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Abstract—A system capable real-time generation of
meeting transcripts and transmission of audio between
conference rooms. The current systems that are in place
best support communication between individuals, but not
clusters of people. During a meeting, microphone arrays
interfaced to Raspberry Pis communicate with a
centralized server to generate people identified transcripts
and relay the audio to the other rooms.
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I. INTRODUCTION

IN recent years, technology has facilitated a rise in the
prevalence of geographically distributed workplaces. Even
within a single team, one portion of the members may work in
one city, a second portion in a second city, and so on.
Responding to this phenomenon, the corporate world has
adopted web conferencing tools such as Zoom, Microsoft
Teams, and Google Meet. However, these solutions are
optimized for the experience of individuals calling other
individuals. With StenoPhone, we present a solution for
audio-based web conferencing that’s tailored towards the
record-keeping and communication needs of
semi-decentralized teams. Consisting of a wireless
microphone and an associated web application, the product
provides audio transmission and automatic transcription that
includes the identification of speakers. StenoPhone supports
multiple users per microphone and multiple microphones per
meeting.

The goal of this project is to provide intelligible and
low-latency audio transmission, as well as fast and accurate
transcription, to the end users. The system must provide
end-to-end audio latency of less than 150ms while maintaining
a dropped audio packet rate of less than 5%. The system must
also provide transcription of audio in less than three seconds,
and the transcript’s error must not exceed 25%.

II. DESIGN REQUIREMENTS

StenoPhone is intended for use in a conference room
setting. Based on measurements we have taken during a
survey of conference rooms, we define a conference room as a
room with maximum dimensions of thirty-five square meters
and featuring a large table. With the microphone placed in the
middle of the table, the system will be tested with participants

sitting or standing no more than two meters away, in any
direction around the table. We will test with a maximum of
three users per single microphone and a maximum of two
microphones per meeting.

As described in the Introduction, the latency of audio across
the system, also known as mouth-to-ear (M2E) latency, must
be less than 150ms. This is a standard commonly accepted as
maximum M2E latency in IP telephony; a round-trip delay
greater than 250ms is noticeable to the users [1]. This latency
may be tested by directing a captured audio packet from one
microphone to the web server and back to the same
microphone, capturing self-consistent timestamps at the
beginning and end of this process. The second requirement
related to the user’s audio experience is that limiting the
percentage of dropped packets to below 5%. IP telephony
theory again advises this rate to avoid audio distortion
experienced by end users [2]. The dropped packet rate may be
estimated using a long audio transmission of a known number
of packets to the webserver and then to an end
microphone-speaker, which can count the number of packets
received.

Requirements pertaining to the speed and quality of
transcription are also essential to meeting the goals of our
project. The 3s transcript latency, also known as average word
delay, that we require is a measure that comes from FCC
guidelines pertaining to live closed-captioning [3]. This
latency may be tested by comparing the time at which a
spoken phrase was captured by the microphone to the time at
which a packet containing the transcript arrived at the browser
of the end user.

The accuracy of the transcript can be measured with several
different error rates. The first, word error rate (WER),
measures the accuracy of the speech to text element itself.

where S is the number of𝑊𝐸𝑅 =  (𝑆 +  𝐼 +  𝐷) / 𝑁
erroneous substitutions, I is the number of word insertions, D
is the number of deleted words, and N is the total number of
words in the original text. The accuracy of the speaker
identification system is measured by speaker identification
error; because the participants in our system are known, this
metric is simply computed as the number of misattributions
divided by the total number of speaker changes. We require
that neither WER nor speaker identification error rate (SIER)
exceed 25%; research has shown that users find transcripts
with error up to and including this rate to be useful [4]. We’ve
also identified formatting errors that can arise from the
combination of transcripts from multiple microphone streams
— the chronology of the combined sections may be incorrect,
or attribution may be missing or incorrect upon a switch
between streams. A rate of these formatting errors greater than
5% will not be acceptable.

Similar tests may be used to measure the three aspects of
transcript accuracy; all three tests require a ‘known text.’ A
text may be considered ‘known’ either if it’s predetermined
before it’s read aloud or if it’s recorded as it is spoken. These
texts will remain constant over multiple tests; they will consist
of common English words formed into sentences, and they
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should be at least 100 words long. To test WER, a known text
is spoken into the microphone; the transcript and the correct
text are compared, and WER is calculated. To test SIER, a
known text that features speaker changes and speaker
movement is spoken into the microphone; the transcript and
the correct text are compared, and SIR is calculated. To test
formatting error rate (FER), a known text, one that features
speaker changes where the speakers use microphones in
different rooms, is spoken into the microphone; the transcript
and the correct text are compared, and FER is calculated.

Additional tests will be conducted regarding the transcript
error rates. We will need to test the three error rates in the
situation of one group of at least two speakers using one
microphone and another speaker using a second microphone.
We’ll also test our beamforming capabilities in the following
way: two speakers will be positioned on opposite sides of the
microphone. One will loudly read the test text; the other will
quietly read a text containing different words from the test. If
the beamforming works correctly and the transcript shows the
test text within the given error rates, then we will have passed
the test.

Finally, the website will be required to provide certain
functionality to the user: creating meetings, joining meetings,
adding microphones, and viewing transcripts of current or past
meetings.

Fig. 1. System Data Flow Diagram

TABLE I. SUMMARY OF REQUIREMENTS

Requirement Metric
Audio Transmission Latency Mouth-to-Ear Latency (ms) <

150 ms
Audio Quality Dropped packets (%) < 5%
Transcript Latency Average Word Delay (s) < 3s
Transcript Accuracy Word Error Rate (%) < 25%

Speaker Identification
Accuracy

Speaker Identification Error
(%) < 25%

Formatting Accuracy Formatting Error Rate (%) <
5%

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Fig. 1 below shows the flow of information through our
comprehensive system, including hardware and software
modules as indicated. The system consists of a single web
server, to which are connected an arbitrary number of audio
devices and web browsers.

Audio data originates at a microphone array, which
performs some processing in hardware before passing the
audio to a small WiFi-capable computer device. There, further
processing is performed to improve and compress the audio,
detect voice content in the audio, and configure the
microphone. A networking module then sends the audio
information to the web server. Additionally, the web server
sends audio from other microphones to each individual audio
device, allowing the audio to be played on an attached
speaker.

The networking component of the web server receives audio
packets from the connected microphone devices. This audio is
both sent out to other microphones and sent to the transcript
generator module, where speech to text and speaker

identification processing are performed with the assistance of
machine learning solutions. Speakers are identified from a
pool of users who vocally identify themselves to the
microphone during the process of adding a microphone to a
meeting.

Transcripts are compiled from multiple microphone streams
by the meeting manager, and adding transcripts to the database
allows them to be viewed by users in the web application. Web
application users can also create meetings, join existing
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meetings, and connect a microphone to a meeting on the
website. Users who join meetings, whether or not they connect
a microphone, will be able to view the meeting transcript,
whether or not the meeting is ongoing.

IV. DESIGN TRADE STUDIES

A. Audio Device: Microphone Array
The microphone array is one of the main advantages of

using the StenoPhone over other existing conference room
meeting products. So for this microphone we needed to
choose one that would work for our context; ideally it would
sit in the center of a conference room table and detect audio
from all surrounding angles. We were able to eliminate many
microphone arrays that do not have this capability such as the
Kinect Mic Array.

We then focussed in on the circular Respeaker Microphone
arrays. These arrays have microphones placed in a circular
formation for collecting audio surrounding the device at 360
degrees. Out of the ReSpeakers we decided to use the Mic
Array V2.0. We researched and found that this array had
higher quality audio than the other array pi-hats. The array
v2.0 also has an on board microcontroller IC, XVF-3000 from
XMOS. This chip handles processing algorithms that come
with the board, such as automatic gain control and detection of
direction of arrival of audio.

The other option of respeaker that we were looking at but
ultimately decided against was the ReSpeaker Core V2.0.
This mic array has similar capabilities to the mic array V2.0
but it also has its own linux system on the board with wifi
capabilities so that the mic array functions as a single device
without the need for a Raspberry Pi or computer to help with
data transfer. Though this board is more powerful we decided
against it since we prefer to have a raspberry pi connection to
the speaker to handle more processing of the audio and to
package the data to send to the server over the network. The
ReSpeaker Core was also a more expensive choice and
seemed to be a higher level product which leaves less
opportunity for us to configure and build upon the given
microphone implementation  for our specific project needs.

B. Audio Device: Computer
For the audio device we needed to have a main system for

processing the audio and sending and receiving data over the
network. For this job we had two main choices, the Jetson
Nano or the Raspberry Pi 3 B. We first started by looking at
how much processing we would need to do on the device
before we sent it over the network and found that we mainly
need to filter the audio, detect direction of arrival, route output
audio to the server, and route input audio to the speaker. This
design of the software allows for most of the long processing
for both the speech to text and speaker identification solutions
to be performed on the server which greatly reduces the
amount of work that the audio device needs to perform locally.
The specs for the Jetson Nano are 1.42 GHz processor, with
2GB RAM. This is comparable to the Raspberry Pi 3 B which
has 1.4GHz processing speed, with 1GB RAM. Both of these

devices also offer UBS connection which we will use to
connect our microphone array and speaker.

A huge drawback of the Jetson Nano is that it does not have
wifi capabilities on the board, and we would need to buy an
external wifi connection device to use with the Jetson Nano.
Though the Nano does have an ethernet port, we were
planning on using wifi for our project since in conference
rooms there are not always ethernet connections available.
The Raspberry Pi 3 does have dual-band wifi capabilities and
comes at a lower price than the Jetson Nano with comparable
specifications for processing speed making it the best choice
for our project.

C. Audio Device: Processing
The audio is to be processed to remove outlying noise

before being sent in MP3 format to the server for further
processing for ML and sent to the other devices to output
audio in other rooms. We considered two different libraries for
scripting the audio processing: Audacity and SciPy. Audacity
is supposedly good for larger files, while our implementation
will use small chunks of audio. SciPy has a lot of support and
documentation as well, making it our tool of choice.

There are several options for compressing the audio to
prepare it for transmission over the network. The point of
compression is to reduce the size of the audio for easier
transmission, we are especially focussed on latency of the
audio transmission over other parameters. Because of this we
are planning on using a lossy audio compression format over a
lossless audio compression format, since these algorithms are
faster and produce smaller compressed files on average.

D. Web Server: Server
We chose to use a server for the site for this project’s more

complicated processing, such as speech to text and speaker
identification ML. These components have higher latency so
we decided to use the more powerful server to process this
instead of processing this on the raspberry pi. Another reason
why we chose to use the server is because we have structured
our audio streaming system to be centralized, so each audio
stream travels through the centralized server. This allows for
us to quickly have access to all audio streams on the server so
that we can generate the transcript in one place.

Amazon AWS was the obvious option for our web
deployment because of its support from the course staff in
terms of both knowledge and funding. To choose a specific
Amazon EC2 instance we started by narrowing it down to the
M5, M5a, and M4 classes of servers. We know that our system
has audio streaming both to and from two devices potentially
simultaneously (consisting of both audio and metadata at up to
44.1kHz with 16 bits per sample) as well as connections to a
website, so we needed to focus on the network bandwidth with
a lower limit of 3 Gbps. We also are running the speech to text
and speaker identification ML, so we needed a balance of
CPU power as well.

Comparing the EC2 servers we found that M5 had the
highest processing speed 3.1 Ghz, with comparable network
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bandwidth up to 10 Gbps, but was the most expensive. The
M4 had the lowest processing speed at 2.3 GHz with network
performance defined as “moderate” and was the lowest cost.
The M5a was right between these two servers with 2.5GHz
processing speed and up to 10 Gbps network bandwidth with
economical prices. We ultimately decided to use the M5a EC2
instance; we have run several ping tests on this server as well,
to test the network. We found that hosting the server at the
Ohio site option results in the best latency from our location in
Pittsburgh.

E. Web Server: Networking
In Fig. 1 we show 2 types of connections that need to be

made by the server: the first is the connection to the audio
devices, and the second is the connection to the website. Both
of the connections are handled in different ways with
consideration to the type of data being sent and to the latency
bounds of each.

Firstly for the connection to the audio devices, here we are
sending the audio, direction of arrival metadata, and the micID
so that the server can distinguish where the data is coming
from. One copy of this data is sent directly to the other audio
device and the other copy is sent to the speech to text and
speaker identification systems. It is important that this
connection has very low latency since the audio stream output
must appear at the second audio device in real-time and be
intelligible to the users there. To determine the latency, we did
a ping test. Ohio, us-east-2 region, is consistent at around 42
ms, median 41ms. North Virginia, us-east-1, spikes at
beginning with around 550 ms and decreases to 27-32 ms and
stays there, median 32. We like consistency so are choosing to
use the Ohio region, as latency spikes can cause inconsistent
and poor audio.

We decided to use a UDP connection for our
implementation since this connection allows us to send our
data with low latency; we also found that UDP connection is
common with real-time audio transmission. One issue that
this connection could add to our project is that UDP allows for
packets to be dropped on the network. Because of this we
have made a requirement for less than 5% packet drop rate of
our system to ensure that the audio stream is intelligible to the
users. Since packet size plays a role in how many packets can
be dropped on a network, we can tune the packet size to help
enforce this requirement.

The next connection that the server has is the connection to
the website. Over this connection we will be sending the
transcript to the website so that users can view it during and
after the meeting, for this we will be using HTTP. We are
most focussed that the http packets arrive and that they arrive
in order to the website so that is why we need to use HTTP
with a TCP network transport layer to ensure this.

F. Web Server: Database
The server information is to be stored using a SQLite

database. For the database, we have identified other solutions
such as MySQL and PostgreSQL. A SQLite database was
chosen as it is portable and that we would rather spend server

cycles in processing than using a DBMS which requires an
additional server process like MySQL or PostgreSQL. In
addition, most of the website development will be done
locally, so it is convenient to have the database contained and
stored in the repository for ease of sharing and use.

G. Web Server: Speech to Text
The speech to text portion of the system is to be

implemented by integrating a preexisting machine learning
model or solution into the transcript generator software
module. Tradeoffs in this implementation come down to the
tradeoffs between different solution options.

Solutions that have ‘streaming’ constructs are automatically
favored over others. These tools allow additional audio
content to be appended to previous audio with the
understanding that the new audio could be a continuation of
the previous sentence or word. It’s very helpful for our system
since we receive small amounts of audio in each packet over
the network, and these vocal fragments probably wouldn’t
make much sense if transcribed individually.

We have identified three reputable speech to text solution
options that contain streaming tools: Mozilla DeepSpeech,
which is a software package; CMU PocketSphinx, another
software package; and Google Speech-to-Text, which is a paid
service. Because of our requirements associated with
transcription, these options should be compared based on their
latency and their accuracy, measured by word error rate
(WER). DeepSpeech reports 7.5% WER [5]; PocketSphinx
reports 10% WER [6]; Google reports a very low 4.9% WER
[7]. Self-reported WER and timing information for each of
these solutions, however, are not directly comparable; the best
results on various different datasets are going to be reported.

Therefore, in order to obtain a fair comparison, each option
must be implemented inside the transcript generator and
assessed on the same audio. Ideally, the entire audio
processing pipeline of the StenoPhone would be in place so
that test results would additionally reflect adherence or
nonadherence to the requirements. Initial, unofficial results on
ReSpeaker audio indicate that Google may be the best choice
for our system.

H. Web Server: Speaker Identification
The situation with speaker identification ML solutions

mirrors that of the speech to text. Multiple options have been
identified, each with their own advertised diarization error rate
(DER). Several will be implemented and tested inside of our
system before the best one is chosen.

A table has been included below to describe the
self-reported DER of the speaker identification solutions under
our consideration.

TABLE II. SPEAKER IDENTIFICATION ML SOLUTIONS

Reported DER of Selected Solutions
Speaker ID Solution DER

pyannote audio 25% [8]
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pyBK 12% [9]

Hitachi Speech EEND 15% [10]

BUTSpeech FIT VBx 22% [11]

I. Web Server: Website
The interface for users will be a website served through

AWS using the Django Framework. Django was chosen as it is
well established, so resources are readily available if Django
specific problems arise. It is also based in Python, so it is
easier to integrate with other Python libraries like the ML
solutions mentioned above.

Fig. 2. Audio Device Diagram

V. SYSTEM DESCRIPTION

A. Audio Device
The main function of the audio device, shown in Fig. 2, is to

handle input and output audio. The three components to this
are the direct Audio I/O to the microphone and speaker, the
signal processing piece, and the networking layer to transmit
audio to and from the server. Each of these components will
operate on its own thread so that each component can keep
working simultaneously. Each audio device has its own
microphone ID so that users can register their microphone
when they create and join meetings. This microphone ID is
also used in the transmission of audio data, further discussed
below.

Starting with the control flow of audio from the ReSpeaker
mic to the server: the users will speak into the microphone;
this audio is streamed, using the pyaudio streaming library;
and it’s put into a queue to be processed by the signal

processing component.
The signal processing component will filter each chunk of

audio to improve it. The frequencies 20Hz - 8kHz will be kept
as those are the frequencies important to intelligibility [12].

The networking layer will read from the queue if there is a
processed audio packet ready to send to the server. This packet
contains the audio segment, direction of arrival information,
and the microphone ID. We are using a UDP connection for
this transmission to ensure low latency.

As for control from the server to the speaker, this is audio
from users using a different audio device. The server sends
the audio packet to the other audio devices in the meeting.
The software on the Raspberry Pi will play this audio on the

speaker connected to the mic array. The ReSpeaker Mic array
will block stop listening while audio is played on the speaker
to prevent a feedback loop here.

B. Web Server
Two separate connection types are used on the AWS Server,

shown in Fig. 3, since we need to connect to both audio
devices and the website; first we discuss the connection to the
audio devices.

We use UDP to send and receive the audio from the audio
devices; this operates on a single thread that holds both of
these actions. One stream of audio is from one audio device to
the other, for example, this audio is spoken by users in room 1
and will be heard by users in room 2. We also need to make a
copy of the input audio stream from a microphone that will be
sent to the speech to text and speaker identification ML
portion of our project. To do this, we will use 2 separate
queues to store input audio data, so that the server can
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continue sending and receiving data on its own thread, and
will not be blocked by the transcript generation. One queue
will hold audio meant to be sent out by the server, this is
defined as audio that will be sent to an audio device to be
played to the users. The other queue will hold the audio
packets that will be used by the transcript generator. Both of
these queues are from the python Queue library, we are using
the non-blocking and thread safe queues.

The transcript generator software module receives short
audio files from the networking layer. A microphone identifier
and the audio’s direction of arrival (DOA) additionally
accompany the file. The transcript generator keeps a
dictionary of information pertaining to each active microphone
connection, including the timestamp of the last time audio
from this microphone was processed and the DOA of that
audio. These two pieces of information help with the transcript
generator’s first task: speaker change detection. A speaker
change is detected when the DOA of the new audio differs
from the old DOA by more than ten degrees or it has been
more than five seconds since the last audio. When a speaker
change is detected, the ML submodules are reset so that the
new audio is considered independent from the old audio;
otherwise, if no speaker change is detected, the new audio is
appended to the old preexisting stream of audio.

Before audio can be sent to speech to text and speaker
identification, though, some preprocessing is performed on the

file. First, a low pass filter with cutoff frequency about 8kHz
is applied. Human listeners may find high frequency audio

information useful or interesting, but the machine learning
models have less use for the higher frequencies. This filter is
implemented as a fifth order Butterworth filter using scipy.
The scipy package is also used to resample the audio to
16kHz, the sampling frequency required by DeepSpeech.
Then, execution is split into two threads; one executes speech
to text and the other executes speaker identification.

The speech to text submodule has its own dictionary
containing references to model instances for each active
microphone connection. The information that needs to be kept
differs for each model type, but always includes a lock that
protects the model state while it is being used by one thread.
Given the new bit of audio, the speech to text submodule
returns the latest projection of what has been said since the last
speaker change.

The speaker identification submodule, again, has a
dictionary of information related to each microphone. This
includes not only references to model instances but also
information about the number, last known location, and
identifiers of each individual in the room with that
microphone. Speaker ID does not run during meeting
initialization while this information is being collected by the
meeting manager. If the speaker ID ML component assigns
less than 50% confidence to a speaker prediction, then the
speaker is chosen based on confidence ranking from the two
individuals physically closest to the new audio DOA.

Fig. 3. AWS Software Diagram
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The transcript generator joins the second thread and passes
the microphone identifier, speaker change status, new speech
to text result, and new speaker ID result to the meeting
management module.

The meeting management software module is the next stage
in transcript processing. During the microphone initialization
stage, the meeting manager compiles a list of participants and
their locations instead of adding to the official transcript. After
initialization is finished, this information is given to the
speaker identification submodule.

During the normal course of a meeting, the meeting
manager’s job is to compile the official transcript. After
receiving new information from the transcript generator, the
manager looks up the meeting that this microphone is a part of
and places a lock on that meeting’s transcript so it can’t be
modified by two threads simultaneously. Then, the manager
detects microphone changes—if the current end of the
transcript file does not match what the manager remembers
having written last from this microphone, then a microphone
change is detected. In the case of a microphone change, a
speaker change reset is sent to the transcript generator of each
microphone in the meeting; also, the speaker change status of
the new audio is considered to be ‘true.’

Finally, the meeting manager modifies the transcript file to
reflect the new information. If the speaker change status is
‘true,’ then the new speaker and speech content are simply
appended to the end of the file. Otherwise, the end of the file
is overwritten by first deleting the speaker and speech content
last written to the transcript and then replacing it with the
updated projections given by the transcript generator.

Next, a connection must be maintained with the website. We
need to send the transcript using channels for the users to view
during a meeting. This connection is HTTP so that we can
ensure packets arrive at the website and are in order. We can
ensure this since HTTP uses TCP as an underlying protocol;
this is also ensured by HTTP, assuming normal network
conditions. Here we have two different types of data being
sent. One is the transcript that is generated at the time of a
meeting. The next data contains the meeting data information
since the meeting database is stored on the server.

The type of data received by the server on this connection
are meeting updates such as the joining, starting, or closing of
a meeting. The updates are handled by the database and
meeting manager.

VI. PROJECT MANAGEMENT

A. Schedule
As seen in Fig. 5 and 6 at the end of the document, our

project schedule has been divided into four phases. In the first
phase, system setup, we ordered parts, configured the
hardware we obtained, we configured our web server, and we
set up some initial speech-to-text functionality. Phase two,
currently ongoing, is focused on the backend of the product
that the user would not generally see. The networking layer
both on the Raspberry Pi and the web server will be written.
Non-moving transcriptioning, database and website backend,
and filter design are also on the todo list for this phase. The
third phase, then, is the frontend phase. The meeting setup and
transcript streaming web pages will be developed.
Transcription capability will be enhanced as well. Finally, the
fourth phase leaves multiple weeks at the end of the project to
account for system testing, making the site look nice, and
whatever unaccounted-for tasks might arise. Integration is
expected to be continuous, as is sub-module testing as each
part is completed.

B. Team Member Responsibilities
Fig. 4 shows the general distribution of responsibilities

among team members. Mitchell had prior experience with
websites from his research; Ellen had used machine learning
packages at previous jobs; and Cambrea had the most
knowledge about hardware setup from the classes she had
taken. The remaining tasks outside of these were divided
equally between the members.

Fig. 4. Team Member Responsibilities

C. Budget
Our main source of spending was the ReSpeaker Mic array

since we need to order 2, this totals to $158. Fortunately we
were able to borrow the other high priced items from
inventory, a JBL Speaker and a Raspberry Pi 3 B. Our budget
and our table of parts can be found in Fig. 7. and Table 3.

D. Risk Management
The risks to our project come in multiple forms. There are

some associated with the technical design and others that
come from the project plan. We have mitigation strategies in
place for all the risks we’ve identified, and we’ve in fact
already had to enact one as risks actually come into play.

The first category of risk we may encounter is technical risk
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relating to our solution design. As described in section ii, we
have identified a set of requirements for our design, and we
have tests in place to verify whether or not our solution meets
the requirements after its implementation. We consider each
requirement to be a potential source of risk, the risk being, of
course, that our solution fails our tests. Because of this, we
have planned fallback strategies corresponding to each
requirement.

To delve into the specifics of these strategies, we’ll describe
them in the order the requirements were originally introduced.
Audio transmission latency, and similarly transcript latency,
may be improved by investing more money into the AWS
server’s networking specs, or by relocating parts of the
processing onto the server from the hardware. We might
improve the dropped packet rate by reducing packet size or
selecting a different transport layer protocol. Transcript error,
both word errors and speaker identification errors, can be
combated by trying alternative machine learning models or
switching from free software to paid services -- this is a path
we have already had to explore, adding paid Google services
to our transcription arsenal given preliminary speech to text
results. Transcript formatting error is a non-ML issue and can
be corrected by sending more metadata, such as timestamps, to
the meeting management software module.

The project planning risks are related to, but separate from,
the technical risks. First of all, there is a danger that, even if
our solution works, it takes longer to implement than we
anticipated. A similar risk is that, having implemented our
solution according to the schedule, we find that it doesn’t pass
some test in the end. Our schedule design is intended to help
with this: we have allocated multiple weeks at the end of the
semester for testing, and this purposefully includes extra time
for revision or further development. A second project planning
risk is related to our budget, which has a formal cap of $600,
albeit with some informal wiggle room. The risk, naturally, is
that our need for parts exceeds our budget. However, through
careful research of the parts and services we request to buy, we
believe we have mitigated this potential risk.

VII. RELATED WORK

The field of web conferencing solutions is well-saturated at
this point, with seemingly every major software company
offering their own alternative as an element of their suite of
products. Here we’ll highlight just a few major examples.
We’d also like to point out the work of previous ECE
Capstone group iContact, who created a project in the same
field of distributed meetings with multiple participants per
room. Their solution, though, focused on the video portion
more than the audio portion.

The current most famous web conferencing tool is Zoom.
The focus of this software is audiovisual meetings between
multiple individuals. Zoom allows live closed-captioning to be
performed manually by participants or added by a third-party
service [13]. It also offers live speech-to-text transcription in
paid versions. Transcription does not indicate who is speaking
[14]. Microsoft Teams, another prominent web conferencing

solution, does offer a form of speaker attribution in its live
transcription service. However, this very new feature assumes
that there is only one participant per connected device [15].
Cisco’s Webex provides the same level of speaker labeling as
Microsoft, along with other interesting functionality using
voice commands [16].

These and other common conferencing tools allow each
instance of the application to run on different hardware. This
is great for portability, but limits speaker identification
capabilities.

The area of hardware microphone-speaker meeting tools is,
however, one under active development in the industry. Only a
few weeks ago, at the beginning of March, Microsoft
demonstrated its plans to release “Intelligent Speakers, small
puck-like devices that can identify up to 10 different voices in
a Microsoft Teams meeting” [17]. The speakers can transcribe
and translate meetings. It’s interesting that a prominent
company is developing their version of the product
simultaneously as we develop ours. When we learned about
this news we believed it demonstrated that there is a real
demand for this technology.
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Fig. 5. Schedule, Phases 0-2 View

Fig. 6. Schedule, Phase 3-4 View
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Fig. 7. Budget and Parts List

TABLE III. BILL OF MATERIALS

Material Type Quantity

Google Cloud Speech to
Text

Software service N/A

Mozilla DeepSpeech Software package N/A

CMU PocketSphinx Software package N/A

pyannote audio Software package N/A

pyBK Software package N/A

Hitachi Speech EEND Software package N/A

BUTSpeech FIT VBx Software package N/A

Django Software package N/A

SQLite Software package N/A

AWS EC2 M5a instance Web deployment
service

1

Material Type Quantity

Micro SD Card Hardware 2

JBL Speaker Hardware 2

Raspberry  Pi 3 B Hardware 2

Raspberry Pi Power
Cable

Hardware 2

ReSpeaker Microphone
Array V2.0 Hardware 2

ReSpeaker Microphone
Array Case Hardware 2

3.5 mm Audio Cable Hardware 2

USB A to micro USB
Cable

Hardware 2


