18-500 Final Project Report: Due 03/17/2021

Acapella

Author: Jackson Bogomolny: Electrical and Computer
Engineering, Carnegie Mellon University, Ivy Ye:
Electrical and Computer Engineering: Carnegie Mellon
University, Christy Lee: Electrical and Computer
Engineering, Carnegie Mellon University

Abstract—A system capable of allowing users to collaboratively
create recordings remotely, taking into account latency and delay
with real-time monitoring and synchronization with a click track.

Index Terms—Audio, Music, Recording, Websockets

1. INTRODUCTION

N light of COVID restrictions, ensemble groups now face

the quandary of creating music together whilst maintaining

safe social-distancing guidelines. As a result, many have
turned to remote collaboration; current available software are
varied, but are either limited in function (Soundjack allowing
only monitoring) or costly (Audiomovers and Sessionwire
requiring monthly subscriptions). Acapella is a response to
this need, a free web application that allows users to get
together and create a recording any time, in real-time, with
any equipment.

To achieve this, Acapella allows up to four users to create a
private room, where they will use a DAW interface to create
and edit tracks, receiving each other’s audio real-time via
websockets. The implementation of this monitoring must
reduce audio latency to 100 ms for all users, regardless of their
internet connection. To maintain audio quality, there must be a
maximum of 5% packet loss over the connection. The
combined recording will be processed separately from this
monitoring. After they are finished playing, users will upload
their individual tracks and the web app will sync them to the
click track based on the timing information. These recorded
tracks must have a sample rate of 44100 kHz, and must be
within 100 ms off the corresponding beat. Finally these
recordings will be saved on the users’ local harddrive in
accessible file formats (.wav, .mp3).

1I. DESIGN REQUIREMENTS

Users will be able to monitor audio from other users in
real-time during recording sessions. There is debate over
requirements for how fast audio must be streamed to be
considered “real-time.” A response time of 100 milliseconds
appears to be the maximum amount of time perceived as
instantaneous [1]. However, musicians, even those less-
experienced, are often far more sensitive to small deviations in
time from the beat of a song. At 120 beats per minute (fairly
typical tempo for a pop song), 100 milliseconds is just under a
sixteenth-note (125 milliseconds).

Because of this, we will require an absolute maximum
latency time of 100 milliseconds for a viable product, but

understand that for professional quality recordings, a lower
latency is likely needed. To measure latency, each audio
packet sent between users will contain the time at which the
audio is sent. Upon reception, the time sent will be compared
to the time the audio is received, and the difference is the
latency. We will use UTC time to resolve any differences in
time zones between users.

From the same numbers, we can derive a similar
requirement for synchronization. That is, once the audio is
recorded, it must be “on beat,” which as stated above can not
be achieved unless each recorded track is aligned within at
most 100 milliseconds of the beat of the song. The beat of the
song will be determined by the click track, and this
synchronization error can be measured by again using the
difference between the time of the first click and the first
packet sent.

In addition to the timing requirements, the audio quality
must also be maintained in monitoring. When streaming audio
in real-time, it’s possible to drop some packets, but during
recording, an excess of dropped packets can cause the
monitoring feature to be more harmful than helpful. At a
minimum, timing information and pitch information must be
retained. To accomplish this, no more than 5% packet loss is
acceptable, since any more would likely remove necessary
timing information. This can be easily measured by the
number of packets sent compared to the number of packets
received. Corresponding packets may also be compared
against each other to check for accuracy.

And finally, the system must be easy to use. Anyone
familiar with standard audio editing software should know
immediately how to use Acapella without having to read an
instruction manual. As such, we’ve established the somewhat
intuitive requirement that no single instruction should take
over five seconds for a completely new user to figure out. To
test the comparative usefulness of our system to other options
available, we will survey some ensemble groups who’ve used
our web app, asking them to rate our site’s features out of 10,
compared to other similar applications they’ve used so far.

METRIC VALIDATION

Latency <100 ms | For monitoring
- Send time (UTC) with each packet sent and

compare that to the UTC when it is received

For synchronization
- Compare timing of each tick to the timing of
the audible click in each audio track

Audio quality
< 5% packet loss

Compare number of sent packets with number of
received packets.

Poll a dozen users both familiar and unfamiliar with
DAW interfaces, timing them on performing basic
functions such as join room, create track, start
recording etc.

Ul intuitiveness
< 5s to navigate

comparative survey members of ensemble groups who use our
usefulness application, asking them to rate various functions,
avg satisfaction > overall audio quality, and overall usefulness from a

7 scale of 1-to-10

18-500 Final Project Report: Due 03/17/2021

RECORDING PAGE UI

set click track

adjust timeline

CLICK GENERATOR

set global click

WEBSOCKETS

adjust network
buffers

open socket
connection

SERVER

Fig. 1. system block diagram

III.

The web application has two primary pages, the login and
the Ul for recording. When logging in, users will be able to
create or join rooms with other users, mapped to a specific
hash in the URL. In the recording interface, they will be able
to create tracks for each of their audio inputs, set up their low
latency connections, set a click track and finally begin
recording. After recording has been finished, their individual
tracks will be uploaded to the server via a file form upload,
where they will be mixed, using the click track as a timing
metric.

Acapella runs on the Django framework, which provides
efficient ORM (Object Relational Mapping) that simplifies
storing and accessing databases. One of the essential web
application techniques is Web Sockets. Web Sockets enables
two-way communications between the server and a browser,
resulting in low latency connection. Django Channels will be
critical to handle web sockets and integrate Django ORM with
Web Sockets.

(Fig 2) shows how the users and the server interact with
each other during the recording process. The users will be able
to record their audio while monitoring (listening) to the audio
of the other users who are concurrently recording. Django
Channel interferes with this functionality.

Once the user uploads the audio file to the server, the server
is responsible for integrating all the audio files from each user

ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

WEB AUDIO AP1

start recording

waveform visualizer

sync audio files

copy room key to

clipboard

copy room key

export save tracks to

local disk

LOGIN PAGE Ul

audio playback REGISTER

T
BT

upload to server

room joining /
creation

LEGEND
g inputs
B outputs

and dispatching the integrated audio file to each user. Keeping
track of timing info of the audio, such as start time, end time,
and click track is critical to accurately synchronize audio files
from multiple users at the right tempo.

User 1 audio & start time

All audio tracks & start times

User 2 audio & start time

All audio tracks & start times

Monitoring
&

User N audio & start time

All audio tracks & start time

‘ -

m Senton project save
(multipart form data
upload)

= Sent on project load
connection)

Fig. 2. server interaction diagram

Monitoring during the recording will be accomplished with
a TCP connection over websockets. The actual recording will
take place separately, to preserve a higher audio quality and
sample rate. This will then be uploaded to the server to be
processed when finished.

To create and maintain low latency monitoring, three
buffers will be placed between each user and the other (Fig 3)
: the sample buffer, which controls packet size; the network
buffer, which controls the number of packets to be sent; and

m Sent during recording (socket

18-500 Final Project Report: Due 03/17/2021

the jitter buffer, which controls the number of packets to be
received. Decreasing the packet size will allow for lower
latency, however will also risk losing more data, impacting the
quality of the audio. To circumvent this somewhat, the
network and jitter buffer controls the speed of the outgoing
and incoming audio correspondingly, allowing the computer
some time to complete each packet before being sent at the
cost of some latency. The inspiration for this implementation
comes from SoundJack, a webapp for musicians to rehearse
and perform together remotely [2]. Normally users will have
to manually adjust each other's buffers to reach a minimized
latency, but for our implementation, this process will be
automatic.

-_g User 1 Sample User 1 Network User 2 litter
=
i Buffer Buffer Buffer User 1 audio
5 Arrived x ms
2 later
U ONE TO ONE
se
CONNECTION
[
User 2 audio 8
Arrived x ms -
later User 1 Jitter User 2 Network User 2 Sample , | ?
Buffer Buffer Buffer 55

Fig. 3. one-to-one monitoring connection

After the recording is finished, the tracks will be uploaded
to the server with Ajax file form upload, along with the timing
of each beat of the click track. The latter information comes
from the click track. Setting up the click track initializes a
global clock that will run according to the inputted BPM. An
algorithm will synchronize all these tracks together, by
looking at the time codes for each ‘tick’ of the clock and
comparing that to the first noticeable click in each user’s
recording. After synchronization, these clicks will be detected
in the time domain and then filtered out.

IV. DESIGN TRADE STUDIES

Previously, we discussed sending the audio to the server and
back to the other users as it’s being recorded in real time; in
other words, combining the real-time monitoring aspect and
the recording upload into one process. Unfortunately, upon
closer examination, all of this will add massively to the
overhead and result in unusable latency, as both the recorded
audio and the audio played back for monitoring will have to
go through the server.

The above implementation would also make it easier for us
to synchronize each chunk of audio as it is recorded, to create
an end result account for minute changes in the user’s
connectivity. However, synchronizing every single chunk
would be tedious and oftentimes, just a waste of computation.
As we have tested on other apps that do remote performance,
our network will be relatively stable most of the time, make
synchronization with each packet unnecessary; most likely the
end result will only need a small adjustment to the start time

of each track for all of them to line up.

In the end, we decided on separating monitoring and
recording into two modules: the first, for monitoring, will not
go through the server at all which will allow configuration for
lowest possible latency, sacrificing some of the quality. The
second, for recording, will be designed to have maximum
possible quality, with latency not being an issue at all. During
recording, this module will only be focused on retrieving as
much data as possible, as the track synchronization will be
done afterwards.

To summarize, the audio is recorded to CD quality
specifications, and the high quality file is stored before
uploading to the server, while the audio being sent between
users for monitoring can be a significantly lower quality.

A. UDP vs TCP

The decision between UDP vs TCP is probably the hardest
one with the most important implications in our project. On
one hand, UDP has very small overhead (less than half the
size header as TCP) making it incredibly useful for driving
latency down. Packets are sent without any error checking, as
quickly as possible. On the other hand however, TCP is far
more reliable. Connections are established between users
before transmission, packets are guaranteed to be received in
the correct order, and the slicing of packets is determined by
the network speed, rather than manually as is the case with
UDP. Thus, we have decided to use TCP to send audio
between users. However, we acknowledge that UDP would
allow for slight improvements in latency.

B. Audio Processing

Initially we proposed a system which did a significant
amount of audio processing on the back end after audio was
already uploaded. This would allow for mixing (changes in
volume), the combination of tracks, and effects to all be
implemented in Python on the server using NumPy or other
Python signal processing libraries. After some attempts at
audio file upload with Django, we realized that adjusting for
different file formats on the back end can be very tedious.
Even among files of the same type, encodings can be different.
For example, .wav files alone can have different bit depths and
can be signed or unsigned. In addition, this is just inefficient
since all takes (including ones with mistakes that the user has
no intention of keeping) would have to be stored on the server,
and all computations would have to use server resources.

Because of these issues, we eventually settled on the current
model, where all the audio processing takes place in the user’s
browser. The Web Media API takes care of input from the
microphone and can create any desired file format. Thus, we
can send only one format to the server and not have to account
for other ones. This new approach also solves the efficiency
problem, as files can be discarded by the browser when they
are no longer needed. And finally, the Web Media API
actually supports quite a lot of sophisticated audio processing:
everything from reverb to automatic noise cancellation. Signal

18-500 Final Project Report: Due 03/17/2021

flow is intuitive, and no additional libraries are needed since
the Web Media API is supported by your browser already.

V. SYSTEM DESCRIPTION

The first thing users will see is the login/registration page.
On registration, the new username and password are sent to
the server, and once approved, a user is entered into the
SQLite database, and a corresponding User object is created in
Django. Alternatively, existing users can simply log in, where
their session is mapped to their existing User object on
success, or an error message is sent back to the user on error.

The DAW interface allows users to interact with the bulk of
the functionality with our webapp. There is a scrolling
timeline in which their recorded tracks will be displayed
visualized as waveforms. Above it is a horizontal toolbar that
takes in user input (button clicks) to perform the functionality
of our DAW.

export

120 bpm
©!>) 1) (W

Fig. 4. user interface

1. copies room key url to clipboard to share with other
group members

2. sets up latency minimizing socket connection

between all peers

sets up metronome bpm

recording and playback fsm

uploads recorded tracks to server

export recording to local disk in .wav or .mp3 format

track sidebar: manages track input and toggles

recording

8. adds new track

Nonkw

To preserve recording quality, monitoring will be done
separately over a socket connection. Since monitoring
between users will be heavily dependent on low latency, we
can afford to lose more audio quality over this socket
connection as compared to the actual recording. This also
means the track synchronization will be processed on the
server after recording. The tracks, along with the time the
audio starts relative to the beginning of the project (for
synchronization) will be uploaded to the server via Ajax and
stored in the server’s static file folder. Each uploaded file is
mapped to only one project, so that a project can be revisited
later, and all the previously uploaded files will be sent back to
the user when they open the project again.

A. Monitoring Over Sockets

To implement monitoring, we will begin with a proof of
concept, creating a connection that supports only two users.
We will be using the network buffer process as described in
Section II1, figure copied here for reference.

-g User 1 Sample User 1 Network User 2 Jitter
=
i Buffer Buffer Buffer User 1 audio
; Arrived x ms
3 later
ONE TO ONE
User 1 User 2
CONNECTION
C
User 2 audio %
Arrived x ms -
later User 1 Jitter User 2 Network User 2 Sample g
Buffer Buffer Buffer o

Fig. 5. one-to-one monitoring connection

To review: the sample buffer controls packet size, the
network and jitter buffer controls outgoing and incoming
number of packets correspondingly.

The manual process for doing this involves lowering User
1’s sample buffer and User 2’s jitter to as low as possible
without the audio completely dropping out. Then User 1’s
network buffer can be raised until the transmitted audio
quality is to User 2’s liking. To minimize latency some more,
User 2 can lower their jitter buffer again. This step and the
previous can be repeated until a connection with decent speed
and audio quality is established. Finally the entire process is
repeated again, but with User 2 transmitting the audio to User
1 [3]. Each user requires different values to their buffers
because everybody’s ISP and hardware are different: some
could be already using a latency-minimizing audio interface
while others may just be using a simple USB microphone.

The equation for the amount of times this process must be
repeated is:

n2 — n, wheren = number of users

With each additional user, set up time takes increasingly
longer and longer. Furthermore, already established
connections may need to be modified to account for additional
user’s connectivity. To take the load of the user, we plan to
automate this.

To do so, we will play a simple tone over each person’s
connection, calculating latency by comparing the time each
packet is sent to the time said packet is received. Because we
will be using TCP, packet loss should be automatically
detected by our implementation. With each adjustment of a
buffer, the program will compare the current latency and
packet loss rate to the previous, and undo the change if either
takes these values further away from our specifications of 100
ms of latency and 5% packet loss, prioritizing the former over
the latter. When the algorithm for between two users has been
established to work, we will translate it to work with multiple
users, using the user with the slowest connection as a baseline.

18-500 Final Project Report: Due 03/17/2021

B. In-Browser Recording/Playback

Audio recording will all take place on the front-end. The
recording page will point to a JavaScript file, which will
contain all the necessary code for recording. This is
accomplished using Web Media API built-ins.

Four things must be initialized before recording. The first
and most obvious is storage for data chunks as recording takes
place. This can be done with a JavaScript array, which fills
only as new data becomes available. The second is a
MediaRecorder object, which is JavaScript’s construct to
capture audio or video. Our system needs only the audio
component. The third is an HTMLMediaElement object which
will point to the URL of the recorded audio once recording is
completed. And lastly, the browser needs some kind of way to
keep track of state (i.e. STOPPED, RECORDING, or
PLAYING).

The state of the page operates like a finite state machine. It
will begin at STOPPED. To change the state, a user can either
begin the recording with the “record” button (changing the
state to RECORDING), or play back already recorded audio
with the “play” button (changing the state to PLAYING).
While recording, playback should not be possible, and while
playing back, recording should not be possible. Thus, the only
state which can be entered while recording or playing is the
STOPPED state. This transition happens either manually by
stopping the recording or playback with the “stop” button, or
automatically at the end of playback.

To store data as it’s being recorded, the MediaRecorder
needs an event listener for “dataavailable”. This will push
recorded data to the array of audio chunks only when new data
is available. Because this happens within an event listener, it
can occur asynchronously, allowing other code to be run while
recording. This is critical, since recording must take place
simultaneously with sending and receiving data from other
users.

C. Click Generator

Setting up the click track involves an HTML form
submission, which allows the user to set a tempo from 20 to
200 bpm and pick time signatures with 2, 3, 4, or 6 beats per
bar with a eight, quarter, and half note equal to one beat. When
pressing the play icon in the metronome, the form is uploaded
to the server, where these inputs will be copied to global
variables that will determine the timing information for the
entirety of the recording. The tempo global variable,
specifically will be used to construct a clock that will run at
the specified bpm. Each tick of this clock corresponds to each
beat of the click track. The python playsound module will be
used to alternate between a beat and bar indicator sound.

At the same time, pressing the metronome’s play icon will
play back a 3 measure sample beat to the users. The click track
bar in the DAW UI will adjust to accommodate the selected
number of beats per measure. When pressing record, this beat
pattern will be looped infinitely until recording stops. Timing

information for each tick will be collected with perf counter(),
appended to a list as the recording happens.

VI. PRrROJECT MANAGEMENT

A. Schedule

Our team will separately work on our assigned tasks during
the weekdays. On the weekend, we will deploy our
implementation on cloud to verify that everything works
correctly in practice. The date that we plan to deploy our code
on AWS Cloud is basically our milestones. On the week of
March 15, we are aiming to set up Websockets to enable audio
transmission between two wusers. In addition, the click
generator feature will be implemented to provide timing
information for the wusers and for the server. Timing
information from click generator is important for the server to
synchronize audio files from multiple users at the correct
tempo. In addition, sound synchronization will be installed to
synchronize audio files. Skeleton UI will be implemented for
the sound recording page. On the week of March 22, we are
going to wrap up the socket audio transmission and test our
latency metrics. We are going to come up with a latency
minimization algorithm in order to keep a satisfactory latency
rate even after we add more users who record simultaneously.
After we reach our minimum viable product, which performs
perfect audio synchronization and transmission between four
users, we are going to add sound editing features, which allow
users to adjust the tone, pitch, and speed of their audio file.

B. Team Member Responsibilities

Jackson is responsible for the in-browser recording and
playback, as well as sending audio to and from the server. Ivy
is responsible for creating visual/auditory tools to correctly
measure timing info of the audio and synchronizing the audio
files from multiple users to create an ensemble. Christy is
responsible for creating visual Ul for the recording Ul page
and implementing convenient website functionalities, such as
chatting, team forming, and registration. We are going to work
together to implement the socket communication and to
reduce latency as low as possible, which involves increasing
AWS Cloud resource capacity, possibly downsampling the
monitoring audio, setting up the correct network buffer, and
decreasing the amount of server-side work. In addition, sound
editing functionality will be divided so that each person can
work on EQ, pitch, or speed adjustment.

18-500 Final Project Report: Due 03/17/2021

f=
S
3
>
<) e
=)
1 "
™ o
bt
Q
c -
[} T
£=1 £
s ic
- =
= b
g o
o
1 o -4
o &
o =
g o £
ic 2
B e
| @
_ o°
= =
o =2 |
< = 2
) 2 [s]
= (=
_ o
= £
o =
g 8 o
o
el ke)
< £
2 >
Q °)
c (%2] -
o] Q
S)
= s =
T N
a £ 3
< £ o
7] E £ o
o)
2 g5
5 2 s B
=] < £3
i o =3
211 < - 54
[} o £
s 2 £ o 3
] = 3
o)
~ L ~ e
o *
o o o Q
& z 7 E
0 3 Ll = =
$3 g 8
5 5 E
5] c = °
s o = 5 o
X = ® c B 5
o @ N 5 > 2
® = 2 O
(L 7] (=]
alls|[&f]|&) 2
(7} © I= =] 5
X~ = [} = <
Q Q c =)
c |- o c >
o B 7] (2}] L
] 3 o) =) ° 0
- Q x ©
~n=llEE 2] 5 o
o wn 29 = = (o]
N = |18 2 o (723
<8
s >
3 = @ S
=% S = a
Q = £ (]
@ o =
o
Fig. 6. Schedule and Division of Labor
C. Budget
AWS Credits $50

We are going to spend our budget on utilizing AWS Cloud
Computing Services. Because the final product will work on
the web, we will require an AWS server for deployment in
order to store things like the database of users, projects, and
each recorded track saved by the user. High quality audio files
can grow large, so we will likely need the extra space provided
by the paid servers.

Since our system is designed to work with your computer’s
built-in audio input, purchasing new hardware cannot be
justified. However, between the three of us, we already have a
variety of different audio input types, including USB
microphones and USB audio interfaces capable of recording
with standard microphones or a direct line input.

D. Risk Management

Our team is going to take an iterative and incremental
development approach throughout the project. Instead of
deploying our web application on cloud right before the
deadline, we are going to deploy and test our work on the
AWS Cloud Computing Service every week, in order to make
sure everything works fine in practice. Iterative web
development processes can also help identify the bottleneck of
the website, which could potentially increase latency. We also
have to be careful about not overspending 50 dollars AWS
credits. If we were to use a t2.large instance, which costs
0.0928 per hour, we can have 538 hours of website running
time, which is about 22 days. We will make sure to terminate
the resources in a timely manner as soon as we verify our
implementation works in practice.

One big risk is that the latency will not be low enough to be
useful for monitoring while recording. If latency is above the
previously specified threshold of 100 milliseconds, it will not
only remove helpful timing cues for other recording
musicians, but will also create incorrect timing cues, making
the problem worse than simply having no monitoring at all. If
latency is too big because too much data is being sent, we can
greatly reduce the amount of data by lowering the sample rate
of the entire project significantly. If, for example, we change
the sample rate from 44.1 kHz to 16 kHz, we cut the amount
of data by more than half, while still maintaining enough
information for speech to be heard. This would make our
product inviable for professional quality recordings, however,
as a sample rate of at least 40 kHz is required to represent
frequencies up to 20 kHz, the top of human hearing range.

Another potential risk is the websockets implementation not
working properly at all. We are all new to socket
programming, and though we would like to figure out how to
use it to send audio this semester, there is the possibility that
we cannot. In order to manage this risk, we’ve decided that in
a worst case scenario, our product can still be useful for
recordings without the monitoring feature entirely. This is not
at all ideal, but if the monitoring must be removed from the
final product, we still need some kind of way to give users
pitch cues (they will already have rhythm cues from the click
track), which can be done by allowing the user to upload a
backing track containing at least one pitched instrument or
voice. Audio will then only be sent between users by the
server, allowing for our editing features to still work.

18-500 Final Project Report: Due 03/17/2021

VII. RELATED WORK

We were inspired by the application called Soundjack, a real
time communication system providing any quality and latency
relevant parameter to the user. The application provides real
time/online jam solutions where musicians and singers interact
as if they were in the same room. The difference is that, while
Soundjack provides video streaming along with audio
streaming in the manner of Zoom, it has no recording or
editing interface. Still, we aim for the similar goal: providing
an environment for real-time audio communication between
multiple users who remotely practice. Soundjack gave us basic
guidelines about what tools are needed for virtual audio
recording, which includes a click generator and rpm adjusting
controls. Although we were not able to learn about the
back-end of this application, we got a good idea about what
we have to implement.

VIIIL

The system specified in this document meets the design
requirements outlined in sections I and II. The latency and
synchronization requirements are both possible to be achieved
using the websockets implementation of monitoring, while the
audio quality requirements can be met by standard file upload
to the server. An obvious limitation is the latency, which even
in a best case scenario will still likely be noticeable for
professional musicians. This is inherent in web-based audio
monitoring, but given more time, certain improvements could
be made. For example, a separate application could be used
for monitoring using UDP instead of TCP, which could
minimize latency further. Additionally, the audio sent could be
downsampled before sending to reduce the amount of data
sent, and then upsampled before playback, or just played back
at a different sample rate. The completely in-browser system
makes this difficult, since the Web Audio API allows only for
one sample rate for recording and playback, which is why this
isn’t just a part of the proposed project.

SUMMARY

A. Future work

Beyond the semester, a number of additional features could
greatly improve the quality of the product. The DAW could
support a much bigger variety of editing tools similar to
professional DAWSs such as Pro-Tools or Ableton, which both
allow for panning, groups of tracks to be processed together,
send/return tracks, and most importantly an effects chain for
each track or group of tracks. Most audio software uses VST
or Audio Units plugins to process audio with effects such as
reverb, delay, distortion, compression, and more. Our system
has the potential to support this as well. This would also allow
for third party developers to create plugins for our site.

B. Lessons Learned

Though we are only at the halfway point in the semester, we
have learned a few important lessons already. For one, this
project is heavily reliant on networking protocols for real-time
audio communication, which is likely going to be the most
involved part of the process. In our group, none of us had prior
experience with networking, which meant that a lot of time
had to be spent researching networking protocols, sockets, and
their implementations on the web.

Additionally, we were anticipating more interesting audio
signal processing when choosing an audio related project.
However, just the process of narrowing our scope down to a
minimum viable product ended up removing most of the DSP
we were initially excited about. If future student groups are
interested in audio signal processing (or any other specific
domain), it is important to choose a project whose scope is
based in that domain. For example, something like a web
synthesizer or web effects processor removes the tough
networking problems while maintaining both signal
processing and web programming.

REFERENCES

[1] Miller, Robert Response time in man-computer conversational
transactions AFIPS '68 (Fall, part I): Proceedings of the December 9-11,
1968, fall joint computer conference, part I, December 1968

[2] Avant, Bob Soundjack: Current Thoughts, Understandings and
Guidance of this Real - Time Communication and Collaboration Tool.
2020 Dec 6

[3] Howel, lan L. DMA Report of the Voice and Sound Analysis Laboratory
Voice Pedagogy: SOUNDJACK GUIDE 2020 Dec 20

