
SmolKat: A Smart Kitchen Assistant

Elena Gong, Nanxi Li, Yang Yue

Use Case

- Goal: Reduce food waste by improving refrigerator throughput
- Track ingredients in refrigerator
 - Use OpenCV + desktop camera
- Recommend Recipes
 - Use a personalized database to recommend recipes via text-to-speech
- Highlight required ingredients
 - Use LEDs to guide users to the locations of key ingredients
- ECE Areas: Software, Hardware

Requirements: Latency of System, Responsiveness

- 1. End-to-end System Latency: 100ms
 - a. Selected as the boundary for humans to perceive as instantaneous
 - b. Total allotted time between the customer request, to speech processing, recipe selection, text-to-speech generation, and ingredient highlighting
- 2. Ingredient Recognition Latency: 2 seconds
 - a. Image processing and ingredient recognition latency do not directly impact customer experience.

Requirements: Accuracy of Recognition Systems

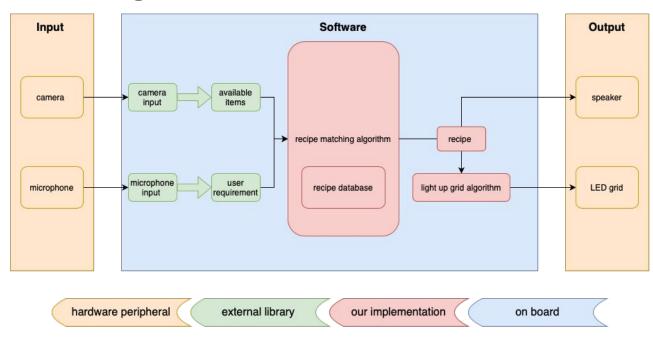
- Speech Processing Accuracy: 90%
 - Selected set of 5 keywords for proof of concept
 - Accuracy bound before user experience degrades
- Food Recognition Accuracy: 95%
 - Selected set of 10 common food items for proof of concept
 - High accuracy bound, rest of system depends on accuracy of food recognition.

Requirements: Quality of Recipe Recommendations

- Assumed that common pantry items (salt, pepper, flour) are available
- Required dataset of diverse recipes such that the user will not be tired of repetitive meals
 - Lower bound target of 30 recipes
- Able to meet special requirements for the end user (vegetarian, lunch/dinner, high in protein)
- Measured success by providing recipes to sample population, recording satisfaction
 - Targeted: 90% satisfaction

Technical Challenges: Meeting Latency

- End-to-end latency requirement: 100ms
 - a. Speech Recognition to parse user requirements
 - b. Recipe Selection from internal database
 - c. Text-To-Speech processing of audio output
 - d. LED highlighting for physical ingredient guidance
- Mitigation Plan: Use more compute heavy / AI focused processing board
 - a. Swap from using Raspberry Pi 4 to AI-ML workload focused boards such as Jetson Nano
 - b. Speed up the processing for the speech recognition, text to speech processing
 - c. Speed up the processing for ingredient recognition
 - d. Costs: Power Consumption, Unit Cost


Technical Challenges: Meeting Recognition Accuracy

- Accuracy bounds for Speech Processing, and Ingredient Recognition
- Use various ML/AI frameworks to accomplish our Speech Processing and Ingredient Recognition
 - System will run directly on hardware platform, will not use cloud processing
- Risk Mitigation:
 - Do more processing with denser ML models -- tradeoff latency for accuracy
 - Use cloud ML services such as Amazon Comprehend NLP, Google Vision AI -- tradeoff latency for accuracy

Solution Design: Overview

Solution Design: Components

- Software:
 - Speech Processing: Pretrained Libraries -- Jetson.Inference, SpeechRecognition python library
 - Recipe Recommendation System: Custom software database
 - Image Recognition: Jetson.Inference, OpenCV, Google Vision AI
- Hardware Peripherals:
 - LED grids: GPIO pins + Jetson.GPIO python library to control chained LEDs
 - Audio Input/Output: Adafruit Mini USB Microphone/Speaker
 - Image Input: Logitech Desktop Camera with USB communication
- Hardware Platform: NVIDIA Jetson Nano

Testing, Verification, and Metrics

Description	Goal	Verification Method
System Latency	100ms	Record time from user input to system output. Full integration test.
Image Processing Latency	2 seconds	Record time from image input to result output of ML model
Speech Recognition	90% accuracy	Accuracy on test dataset of audio recorded with selected microphone
Food Recognition	95% accuracy	Accuracy on test dataset of images taken with video hardware

Tasks and Division of Labor

Hardware System: Nanxi

- Connect LED grids with RPi
- Microphone, Camera, Speaker with RPi's I/O
- Choose packages

Recommendation System: Elena

- Find appropriate datasets
- Feature extraction
- Build baseline models
- Build models for recommendation
- Test & Improve performance

Image & Speech Processing: Yang, Nanxi

- User speech request to text
- Speech from recipes text
- Process photos to inputs
- Run CNN on PC for food recognition
- Migrate model to Hardware
- Test on image/speech recognition accuracy

Proposed Schedule

PHASE		DETAILS	_	_	_	_	_	_	_	_	_		_		_		2	_	_		
				FEB				MAR					APR					MAY			
	PROJECT WEEK:		1	8	15	22		1	8	15	22	29	5	12	19	26	3	10	17	24 31	
1	Project Initiation	- Abstract													Everyon	ie					
		- Proposal Presentation													Elena						
		- Design Review													Nanxi						
2	Hardware	- Order Parts and Materials													Yang						
		- Learn about Hardwares, run unit tests																			
		 Build the glass shelves for simulating real fridge 																			
		- Design and build LED grids																			
		- Connect RPi to microphone, camera, speaker																			
		- Find Speech Processing package and																			
		test - Test																			
3	Recommendation System	- Find Appropriate Dataset for Recipes																			
		- Select features/ embedding																		P R	
		- Build Baseline Models																		0	
		- Build NN/ Find appropriate NN							, i											J	
		- Optimization																		С	
		- Test on recommendations																		т	
4	Image & Speech Processing	- Speech Processing(speech to text)																		EN	
		- Speech Processing(text to speech)																		D	
		 Process photos of grids to inidividual items 																			
		- Run CNN on PC for food recognition																			
		- Migrate model to Hardware																			
		 Test on image/speech recognition accuracy 																			
		- Test performance on Speaker																			
		- Test on whole system																			
		- General Improvment																			
5		- Report																			
	Project Close	- Final Presentation																			
		- User Testing & Survey																			
		- Demo																			