
Acapella

Team D5

Remote Sound Recording

Application area

- Free, easy to use web app

- Allows user to collaborate with ensemble members remotely

- Takes care of latency and audio delay

Django & Redis servers with peer-to-peer connection

Solution Approach

- Django - simple web server operations
- Manages URLs and handles HTTP requests
- Stores HQ audio on the server

- Redis - asynchronous WebSocket interface
- Signalling for peer-to-peer connections

- Peer-to-peer connection - listening to each other in real-time
- Users send audio to each other via UDP, using WebRTC API
- Minimal latency at the expense of quality

Server-side syncing

- get note beginning timea
with onset detection

- Compare to array of beat
times from click track

- Save new .wav file, adding
or subtracting samples
from beginning to match
note onsets times with
beat

initial bumps / noise
removed using
wiener filter

System Diagram
Major changes

- Two web recorders
- Redis server for

asynchronous
WebSockets

- WebRTC for
monitoring

- Separate upload and
syncing

Establishing P2P Connection

Example: user A wants to connect to user B

● Each user generates their own SDP
○ Contains public-facing IP and port through which they can be connected to

● Handshaking:
○ User A sends an “offer” containing their SDP via WebSocket
○ User B sends an “answer” containing their SDP via WebSocket

● Connection can then be established independent of the server

P2P Connection

● Sending side:
○ Recorded audio is grouped into packets
○ Size of packet determined automatically to minimize latency

● Receiving side:
○ Received audio packets are placed into a jitter buffer for playback
○ Size of jitter buffer also determined automatically

● End-to-end latency is the time from when the audio is first grouped into
packets by user A, to the time it is played back by user B

Design Trade-Offs

● .wav encoding
○ CD quality, lossless PCM encoding
○ More workable with python libraries
○ But no native support by Web Audio API
○ Solution: use Recorderjs, which exports recordings as .wav files

● UDP vs TCP
○ UDP: lower latency, but possibility of packet loss
○ Can use WebRTC, which maintains stable connection while prioritizing low latency

For the Public Demo

Complete Solution

● Go through all our features
○ Track ui
○ Peer-to-peer monitoring
○ Syncing

● Demo recording session

● Not yet done:
○ Cloud deployment, all testing that requires cloud deployment

METRIC VALIDATION PERFORMANCE

Latency
< 100ms

Monitoring: Send time (UTC) with a packet once every 2
seconds and compare that to the UTC when it is received

Synchronization: compare corresponding onset times of
each of the uploaded tracks

Monitoring end-to-end
latency: <5ms locally, TBD
after cloud deployment

Synchronization: 20ms

Audio quality
< 5% packet loss

lost packets / # sent packets Packet-loss rate: virtually
0% locally, TBD after cloud
deployment

UI intuitiveness
< 5s to navigate

Poll a dozen users both familiar and unfamiliar with DAW
interfaces, timing them on performing basic functions
such as join room, create track, start recording etc.

TBD after cloud deployment

Comparative
usefulness and avg
satisfaction > 7

Survey users of our application, asking them to rate
various functions, overall audio quality, and overall
usefulness from a scale of 1-to-10

TBD after cloud deployment

Gantt
Chart
(Feb -
Mar)

Gantt
Chart (Apr
- May)

