Acapella

Team D5

Remote Sound Recording

Application area

- Free, easy to use web app
- Allows user to collaborate with ensemble members remotely

- Takes care of latency and audio delay

Django & Redis servers with peer-to-peer connection

Solution Approach

- Django - simple web server operations
- Manages URLs and handles HTTP requests
- Stores HQ audio on the server

- Redis - asynchronous WebSocket interface
- Signalling for peer-to-peer connections

- Peer-to-peer connection - listening to each other in real-time

- Users send audio to each other via UDP, using WebRTC API
- Minimal latency at the expense of quality

Server-side syncing

- get note beginning timea
with onset detection

- Compare to array of beat
times from click track

- Save new .wav file, adding
or subtracting samples
from beginning to match
note onsets times with
beat

25000 50000 | 75000 | 100000 125000 150000 175000
' I
initial bumps / noise ! 11

removed using
wiener filter

System Diagram

Major changes
RECORDING PAGE U

|
copy room key to
- Two web recorders copy room key P lioboard

- Redis server for export

save tracks to

asynchronous R AUDICAE) local disk
WebSockets CLICK GENERATOR start recording
- LOGIN PAGE Ul
- WebRTC for set tempo

stop recording

REGISTER

monitoring e

- Separate upload and

upload

waveform visualizer

syncing MONITORING

DJANGO CHANNELS

AJAX

upload to server

adjust network
buffers

database LE_GEND
PYTHON ESSENTIA LIBRARY N inputs

W outputs
sync audio files
creation
SERVER

open socket
connection

Establishing P2P Connection

Example: user A wants to connect to user B

e FEach user generates their own SDP
o Contains public-facing IP and port through which they can be connected to

e Handshaking:
o User A sends an “offer” containing their SDP via WebSocket
o User B sends an “answer” containing their SDP via WebSocket

e Connection can then be established independent of the server

P2P Connection

e Sending side:
o Recorded audio is grouped into packets
o Size of packet determined automatically to minimize latency

® Receiving side:
o Received audio packets are placed into a jitter buffer for playback
o Size of jitter buffer also determined automatically

e End-to-end latency is the time from when the audio is first grouped into
packets by user A, to the time it is played back by user B

Design Trade-Offs

e .wav encoding

CD quality, lossless PCM encoding

More workable with python libraries

But no native support by Web Audio API

Solution: use Recorderjs, which exports recordings as .wav files

o O O O

e UDPvs TCP

o UDP: lower latency, but possibility of packet loss
o Can use WebRTC, which maintains stable connection while prioritizing low latency

For the Public Demo

Complete Solution

e Go through all our features

o Track ui
o Peer-to-peer monitoring
o Syncing

e Demo recording session

e Not yet done:
o Cloud deployment, all testing that requires cloud deployment

METRIC

Latency
<100ms

Audio quality
< 5% packet loss

Ul intuitiveness
< 5s to navigate

Comparative
usefulness and avg
satisfaction > 7

VALIDATION

Monitoring: Send time (UTC) with a packet once every 2
seconds and compare that to the UTC when it is received

Synchronization: compare corresponding onset times of
each of the uploaded tracks

lost packets / # sent packets

Poll a dozen users both familiar and unfamiliar with DAW
interfaces, timing them on performing basic functions
such as join room, create track, start recording etc.

Survey users of our application, asking them to rate
various functions, overall audio quality, and overall
usefulness from a scale of 1-to-10

PERFORMANCE

Monitoring end-to-end
latency: <5ms locally, TBD
after cloud deployment

Synchronization: 20ms

Packet-loss rate: virtually
0% locally, TBD after cloud
deployment

TBD after cloud deployment

TBD after cloud deployment

PEOPLE

Jackson
Ivy

Christy

Team

Gantt
Chart
(Feb -
Mar)

Class assignments

16 | 17

w

=
=
T

19 20

Set up WordPress

Project proposal

Set up github

Design review

Research

Research websockets and real-time communication

Research timing and synchronization

Research visualization tools &

Website function creation

Initialize Django server with URLs, models, & views

Convert to ASGI server to allow for websockets

Local audio recording & playback in browser

Registration & user authentication

Set up bootstrap for Ul

Basic Ul for homepage & group page

Group formation with UUID URL

click generator

Ul integration

Audio spectrum visualization

adjustable click track / timeline

Monitoring

Asynchronous clients

Establish P2P connection with WebRTC

Send/receive audio over P2P connection

P2P with multiple users

Server-side audio manipulation

upload recordings to server

track synchronization based on timing info

additional features

save current state of project

website ui

PEOPLE

Class assi its

S

as

27 28

29

Interim demo

Ethics discussion

Final presentation

Final video & poster

Final report

Public demo

Website function creation

Serve static files (cloud)

Ul integration

W-like L_JLfor recording multiple tracks

audio manipulation

upload recordings to server

track synchronization based on timing info

Integration

Cloud deployment

Testing

Implement test for end-to-end latency

Implement test for packet loss

Test latency & packet loss on the cloud

request qualitative feedback from users

Misc.

Slack time (as initially scheduled)

additional features

chatbox

save current state of project

website ui

