
1
18-500 Final Project Report

Acapella
Author: Jackson Bogomolny: Electrical and Computer

Engineering, Carnegie Mellon University, Ivy Ye:
Electrical and Computer Engineering: Carnegie Mellon

University, Christy Lee: Electrical and Computer
Engineering, Carnegie Mellon University

Abstract—A system capable of allowing users to collaboratively
create recordings remotely, taking into account latency and delay
with real-time monitoring and synchronization with a click track.

Index Terms—Audio, Music, Recording, WebSockets

I. INTRODUCTION

N light of COVID restrictions, ensemble groups now face
the quandary of creating music together whilst maintaining
safe social-distancing guidelines. As a result, many have

turned to remote collaboration; currently available software
are varied, but are either limited in function (Soundjack
allowing only monitoring) or costly (Audiomovers and
Sessionwire requiring monthly subscriptions). Acapella is a
response to this need, a free web application that allows users
to get together and create a recording any time, in real-time,
with any equipment.

To achieve this, Acapella allows up to four users to create a
private room, where they can use a DAW interface to record
tracks and monitor each other’s audio in real-time with the
only hardware requirement being a working mic and
headphones. The implementation of this monitoring must
reduce audio latency to below 100 ms for all users, regardless
of their internet connection. To maintain audio quality, there
must be a maximum of 5% packet loss over the connection.
The combined recording is processed separately. After they
are finished playing, users may upload their individual tracks
and let the web app sync them to the click track automatically,
deviating from the click track by no more than 100 ms after
synchronization. These recorded tracks are CD-quality, with a
sample rate of 44.1 kHz. Finally, recordings are saved to a
webserver and can be downloaded on the users’ local
harddrive in a lossless format (e.g. .wav).

II. DESIGN REQUIREMENTS

During recording sessions, users monitor audio from other
users in real-time. There is debate over requirements for how
fast audio must be streamed to be considered “real-time.” A
response time of 100 milliseconds appears to be the maximum
amount of time perceived as instantaneous [1]. However,
musicians, even those less-experienced, are often far more
sensitive to small deviations in time from the beat of a song.
At 120 beats per minute (fairly typical tempo for a pop song),
100 milliseconds is just under a sixteenth-note (125
milliseconds).

Because of this, we require an absolute maximum latency

time of 100 milliseconds for a viable product, but understand
that for professional quality recordings, a lower latency is
likely needed. To measure latency, a packet is sent between
users every two seconds containing the time at which the
packet is sent. Upon reception, the sent time is compared to
the time the audio is received, and the difference is the latency.
Time in this instance is measured using UTC to resolve any
differences in time zones between users.

From the same numbers, we can derive a similar
requirement for synchronization. That is, once the audio is
recorded, it must be “on beat,” at least within 100 milliseconds
of the beat of the song. The beat of the song is determined by a
click track, and the start of a recording determined by onset
detection. Frames from the beginning of the file are then
added or shaved off depending on whether the note is behind
or ahead of the beat. The synchronization error is measured by
comparing onset differences between notes of different
recordings that should be happening at the same time.

In addition to the timing requirements, the audio quality
must also be maintained in monitoring. When streaming audio
in real-time, it is possible to drop some packets, but during
recording, an excess of dropped packets can cause the
monitoring feature to be more harmful than helpful. At a
minimum, timing information and pitch information must be
retained. To accomplish this, no more than 5% packet loss is
acceptable in monitoring, since any more would likely remove
necessary timing information. This can be easily measured by
the number of packets sent compared to the number of packets
lost.

Finally, the system must be easy to use. Anyone familiar
with audio editing software should know immediately how to
use Acapella without having to read an instruction manual. As
such, we have established the somewhat intuitive requirement
that no single instruction should take over five seconds for a
completely new user to figure out. To test the comparative
usefulness of our system to other available options, we survey
some ensemble groups who used our web app, asking them to
rate our site’s features out of 10, compared to other similar
applications they have used so far.

METRIC VALIDATION

Latency < 100 ms For monitoring
- Send time (UTC) with packets sent and

compare that to the UTC when it is received
For synchronization

- compare corresponding onset times of each of
the uploaded tracks

Audio quality
< 5% packet loss

Number of lost packets / number of sent packets.

UI intuitiveness
< 5s to navigate

Poll a dozen users both familiar and unfamiliar with
DAW interfaces, timing them on performing basic
functions such as join room, create track, start
recording etc.

comparative
usefulness
avg satisfaction > 7

survey members of ensemble groups who use our
application, asking them to rate various functions,
overall audio quality, and overall usefulness from a
scale of 1-to-10

2
18-500 Final Project Report

Fig. 1. system block diagram

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

The web application has two primary pages, the login and
the UI for recording. When logging in, users are able to create
or join rooms with other users, mapped to a specific hash in
the URL. This hash is implemented as a Universally Unique
Identifier (UUID), and is randomly generated at the time a
group is created. In the recording interface, users may set up
their low latency peer-to-peer connections for monitoring and
record their tracks individually before uploading them all to
the server. Afterwards, users of a room can decide which
recordings they want to keep and tell the server to sync the
beginnings of their selection, using the click track as a metric
for timing.

Acapella runs on the Django framework, which provides
efficient ORM (Object Relational Mapping) that simplifies
storing and accessing databases. One of the essential web
application techniques is WebSockets, which enables two-way
communications between the server and a browser. Django
Channels is critical to handle web sockets and integrate
Django ORM with Web Sockets.

Fig. 2 shows how the users and the server interact with each
other during the recording process. The users are able to
record their audio while monitoring the audio of the other
users who are concurrently recording. Django Channel
interferes with this functionality.

Once the user uploads the audio file to the server, the server
is responsible for integrating all the audio files from each user
and dispatching the integrated audio file to each user. Keeping

track of timing info of the audio, such as start time, end time,
and click track is critical to accurately synchronize audio files
from multiple users at the right tempo.

Fig. 2. server interaction diagram

Monitoring during the recording is accomplished with a low
latency peer-to-peer connection, while the actual recording
takes place with a separate recording API, to preserve a higher
audio quality and sample rate. Recorded audio is then
uploaded to the server to be processed.

To create and maintain low latency monitoring, three
buffers will be placed between each user and the other
(detailed in Fig. 8): the sample buffer, which controls packet
size; the network buffer, which controls the number of packets
to be sent; and the jitter buffer, which controls the number of
packets to be received. Decreasing the packet size allows for

3
18-500 Final Project Report

lower latency but also increases the risk of losing more data
which impacts the quality of the audio. While it is not too
important to maintain 100% packet integrity for monitoring,
staticky and clipped segments of audio are distracting and may
interfere with other musicians’ ability to play their part. To
circumvent this somewhat, the network and jitter buffer
controls the speed of the outgoing and incoming audio
correspondingly, allowing the computer some time to
complete each packet before being sent at the cost of some
latency. The inspiration for this implementation comes from
Soundjack, a web app for musicians to rehearse and perform
together remotely [2]. Normally users will have to manually
adjust each other's buffers to reach a minimized latency, but
for our implementation, this process will be automatic. The
WebRTC API controls these parameters and decides on
connection routes automatically to minimize latency for
real-time communication.

Peer-to-peer connections are established by WebSocket
signalling and maintained by WebRTC. The moment the group
page is loaded, the user’s browser generates a session
description, or SDP, which contains a list of that user’s ICE
candidates. In short, these represent all the possible methods
for connecting to that user, in the form of public-facing IP/Port
combinations. In order to set up a peer-to-peer connection
between two users, each user needs the other user’s SDP. The
process of exchanging SDPs happens over WebSocket
connections with the server, and is referred to as signalling.
When signalling, one user will send an offer requesting to
connect to another user. This offer contains the SDP. The other
user, upon receiving an offer, sends back an answer containing
their SDP. Finally, once both users have each other’s SDP, a
connection can be established between the two peers using
WebRTC, and audio can be sent between users without going
through the server first. Fig. 3 below shows the timing for
WebSocket signalling.

Fig. 3. one-to-one monitoring connection

After the recording is finished, the tracks are uploaded to
the server via AJAX, along with the timing of each beat of the
click track. The latter information comes from the click
generator: when each beat of the click track is played, its
timing is obtained and added to an array. Upon upload, all
tracks attributed to the room key will appear on the page by
hitting refresh. Users can then select the tracks they want to

keep and forward to syncing. When the user clicks the sync
button, the onsets of each track are matched to the beat times,
and each audio file is updated to reflect this.

IV. DESIGN TRADE STUDIES

Previously, we discussed sending the audio to the server and
back to the other users as it is being recorded in real time; in
other words, combining the real-time monitoring aspect and
the recording upload into one process. Unfortunately, upon
closer examination, all of this will add massively to the
overhead and result in unusable latency, as both the recorded
audio and the audio played back for monitoring will have to
go through the server.

The above implementation would also make it easier for us
to synchronize each chunk of audio as it is recorded, to create
an end result account for minute changes in the user’s
connectivity. However, synchronizing every single chunk
would be tedious and oftentimes a waste of computation. As
we have tested on other apps that do remote performance, our
network will be relatively stable most of the time, making
synchronization with each packet unnecessary; most likely the
end result will only need a small adjustment to the start time
of each track for all of them to line up.

In the end, we decided on separating monitoring and
recording into two modules: the first, for monitoring, will not
go through the server at all, which will allow configuration for
lowest possible latency while sacrificing some of the quality.
The second, for recording, will be designed to have maximum
possible quality, with latency not being an issue at all since
processing of recorded audio does not occur in real-time.

To summarize, the audio is recorded to CD quality
specifications, and the high quality file is stored before
uploading to the server, while the audio being sent between
users for monitoring can be a significantly lower quality to
ensure the lowest possible latency between peers.

A. UDP vs TCP
The choice between UDP vs TCP is perhaps the hardest

decision with the most important implications in our project.
On one hand, UDP has very small overhead (less than half the
size header as TCP) making it incredibly useful for driving
latency down. Packets are sent without any error checking, as
quickly as possible. On the other hand, TCP is far more
reliable. Connections are established between users before
transmission, packets are guaranteed to be received in the
correct order, and the slicing of packets is determined by the
network speed, rather than manually as is the case with UDP.
Thus, we initially decided to use TCP to send audio between
users. acknowledging that UDP would allow for slight
improvements in latency. During implementation however, we
realized that the WebRTC API which automatically sizes the
buffers (as discussed in section III) sends media over UDP.
Furthermore, UDP has become a standard in real-time
communication specifically because of its latency minimizing
capabilities. And finally, the packet loss trade-off is rather

4
18-500 Final Project Report

small. For these reasons, we ultimately decided to use UDP to
send audio between users for monitoring.

B. HTTPS vs HTTP
HTTPS is utilizing the same HTTP Protocol. The difference

is that HTTPS is running on HTTP Protocol with SSL
encryption, making HTTPS much trickier to configure than
HTTP. The big advantage of HTTPS is that users do not need
to worry about their information and packets broadcasted to
malicious interceptors. Furthermore, we had no choice but to
configure our website in HTTPS because the RecorderJS API
only runs on secure websites and RecorderJS is a crucial part
of our project to process user’s input [4].

There are numerous ways to set up HTTPS using Apache
and AWS (Amazon Web Service) settings. One method is to
have an AWS load balancer sitting in between the Apache
server and clients. The load balancer will redirect all clients to
the HTTPS server. In addition, the load balancer will control
traffic by equally distributing the requests among multiple
servers. However, since we do not expect much traffic from
the outside world and running multiple servers are
cost-inefficient, we decided not to have an AWS load balancer
in between our Apache Server and clients. Instead, the Apache
server will directly listen to one specific port (port 6379)
where clients submit requests. In addition, we modified our
Apache configuration to always redirect users to HTTPS even
if the users access our website through HTTP.

C. Audio Processing
Initially we proposed a system which did a significant

amount of audio processing on the back end after audio was
already uploaded. This would allow for mixing (changes in
volume), the combination of tracks, and effects to all be
implemented in Python on the server using NumPy or other
Python signal processing libraries. After some attempts at
audio file upload with Django, we realized that adjusting for
different file formats on the back end can be very tedious.
Even among files of the same type, encodings can be different.
For example, .wav files alone can have different bit depths or
be signed or unsigned. In addition, this is just inefficient since
all takes (including ones with mistakes that the user has no
intention of keeping) would have to be stored on the server,
and all computations would have to use server resources.

Because of these issues, we eventually settled on the current
model, where most of the audio processing takes place in the
user’s browser. The Web Media API takes care of input from
the microphone and can create any desired file format. Thus,
we can send only one format to the server and not have to
account for other ones. This new approach also solves the
efficiency problem, as files can be discarded by the browser
when they are no longer needed. And finally, the Web Media
API actually supports quite a lot of sophisticated audio
processing: everything from reverb to EQ to adaptive noise
cancellation is already implemented. Signal flow is intuitive,
and no additional libraries are needed since the Web Media
API is supported by your browser already.

V. SYSTEM DESCRIPTION

The first thing users see is the login/registration page. On
registration, the new username and password are sent to the
server. Once approved, a user is entered into the SQLite
database, and a corresponding User object is created in
Django. Alternatively, existing users can simply log in, where
their session is mapped to their existing User object. If an
existing user object does not exist in the database, an error
message is sent back to the user.

Fig. 4. User interface: landing page

Upon logging in, users are given the option to create a new
group or join an already existing one. User’s can join a room
by obtaining a unique room key (a UUID) from the room’s
creator, the trailing string of characters in the group’s URL

Fig. 5. The room key, displayed in the URL

The DAW interface allows users to interact with the bulk of
the functionality with our web app. There are two banks which
display the recorded track and all recorded tracks of the room
respectively. Above that are buttons which take in user input.

Fig. 6. User interface: recording

5
18-500 Final Project Report

1. Click generator: The group leader can set a tempo
for the recording, by selecting the number of beats
per measure and a tempo from 20 to 200 beats per
minute. Clicking the set button plays a three-bar
sample beat. The click track automatically starts upon
recording.

2. Recording UI
a. Record: Starts the recording as well as the

click track.
b. Stop: The stop button will be enabled after

the record button is clicked. Upon stopping,
recorded audio is displayed in (4) as a
waveform.

c. Play: Play back the track you’ve just
recorded.

d. Upload: Uploads the recorded track in (4)
Users must enter a name for the track in (3).
All tracks uploaded from that room will
appear in (5) upon refreshing the page.

e. Sync: Syncs the start times of all uploaded
tracks. Clicking refresh afterwards updates
the page to reflect these changes.

f. Export: Creates download links for all
uploaded under (5). Recorded tracks are
downloaded in .wav format.

5. Group tracklist: All uploaded tracks are displayed
here and may be updated by hitting refresh. Users can
playback and remove any track they do not want to
be synced. Removing is permanent and will delete
the track from the database.

To preserve recording quality, monitoring is done separately
over a peer-to-peer connection. The monitoring console sits at
the top of the page and displays each group member.

Fig. 7. User interface: monitoring console

1. Member status: Each row displays the name of a
group member and their status (online / offline).

2. Leader status: The creator of the room becomes the
room's leader. They are tasked with starting the
recording for everyone.

3. Volume slider: Adjusts the monitoring volume of
said member. This does not affect the volume of
recorded audio.

4. Send my audio: Opens a peer-to-peer connection
with that member, allowing them to hear you in
real-time.

Since monitoring between users will be heavily dependent
on latency minimization, we can afford to lose some audio
quality when monitoring. As mentioned previously, our
solution here is to use two different systems for monitoring
and recording. This also means the track synchronization will
be processed on the server after recording. The tracks, along
with the time the audio starts relative to the beginning of the
project (for synchronization) are uploaded to the server via
AJAX and stored in the server’s static file folder. Each
uploaded file is mapped to only one project, so that a project
can be revisited later, and all the previously uploaded files will
be sent back to the user when they open the project again.

A. Monitoring Over Peer-to-Peer Connections
To implement monitoring, we began with a proof of

concept, creating a connection that supports only two users. To
set up monitoring, we used the signalling process discussed in
section III and detailed in Fig. 3. We used WebRTC for peer
connections which roughly follows the network buffer process
as described in Section III.

Fig. 8. one-to-one monitoring connection

To review: the sample buffer controls packet size, the
network and jitter buffer control outgoing and incoming
number of packets correspondingly.

The manual process for doing this involves lowering User
1’s sample buffer and User 2’s jitter to as low as possible
without the audio completely dropping out. Then User 1’s
network buffer can be raised until the transmitted audio
quality is to User 2’s liking. To minimize latency some more,
User 2 can lower their jitter buffer again. This step and the
previous can be repeated until a connection with decent speed
and audio quality is established. Finally the entire process is
repeated again, but with User 2 transmitting the audio to User
1 [3]. Each user requires different values to their buffers
because everybody’s ISP and hardware are different: some
could be already using a latency-minimizing audio interface
while others may just be using a simple USB microphone.

The equation for the amount of times this process must be
repeated is:

𝑛2 − 𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑠𝑒𝑟𝑠

With each additional user, set up time takes increasingly
longer and longer. Furthermore, already established

6
18-500 Final Project Report

connections may need to be modified to account for additional
user’s connectivity.

During implementation, we realized the complexity of this
problem is greater than just the sizes of the buffers. Another
factor which is often far more important is the connection path
between the two users. Luckily, WebRTC will automatically
pick the lowest latency reliable path between two users when
setting up peer connections. WebRTC also automates the
buffer sizing problem dynamically, allowing for latency
minimization to occur in real-time during communication.
This is the implementation we opted for.

B. In-Browser Recording/Playback
Audio recording takes place entirely on the front-end. The

recording page points to a JavaScript file, which contains all
the necessary code for recording. This is accomplished using
Web Media API built-ins.

Four things must be initialized before recording. The first
and most obvious is storage for data chunks as recording takes
place. This can be done with a JavaScript array, which fills
only as new data becomes available. The second is a
MediaRecorder object, which is JavaScript’s construct to
capture audio or video. Our system needs only the audio
component. The third is an HTMLMediaElement object which
will point to the URL of the recorded audio once recording is
completed. And lastly, the browser needs some kind of way to
keep track of state (i.e. STOPPED, RECORDING, or
PLAYING) so the recorder doesn’t bug out from the user
clicking a button one too many times.

The state of the page operates like a finite state machine. It
will begin at STOPPED. To change the state, a user can either
begin the recording with the “record” button (changing the
state to RECORDING), or play back already recorded audio
with the “play” button (changing the state to PLAYING).
While recording, playback should not be possible, and while
playing back, recording should not be possible. Thus, the only
state which can be entered while recording or playing is the
STOPPED state. This transition happens either manually by
stopping the recording or playback with the “stop” button, or
automatically at the end of playback.

To store data as it’s being recorded, the MediaRecorder
needs an event listener for the “dataavailable” event, which
triggers every time new data is received from the microphone
or other audio input. When this event is triggered, the recorded
data is pushed to an array of audio chunks. When recording is
finished, the audio chunks array is turned into an audio blob,
which is then uploaded to the server with AJAX. Moving the
recorded tracks from the front end to the database proved to be
tricky; only .webm formatting is supported across all
browsers, but we needed our tracks to be in .wav format in
order to access them with Python on the backend. In the end,
we decided to go with the RecorderJS library [5], a wrapper
for the functions described above, which configures our file to
the preferred .wav format before uploading to the server.

C. Click Generator
Similar to recording, the click generator is implemented

within the browser with the Web Audio API. Two audio
contexts are first initialized, each to play short tone at a unique
frequency. The first, using a slightly higher frequency signifies
the first beat of a bar. The second, at a lower frequency,
signifies the following beats. The tempo and beats per
measure is obtained by inputs from the user. Once the click
track begins, these parameters are used to calculate the timing
of each beat to the millisecond and to determine which of the
two sounds to be played. The timing of each beat is tracked by
pushing Date.now() into an array each time one is being
played.

To maintain a stable beat, setTimeout() was used recursively
to create a delay between the current beat being played and the
next. However, the function is not entirely accurate; timing
issues become more and more evident after successive
setTimeout() calls. If a beat is delayed for longer than the set
tempo for any reason, the following beats will inherit the
delay, causing the metronome to stray further from the correct
timing the longer it runs. To mitigate this issue, the delay for
every other beat was recalculated to make up for any extra
time it took for the previous beat to be played.

D. Syncing
After the users have selected the tracks they want to keep, a

request is sent to the server containing those file names.
Furthermore, the server fetches the beat timings and tempo
previously uploaded by the room leader from a dictionary.
With this data, we can now begin extracting timing
information from the recordings.

We used the [6] Librosa Python library to extract musical
features from our audio, specifically Librosa’s onset detection
function to parse the beginnings of each recording. Normally
recordings have a period of silence before the musician begins
playing, however onset detection will react to the smallest bit
of noise, irregardless of whether it was intentional; thus, we
needed a way of differentiating between these onsets and the
onsets of the actual notes being played.

To do this, we used another one of Librosa’s functions to
calculate the root mean square (RMS) of energy for the entire
audio track. Since accidental bumps are generally lower in
volume (and therefore lower in energy), we then use
thresholding to remove the time values where RMS was below
0.1. The onset times which are also inside of this RMS
threshold are the onset times of the intended recording.

After obtaining the onset times, we begin matching the first
onset to the closest beat, by finding the difference between
two adjacent ones. There is a special case with pick-up notes
that we must make sure to take into account, as it would be
unfortunate if the pickup-note was matched with other parts
that only played at the beginning of the first bar. To do this,
we’ve set a Tolerance parameter for how close the onset has to
be from a beat to be considered on the beat; if the onset fails to
meet that metric, we look at the next. This tolerance is set to
about a third of the tempo, to account for triple meter,

7
18-500 Final Project Report

although it defaults to 0.2 if the tempo is set to a little over 120
bpm. This value was to be modified depending on the
monitoring latency metric we get after deployment, however
as we were not able to get the monitoring working with
deployment, it is left as it is.

Afterwards, the difference between the onset and
corresponding beat is converted from seconds to samples
which are then added or subtracted from the beginning of the
.wav file in order to align it to the beat. This file is then
updated in the database to reflect this change.

With that being said, different instruments have different
envelope characteristics, and not all of them are easily
detected with RMS thresholding. For instance, a drum playing
a sparse beat may behave a lot like background noise. For this
scenario, this algorithm may not be as reliable. A more robust
algorithm would probably involve machine learning to detect
the instrument being played, but this is beyond the scope of
our project.

E. Cloud Deployment

Fig. 9. Django Apache Architecture [8]

In our production setting, we utilized Apache version 2 and
Django version 3.1.7. Apache web server listens to browser’s
HTTPS request and forwards the requests to the application
server, Django. Since Django is a python-based application,
HTTP requests must be translated in a form that Django can
understand. One of the modules from Apache, mod_wsgi,
helps communicating with Django Application over WSGI
(Web Server Gateway Interface) specification. Then, Django
will parse the request and look up the function in urls.py file.
views.py file will perform tasks by communicating with the
database through models.py and rendering html in static files
[9].

Although Apache is a perfect fit for the static website
development, Apache does not support asynchronous requests
like WebSockets and HTTP/2, which are relatively new
technologies. Thus, Apache does not support ASGI
(Asynchronous Server Gateway Interface), meaning that
Apache does not handle one of our main features, real-time
communication between users.

In order to make our application available online, we used
Amazon Web Service (AWS) to host our Apache and Django
server as a SaaS (Software as a service). AWS EC2 is a virtual
computer that provides secure, resizable compute capacity,
operating system, networking, and storage [10]. For our virtual
computer, we utilized Ubuntu 20.04 as our operating system

and t2.large as our instance type. Additionally, we utilized
Amazon Route 53 to register a domain name and manage our
application domains so that users can easily access our website
using a domain name instead of an ip address number.

VI. TEST AND VALIDATION

In section II, we outline our metrics and validation, with
justifications for all of our requirements. In this section, we
follow those requirements. Though much of the testing we
intended to do was never able to be completed due to issues
with cloud deployment, we were still able to implement a
number of tests which could, at the very least, be used locally
to give us a rough idea of our latency and quality.

A. Results for Latency
To evaluate latency, we first must define what exactly is

being measured. Our requirement is to keep latency below 100
ms, with the justification that this is the rough threshold for a
reaction to be perceived as “real-time.” Thus, we should
define latency to mean the time between when a sound is
made by one user, to the time the sound is heard by another
user. For our project, however, much of this path cannot be
measured. WebRTC hides much of this information under the
hood. For example, the time from when a sound is first made
to the time when the recorded audio is placed into buffers to
send. This would definitely be a valuable time, but we
determined that it would be very small compared to the far
more important measure of the end-to-end latency just over
the network. I.e. the time from when an audio packet is sent by
one user to the time that audio packet is received by another.
So when we say “latency,” we are referring to this
measurement.

This end-to-end latency can be measured easily by sending
packets at regular intervals containing the time at which they
are sent. This time is then compared to the time at which they
are received, and the difference is the latency.

Performing this test locally showed latency numbers mostly
below 10 ms, far below our threshold. Though this result is
very promising, we were unable to finish the portion of cloud
deployment dealing with monitoring, so we could not verify
that this requirement was met over an internet connection.

Departure from the beat after syncing also follows the same
metric. Because the offset from different recordings will
probably be affected by the monitoring latency, we have set
the latency for synchronization to be less than 100 ms as well.
To measure this metric, we ran our code for onset detection on
the processed recordings, printed out the onset times, and
calculated the difference between recordings of the same
session. Doing this locally resulted in an average difference of
20 ms, which is well within the metric. While our code for this
part would likely operate the same way after deployment (and
thus would not change these results), we cannot say for certain
if this is the case.

B. Results for Audio Quality
Audio quality tests are far simpler than latency. We are

8
18-500 Final Project Report

measuring the packet loss rate, which can be calculated from
data that WebRTC provides in their stats API. Namely,
WebRTC gives the number of packets sent and the number of
packets lost. From these numbers, we can divide the number
of packets lost by the total number of packets sent. This gives
us our packet loss rate.

As described in section II, we require packet loss rate to be
below 5% for our application to be considered successful.
Offline, the packet loss is virtually 0%, passing the test easily.
However, as mentioned above, we were unable to perform this
test over an internet connection, and thus we cannot say for
certain that our audio quality requirements are met.

C. Results for UI Intuitiveness
To measure the intuitiveness of our user interface, we

planned to poll people at random to use our project and ask
them to perform simple tasks like creating a group, joining an
existing group, recording their audio, beginning monitoring
with another user, etc. We would then measure how long it
took them to figure out how to complete these tasks. For our
UI to be considered sufficiently intuitive, we determined that
users should take no more than five seconds to figure out how
to complete a simple task.

This testing would require one of two things. The first is a
working, deployed version of our project for users to log onto
and perform these tests remotely. And the second is the ability
to meet with many people in person to perform these tests
locally. The first option could not be completed due to
unexpected issues and delays with deployment, and due to the
COVID pandemic, we had to rule out the second option as
well. Thus we could not complete this test.

D. Results for Comparative Usefulness
Similar to the test for intuitiveness, we planned to poll users

to measure usefulness, by asking a random selection of users
for a very general satisfaction ranking from 1-10. However,
for the same reasons as the intuitiveness test, this could not be
completed either.

VII. PROJECT MANAGEMENT

A. Schedule
Our team worked separately on our assigned tasks during

the week. We planned to deploy our implementation on the
cloud every weekend to verify that everything works correctly
in practice. This did not pan out however, since deployment
requires altering many aspects of the backend. Because of this,
we waited until most of the implementation was finished
before beginning deployment to the cloud.

The WebSocket signalling and peer-to-peer monitoring
began the week of March 15. Also at this time, the click
generator feature was implemented to provide timing
information for the users and for the server. Timing
information from the click generator is important for the
server to synchronize audio files from multiple users at the
correct tempo, so the click track was implemented prior to

synchronization. We created the UI for the sound recording
page all throughout the semester as we implemented specific
features.

We planned to test our latency metrics early on, but since
this requires cloud deployment, we were unable to get to this,
as cloud deployment was never fully completed due to
challenges with using an asynchronous WebSocket
implementation. We planned to first reach our minimum
viable product (which performs perfect audio synchronization
and transmission between four users) before adding sound
editing features, which allow users to adjust the tone, pitch,
and speed of their audio file. Since the minimum viable
product was never finished in time, audio effects were not
implemented either, with the exception of gain control for
each user.

A simplified version of our updated Gantt chart can be
found in Fig. 9 at the end of the paper.

B. Team Member Responsibilities
Jackson was responsible for in-browser recording and

playback, setting up peer-to-peer connections via WebSockets,
sending audio between users over these connections, as well
as website functionality like team formation. Ivy was
responsible for creating the click track generator, uploading
audio recordings to the server via AJAX, and synchronizing
the audio files to the click track. Christy was responsible for
waveform visualization, implementing basic website
functionalities like login and registration, and cloud
deployment. We planned to work together to integrate and
finally implement audio effects such as reverb, EQ, noise
cancellation, etc. However, integration was unable to be
completed fully due to issues with cloud deployment for an
asynchronous WebSocket server.

C. Budget and AWS Credit Usage

ITEM COST

AWS Credits $50

We would like to thank AWS Cloud Computing Services for
providing the resources to get our web app online. Because the
product must work on the web, we require an AWS server for
hosting our application, handling data transfer, storing the
database, and computing resources. High quality audio files
can grow large, and we already utilized 0.3 GB of Amazon
Elastic Block Storage snapshot storage, which is 30% of usage
limit. Although we are able to avoid extra payment for the
Block Storage usage for now, we might need to expand the
storage limit as more users access our website and store their
data.

In order to establish secure communication over a computer
network for our website (HTTPS), the first step was to
purchase a unique domain name for our website. AWS

9
18-500 Final Project Report

provides such networking service in 53 Route where we can
register our domain name. We paid 12 dollars to register our
domain name, www.acapella2021.com, and the domain name
will expire one year after our purchase, which is on May 7th,
2022. After registration, we utilized AWS Hosted Zone to
connect domain name with our IP address, which ended up
costing 0.5 dollars. After the purchase of our domain name
and setup for Hosted Zone, there was no additional expense
for deployment because the SSL certificate was issued via a
free open source website, named ZeroSSL. Also, we chose to
utilize an Apache Web Server, which is a free, open source
HTTP server that supports Ubuntu operating system.

Figure 11, for AWS cost management, is located at the end
of our paper. In reference to the AWS cost management, since
May 2nd when we first deployed our server through AWS,
daily cost for t2.large instance is 2.2272 dollars. Since we did
not stop our EC instance since we launched the server, the
expense makes sense. Until May 14th, costs for the EC2
instance sums to 26.454 dollars. In addition, costs for DNS
Queries vary everyday between the range of 0.00006 dollars to
0.0003 dollars, but they are relatively negligible compared to
the costs for EC2 the instance.

Since our project is designed to work with your computer’s
built-in audio input, purchasing new hardware cannot be
justified. However, between the three of us, we already have a
variety of different audio input types, including USB
microphones and USB audio interfaces capable of recording
with standard microphones or a direct line input.

D. Risk Management
Our team planned to take an iterative and incremental

development approach throughout the project. Instead of
deploying our web application on cloud right before the
deadline, we intended to deploy and test our work on the AWS
Cloud Computing Service every week, in order to make sure
everything works fine in practice. Iterative web development
processes can also help identify the bottleneck of the website,
which could potentially increase latency. However, since cloud
deployment requires changes in the backend settings, we
decided that deploying every week would require a lot of extra
and unnecessary work. This came at a cost though; we had
issues with cloud deployment that we did not catch until the
final days of the project, and they never got resolved.
Specifically, we had a lot of trouble trying to get the Apache
server to accept asynchronous WebSocket requests. The
Django Channels documentation [7] details a number of ways
to deploy an ASGI server, but we were unable to get one
working in time for our demo.

We also had to be careful about not overspending on AWS
credits. If we were to use a t2.large instance, which costs
0.0928 per hour, we could have 538 hours of website running
time, which is about 22 days. We will close down the instance
once we are done with our project.

One big problem we still have is that the latency could
possibly not be low enough to be useful for real-time
monitoring. Since we were never able to test latency, this is

something we cannot verify will work with our
implementation. If, after deployment issues are resolved,
latency is above the previously specified threshold of 100
milliseconds, it will not only remove helpful timing cues for
other recording musicians, but will also create incorrect timing
cues, making the problem worse than simply having no
monitoring at all. If latency is too big because too much data is
being sent, we can greatly reduce the amount of data by
lowering the sample rate of the entire project significantly. If,
for example, we change the sample rate from 44.1 kHz to 16
kHz, we cut the amount of data by more than half, while still
maintaining enough information for speech to be intelligible.
This would make our product not viable for professional
quality recordings, however, as a sample rate of at least 40
kHz is required to represent frequencies up to 20 kHz, the top
of human hearing range, and a sample rate of 44.1 kHz is the
standard in professional audio.

Another potential risk was the WebSocket signalling
implementation not working properly at all. We are all new to
socket programming, and though we were able to get it
working locally, we never got it working on the cloud. In order
to manage this risk, we decided that in a worst case scenario,
our product can still be useful for recordings without the
monitoring feature. This is not at all ideal, but if the
monitoring must be removed from the final product, we still
need some kind of way to give users pitch cues (they will
already have rhythm cues from the click track), which can be
done by allowing the user to upload a backing track containing
at least one pitched instrument or voice. Audio will then only
be sent between users by the server after recording, allowing
for our editing features to still work.

VIII. ETHICAL ISSUES

While our project is geared towards the very specific area of
collaborative music, and we were unable to make even our
minimum viable product work within our requirements, we
still have a number of ethical concerns we believe are worth
addressing for future attempts at this technology.

Firstly, if the concept of our project was ever to replace
recording studios and practice spaces, a few issues could arise.
Suppose a similar application to Acapella was developed at a
large scale. Small recording studios could lose business as our
technology gains more users. But perhaps more importantly,
since our project requires a very high quality internet
connection (to keep latency at a minimum as is required for
music or any domain where timing is vital), the process of
making music could become more expensive and lead to an
upward transfer of wealth to large ISPs with the resources to
provide internet fast enough for viable use of Acapella. The
existence of our project could also influence people in certain
geographical areas without internet connections to be less
likely to create music due to high barriers of entry. Though we
think this is unlikely to happen with a technology as
domain-specific as ours, it is still worth thinking about, since
one of our main goals is to make music more accessible; the
last thing we want is to have the opposite effect. This is tough

http://www.acapella2021.com

10
18-500 Final Project Report

to mitigate, since it is just a consequence of the need for high
speed internet, but if we were able to implement all of our
latency minimizing strategies (such as downsampling
monitoring audio), the internet speed requirements could be
relaxed a bit to compensate.

Secondly, since our app has a peer-to-peer audio chat
function, there are some security issues to think about. One
group of issues is related to copyright and creative property.
An example of this kind of issue is if the connection is
intercepted at any step of the way, people may be able to hear
someone else’s unreleased music, which could allow them to
steal it and lead to legal problems. Another security concern is
that our audio chat may not only be used for music purposes.
Since we are starting small, we have created a
difficult-to-track communication platform which could enable
malicious users to plan illegal activities. There are a few
approaches we can think of to mitigate this. If we sufficiently
design our site entirely to encourage users to make music, it
becomes unlikely that people will even think to use it for
malicious activity. For the copyright issue however, we can
either work hard to improve the security of a group (by
encrypting everything being sent, adding passwords to groups,
etc), or simply telling users that our app is not intended for
music where copyright is a major concern. We have
implemented our server to work using HTTPS, which adds a
layer of security to connections. But none of us have expertise
in the area of computer security, and there are likely many
vulnerabilities that we do not have the knowledge to
recognize. However, Django application provides default
security for Cross-site scripting attacks (XSS) where attackers
inject malicious script to a form field. Django will defend the
website by escaping potentially harmful HTML special
characters.

IX. RELATED WORK

We were inspired by the application called Soundjack, a real
time communication system providing any quality and latency
relevant parameter to the user. The application provides real
time/online jam solutions where musicians interact as if they
were in the same room. The difference is that, while
Soundjack provides video streaming along with audio
streaming in the manner of Zoom, it has no recording or
editing interface like the one we have implemented with
Acapella. Still, we aim for the similar goal: providing an
environment for real-time audio communication between
multiple users who remotely practice. Soundjack gave us basic
guidelines about what tools are needed for virtual audio
recording, which includes a click generator and timing
adjustment/synchronization. Although we were not able to
learn about the back-end of this application, we got a good
idea about what we have to implement.

X. SUMMARY

The system specified in this document is likely to meet the
design requirements outlined in sections I and II. We are
hopeful that the latency and quality requirements are both

possible to be achieved using our implementation of
monitoring, while the audio synchronization requirements can
be met by post-processing on the server. An obvious limitation
is the latency, which even in a best case scenario will still
likely be noticeable for professional musicians. This is
inherent in web-based audio monitoring, but given more time,
certain improvements could be made. For example, the audio
sent could be downsampled before sending to reduce the
amount of data sent, and then upsampled before playback, or
just played back at a different sample rate. The completely
in-browser system makes this difficult, since the Web Audio
API allows only one sample rate for recording and playback,
which is why this is not already a part of the proposed project.

A. Future work
Beyond the semester, a number of additional features could

greatly improve the quality of the product. Firstly, cloud
deployment of an ASGI server is necessary, and can be done
by using Daphne or Heroku instead of Apache. With this
addition, we believe that our implementation could meet the
minimum requirements we outline in sections I and II.

The DAW could support a much bigger variety of editing
tools similar to professional DAWs such as Pro-Tools or
Ableton, which both allow for panning, groups of tracks to be
processed together, send/return tracks, and most importantly
an effects chain for each track or group of tracks. Most audio
software uses VST or Audio Units plugins to process audio
with effects such as reverb, delay, distortion, compression, and
more. Our system has the potential to support this as well.
This would also allow for third party developers to create
plugins for our site.

B. Lessons Learned
We have learned a few important lessons from this project.

For one, this project is heavily reliant on networking protocols
for real-time audio communication, which was the most
involved part of the process. In our group, none of us had prior
experience with networks, which meant that a lot of time had
to be spent researching networking protocols, sockets, and
their implementations on the web.

Additionally, we were anticipating more interesting audio
signal processing when choosing an audio related project.
However, just the process of narrowing our scope down to a
minimum viable product ended up removing most of the DSP
we were initially excited about, including sound synthesis and
effects processing. If future student groups are interested in
audio signal processing (or any other specific domain), it is
important to choose a project whose scope is based in that
domain. For example, something like a web synthesizer or
web effects processor removes the tough networking problems
while maintaining both signal processing and web
programming.

And finally, we learned that cloud deployment for
asynchronous web applications with a WebSocket layer (using
an ASGI) is very different from deploying a standard WSGI

11
18-500 Final Project Report

web app the way we were taught in the CMU Web Apps
course (17-437). Furthermore, best practice would be to keep
track of the deployment resources and settings needed for our
APIs and code libraries so we know what we need beforehand.
If future teams are looking to do any web applications which
require asynchronous WebSockets, we would strongly
recommend you leave plenty of time for deployment,
especially if you have no prior experience deploying ASGI
web applications. The Django channels documentation gives a
quick example, but leaves out many key details that we were
never able to figure out.

GLOSSARY OF ACRONYMS

AJAX - Asynchronous Javascript and XML
API - Application Programming Interface
ASGI - Asynchronous Server Gateway Interface
AWS - Amazon Web Services
DAW - Digital Audio Workstation
EQ - Equalization
HTTP(S) - Hypertext Transfer Protocol (Secure)
ICE - Interactive Connectivity Establishment
IP - Internet Protocol
ISP - Internet Service Provider
ORM - Object Relational Mapping
RMS - Root Mean Square
SDP - Session Description Protocol
TCP - Transmission Control Protocol
UDP - User Datagram Protocol
UI - User Interface
URL - Uniform Resource Locator
UTC - Coordinated Universal Time
UUID - Universally Unique Identifier
VST - Virtual Studio Technology
WebRTC - Web Real-Time Communication
WSGI - Web Server Gateway Interface
XML - Extensible Markup Language

REFERENCES

[1] Miller, Robert Response time in man-computer conversational
transactions AFIPS '68 (Fall, part I): Proceedings of the December 9-11,
1968, fall joint computer conference, part I, December 1968

[2] Avant, Bob Soundjack: Current Thoughts, Understandings and
Guidance of this Real - Time Communication and Collaboration Tool.
2020 Dec 6

[3] Howel, Ian L. DMA Report of the Voice and Sound Analysis Laboratory
Voice Pedagogy: SOUNDJACK GUIDE 2020 Dec 20

[4] “What Is HTTPS?” CloudFlare, 2020,
www.cloudflare.com/learning/ssl/what-is-https.

[5] Diamond, Matt Recorderjs 2016 Github Repository
https://github.com/mattdiamond/Recorderjs

[6] Librosa 2021 Github Repository https://github.com/librosa/librosa
[7] Django Channels 2018 https://channels.readthedocs.io/en/latest/
[8] Bianca, Joao. “Django Structure.” ResearchGate, Apr. 2019,

www.researchgate.net/figure/Specific-Django-architecture_fig1_332023
947.

[9] Ellingwood, Justin. “How To Serve Django Applications with Apache
and Mod_wsgi on Ubuntu 14.04.” Community, 2015,
www.digitalocean.com/community/tutorials/how-to-serve-django-applic
ations-with-apache-and-mod_wsgi-on-ubuntu-14-0.

[10] “Amazon EC2.” AWS,
aws.amazon.com/ec2/?ec2-whats-new.sort-by=item.additionalFields.pos
tDateTime&ec2-whats-new.sort-order=desc.

http://www.cloudflare.com/learning/ssl/what-is-https
https://github.com/mattdiamond/Recorderjs
https://github.com/librosa/librosa
https://channels.readthedocs.io/en/latest/
http://www.researchgate.net/figure/Specific-Django-architecture_fig1_332023947
http://www.researchgate.net/figure/Specific-Django-architecture_fig1_332023947
http://www.digitalocean.com/community/tutorials/how-to-serve-django-applications-with-apache-and-mod_wsgi-on-ubuntu-14-0
http://www.digitalocean.com/community/tutorials/how-to-serve-django-applications-with-apache-and-mod_wsgi-on-ubuntu-14-0

12
18-500 Final Project Report

Fig. 10. Schedule and Division of Labor

Fig. 11. AWS cost management

