chart in any form (CSV, JSON, Python, R)
● Compatible with any browser + device
● Similar to the kind of charts we want to display:

○ https://www.highcharts.com/demo/pie-donut

Vexflow API:
● Music note rendering API written in Javascript
● Sample Code I’ve tested out:

const VF = Vex.Flow;

// Create an SVG renderer and attach it to the DIV element named "boo".
var vf = new VF.Factory({renderer: {elementId: 'boo', height: 400}});
var score = vf.EasyScore();
var system = vf.System();

system.addStave({
 voices: [
 score.voice(
 score.notes('D4/q, D4')
 .concat(score.beam(score.notes('D4/8, D4, D4, D4')))
)
]
}).addClef('treble').addTimeSignature('4/4');

vf.draw();

● Generates:

https://www.highcharts.com/demo/pie-donut

