Design Review: StenoPhone

D6: Ellen Seeser, Cambrea Earley, and Mitchell Yang

StenoPhone Recap

• Application area: distributed team meetings

● Automatic transcription ↔ recordkeeping, communication

• Meetings with multiple participants, multiple rooms

Solution Approach: Hardware

• ReSpeaker Mic Array v2.0

• 5m radius speakers

• Raspberry Pi 3 B

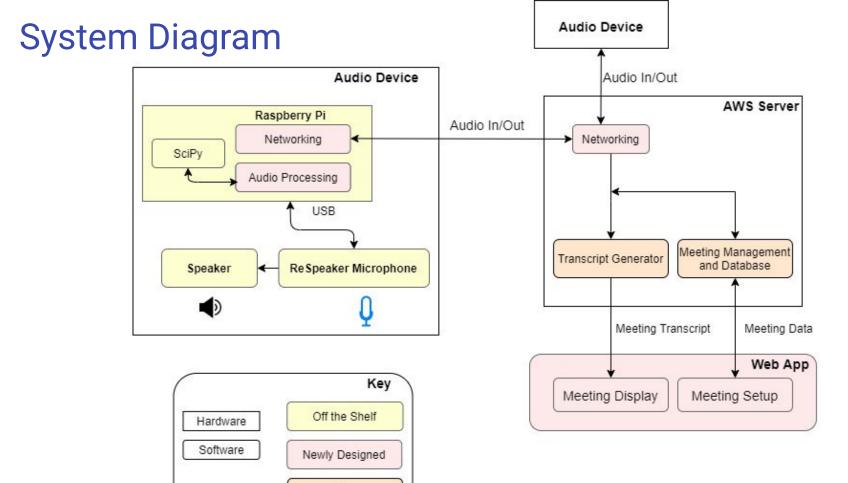
• SciPy, mp3 compression

Solution Approach: Software

• AWS server

• Python, Django, SQLite

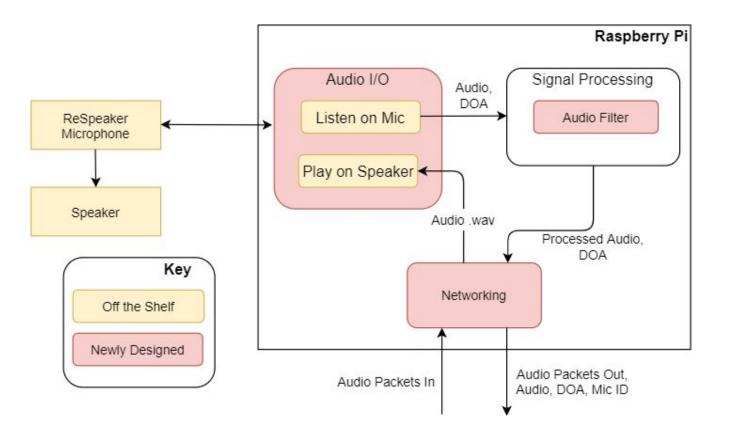
• Meeting management



Solution Approach: ML


- Speech to text
 - Candidates: Mozilla DeepSpeech, Google Cloud Speech to Text

- Speaker Identification
 - ML component candidates: pyannote audio, pyBK, Hitachi Speech EEND, BUTSpeechFIT VBx
 - Direction of Arrival augmentation



Mixture

RPi Software

Metrics and Validation

Requirement	Metric	Test	Failure Remediation
Audio Transmission Latency	Mouth-to-Ear Latency (ms) < 150 ms	Route audio packets through server, to and from same microphone for timestamp comparison	Purchase better AWS specs Relocate audio processing
Transcript Latency	Average Word Delay (s) < 3s	•	

Metrics and Validation

Audio Quality	Dropped packets (%) < 5%	Count original and final number of packets after transmitting an audio stream	Decrease audio packet size Choose another transport protocol
Battery Life	Hours of continuous use > 2hrs	Run device under heavy load for a set time to find battery usage	Add more battery Power with outlet

Metrics and Validation

Transcript Accuracy	Word Error Rate (%) < 25%	Check transcript for word error (substitution, deletion, and insertion) after speaking a known text*	Alternative models Switch to paid services (Google, Microsoft, IBM) NLP postprocessing
Speaker Identification Accuracy	Speaker Identification Error (%) < 25%	Check transcript for identification error after conducting a conversation with known contents and speaker switches	Alternative models Switch to paid services
Formatting Accuracy (chronology and speaker ID tags)	Formatting Error Rate (%) < 5%	Check transcript for formatting error instances after conducting a conversation with known contents and microphone switches	Augment metadata sent to meeting manager for merging transcripts

*100+ words. Well-formed sentences featuring common English words. Constant over multiple tests.

Project Management

	Phase 1 - Setup (weeks 4-6)	Phase 2 - Backend (weeks 5-8)	Phase 3 - Frontend (weeks 7-10)	
Mitchell	Platform Setup	Audio Processing	Multi Speaker	
Ellen	Machine Learning Integ	gration Meeti	ng Setup, Speaker ID	
Cambrea	Hardware Setup	Audio Networking	Website Networking	